• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A neural network to predict reactor core behaviors?

    2014-04-24 09:29:06JuanJosOrtizServinDavidPeltaandJosAlejandroCastillo
    Nuclear Science and Techniques 2014年1期

    Juan Jos′e Ortiz-Servin,David A.Pelta,and Jos′e Alejandro Castillo

    1Instituto Nacional de Investigaciones Nucleares,Carretera Mexico Toluca S/N, La Marquesa Ocoyoacac,Estado de Mexico,CP 52750,Mexico

    2ETS Ingenier′?a Inform′atica y Telecomunicaciones,Universidad de Granada, C/Daniel Saucedo Aranda,s/n 18071,Granada,Spain

    A neural network to predict reactor core behaviors?

    Juan Jos′e Ortiz-Servin,1,?David A.Pelta,2and Jos′e Alejandro Castillo1

    1Instituto Nacional de Investigaciones Nucleares,Carretera Mexico Toluca S/N, La Marquesa Ocoyoacac,Estado de Mexico,CP 52750,Mexico

    2ETS Ingenier′?a Inform′atica y Telecomunicaciones,Universidad de Granada, C/Daniel Saucedo Aranda,s/n 18071,Granada,Spain

    TheglobalfuelmanagementprobleminBWRs(BoilingWaterReactors)canbeunderstoodasaverycomplex optimizationproblem,wherethevariablesrepresentdesigndecisionsandthequalityassessmentofeachsolution is done through a complex and computational expensive simulation.This last aspect is the major impediment to perform an extensive exploration of the design space,mainly due to the time lost evaluating non promising solutions.In this work,we show how we can train a Multi-Layer Perceptron(MLP)to predict the reactor behavior for a given conf i guration.The trained MLP is able to evaluate the conf i gurations immediately,thus allowing performing an exhaustive evaluation of the possible conf i gurations derived from a stock of fuel lattices, fuel reload patterns and control rods patterns.For our particular problem,the number of conf i gurations is approximately 7.7×1010;the evaluation with the core simulator would need above 200 years,while only 100 hours were required with our approach to discern between bad and good conf i gurations.The later were then evaluated by the simulator and we conf i rm the MLP usefulness.The good core conf i gurations reached the energy requirements,satisf i ed the safety parameter constrains and they could reduce uranium enrichment costs.

    Boiling Water Reactors(BWRs),Neural Networks,Optimization

    I.INTRODUCTION

    The global fuel management problem in BWRs(Boiling Water Reactors)can be understood as a very complex optimization problem,where the variables represent design decisions and the quality assessment of each solution is done through a complex and computational expensive simulation. This last aspect is the major impediment to perform an extensive exploration of the design space,mainly due to the time lost evaluating non promising solutions.

    In a previous work[1],we presented a Recurrent Neural Network(RNN)to f i nd good conf i gurations from several stocks of optimized solutions to fuel lattice design,fuel load pattern design and control rod patterns design.These partial solutionstotheglobalfuelmanagementproblemarecombined to f i nd a core conf i guration of fresh fuel bundles,a fuel reload pattern and core exposition calculus are made through control rod patterns in several burnup steps in the cycle length. SIMULATE-3[2]core simulator was used to calculate the reactor behavior of those conf i gurations.So,thermal limits, throughout of the cycle and cold Shutdown Margin(SDM)at the beginning of the cycle are calculated in order to determine the quality of the conf i gurations.Fuel lattices with several average uranium enrichments were used in the fuel lattice stock.In the fi rst instance(Ref.[1]),it was possible to fi nd good confi gurations with average uranium enrichments lower than a reference case.

    Fuel lattices stock was created by Neural Networks(NN)[3] and Path Relinking[4]techniques.Both optimization techniques use CASMO4[5]to calculate the lattice parameters: local power peaking factor and a reactivity value,both at the beginning of the fuel lattice life.Fuel reloads were generated using NN[6]and Tabu Search[7].Both optimization techniques use SIMULATE-3 to calculate the end of cycle under Haling condition[8].Finally,control rod patterns were generated by Tabu Search[9]and Ant Colony System[10]optimization techniques.SIMULATE-3 was used to determine thermal limits throughout the cycle.

    In this contribution our aim is to address the following research questions:

    1)Is it possible to design a surrogate model of the simulator that allows performing a fast discrimination between good and bad con fi gurations?

    2)Having the previous model,would it be possible to evaluate the set of all the potential con fi gurations arising from the combinations of alternatives in the stocks available?

    In order to address these questions,we propose a Multi-Layer Perceptron(MLP)as a simpli fi ed model of the simulator to discern between bad or good core con fi gurations.In Ref.[11],an adaptive classi fi er model is used to solve optimization problems.The classi fi er eliminates non-feasible solutions reducing the cpu time to solve the problem.In our paper,the MLP eliminates bad core con fi gurations.

    The rest of the paper is organized as follows.In Sec.II we brie fl y describe the MLP concepts.Then in Sec.III,we show how the MLP was trained.In Sec.IV and Sec.V,we show some practical results with the trained MLP.Finally,conclusions and references are shown.

    II.MULTI-LAYER PERCEPTRON NEURAL NETWORK

    Fig.1.Typical MLP Architecture.

    The artif i cial neural network is a computer model.It can be used to pattern recognize,prediction,memory,etc.There are several neural network models.One of the most popular is the Multi-Layer Perceptron(MLP)[12].In Fig.1,we show the typical architecture of this kind of neural network.

    The neural network is composed by one input layer,one or more hidden layers and one output layer.Input layer collects external information anddistributes it tohiddenlayers.Hidden layers process the information and output layer shows results. Each layer has several neurons.Neuron is the lowest information processor.The neuron makes a weighted sum of all its input signals:

    whereIiis the net input to i-th neuron,wijis the weight connection between i-th neuron(in a previous layer)and j-th neuron(in a current layer),xjis the signal between both neurons. Then net input is converted to an activation signal according to the activation functionf(Ii):

    Activation function gives a trigger threshold for the neuron. If net input is lower than the threshold,the neuron is inhibited.If net input is greater than the threshold,the neuron is excited.These inhibitory or excitatory signals are propagated by all neurons in the network until a global response is generated.

    Weightsconnectionbetweenneuronsmustbeadjustedinorder that MLP response becomes adequate to the input signal. This process is named neural network training.Back propagation is the most popular training algorithm used for MLP.First, the input signal is passed through of layers until a response is generated.Second,the response is compared with the desired output and an error signal is generated.Third,the error signal is back propagated to f i rst hidden layer,updating weight connections.The process is repeated until the error signal is lower than the tolerance.

    III.DATA SETS AND TRAINING PROCESS

    Neural network training was made using a set of 2680 samples.An explanation about how these samples were obtained will be shown in the next section.Each sample is a pair of input and output vectors where the former is a possible core reactor conf i guration(partial solutions to the global problem), and the latter is a set of core safety parameters(thermal limits,keffand SDM)which are calculated by SIMULATE-3 for that core reactor conf i guration.The values in the output vectors are aggregated into a single real value.

    Input vectors:

    For this study an 18-month equilibrium fuel cycle is used. The fuel reload has two fresh fuel batches.Both fresh fuel batches have a similar axial design:one node of natural uranium at the bottom,8 nodes with 4.01%U235 and variable gadolinia concentration,6 nodes with 4.01%U235 and high gadolinia concentration,8 nodes with 3.96%U235 and high gadolinia concentration.Finally,two nodes of natural uranium at the top of fuel bundle.

    A variable number of fuel lattices for three segments of both fresh fuel batches were generated by Path Relinking and Neural Networks.Fuel reloads were generated using Neural Networks and Tabu Search.Control rod patterns were generated by Tabu Search and Ant Colony System optimization techniques.

    Input vectors are represented by an 8-entry array.First six entries are used to represent 3 axial segments of both fresh fuel batches.Entry number seven is used to specify a fuel loading pattern.Finally,the last entry is used to specify a set of control rod patterns throughout of the cycle.For all entries,integer numbers are used to specify a fuel lattice or a fuel reload or control rod patters according to the list.An example of input vector is shown in Fig.2.

    Fig.2.An example of input vector or core reactor conf i guration.The number of alternatives available for each entry is also shown.For example,56 alternatives are available for entry 7.

    Each input vector is unique and def i nes a particular core reactor behavior.According to the size of lists used in this work, the universe of possible solutions to this problem is:

    33×33×17×23×17×10×56×19≈7.7×1010.

    Output vector:

    In order to construct the output vector we proceed as follows.An input vector is introduced into SIMULATE-3 in order to do several runs and to obtain thermal limits(MFLCPR,MFLPD and MAPRAT),keffthroughout of the cycle and cold shutdown margin at the beginning of the cycle.These core parameters are satisf i ed if they fulf i ll the following constraints:

    1.limiting fractions to Linear Heat Generation Rate(MFLPD)<0.93

    2.limiting fractions to Critical Power Ratio(MFLCPR)<0.93

    3.limiting fraction to Average Planar Linear Heat Generation Rate(MAPRAT)<0.93

    4.keff?targetkeff<400pcm(1pcm=10?5)

    5.cold shutdown margin>0.01.

    Some reactor core conf i gurations may fulf i ll all or some of the safety parameters.For the purposes of this work,if is not fulf i lled in only one burnup step,then it is considered like not globally fulf i lled.The same is applied for thermal limits. Then,the number of safety parameters fulf i lled can be determined for each core reactor conf i guration(input vector).The value in the output vector is calculated as a function of the number of core parameters fulf i lled(CPF):

    When CPF is equal to zero,Output Value ise?1.When CPF is 5,Output Value ise0=1.

    The MLP will predict the Output Value,and then,we can use such prediction to calculate the number of core parameters fulf i lled.

    The neural network has three layers:an input layer with 8 neurons,a hidden layer with 4 neurons and the output layer with only one neuron.The number of neurons in hidden layers was determined by analyzing the neural network behavior for sizes:3,4,5 and 6 neurons.The best results were obtained for 4 neurons,so that is the value kept for the rest of the paper.

    IV.EXPERIMENTS AND RESULTS

    The2680samplesinthedatasetweredividedintwosubsets: training set and test set.Training set has 70%of all samples and test set has the rest 30%.Both subsets were randomly created from the original one.MLP was trained with the backpropagation algorithm using the Generalized Delta Rule for weights updating.The program BackProp[13]was used to train the MLP.Figs.3 and 4 show the CPF values for training and test sets,respectively.As the MLP predicts the Output Value,the corresponding CPF is calculated using the inverse function of Eq.(3).Please note that CPF values calculated from MLP predictions are continuous values,while CPF values calculated from SIMULATE-3 are discrete values.In case of perfect learning,a 45?line should be observed in both f i gures.The results show that MLP is able to roughly distinguish between very bad or very good conf i gurations(those having low or high CPF values).In other words,MLP almost never classif i ed a very good conf i guration(according to SIMULATE-3)like a very bad conf i guration.

    Fig.3.MLP results for training set.

    To further analyze the results,we will consider the following questions:how many core conf i gurations are recognized as good conf i gurations by MLP but SIMULATE-3 says they are bad conf i gurations?And,in turn,how many good conf i gurations(according to SIMULATE-3)would be discarded by MLP?

    If we take a threshold value like 4.5 in the MLP’s predicted Output Value,we can consider as“good”conf i gurations those that are above the threshold and as“bad”those that are below. Truly good conf i gurations are those with CPF=5 according to SIMULATE-3.

    Fig.4.MLP results for test set.

    Now,taking the problem as a binary classif i cation one,Table 1 shows the so called Confusion Matrix for training and test sets.This matrix indicates the amount of True Positives (TP,good core conf i gurations according to SIMULATE-3 and MLP),True Negatives(TN,bad core conf i gurations according to SIMULATE-3 and MLP),False Negatives(FN,good core conf i gurations according to SIMULATE-3,but MLP classif i es them as bad ones)and False Positives(FP,bad core conf i gurations according to SIMULATE-3,but MLP classif i es them like good ones)obtained.

    MLP learnt to classify core conf i gurations with acceptable conf i dence.As shown in Table 1,the number of False Negatives is high and it means that MLP could discard an important number of good core conf i gurations.On the other hand,a lownumber of False Positive means that a few bad core conf i gurations are considered as good core conf i gurations.

    TABLE 1.Confusion matrix for good core conf i gurations

    Two additional statistical measures of the performance of a binary classif i cation test can be calculated from the confusion matrix,namely sensitivity and specif i city.Their def i nitions are:

    Sensitivity(also called recall rate in some fi elds)measures the proportion of actual positives which are correctly identifi ed as such.Speci fi city measures the proportion of negatives which are correctly identi fi ed.A perfect predictor would be described as having 100%sensitivity and 100%speci fi city.In our case,the results are as follows:

    TABLE 2.Sensitivity and Specif i city of the binary classif i cation based on the NN

    In other words,the MLP is excellent for distinguishing bad conf i gurations but not so good at detecting the good ones. However,we should recall that our aim is to explore the whole universe of solutions and,in order to do this we should avoid the full evaluation(with SIMULATE-3)of bad or not promising conf i gurations.This process is described in the next section.

    V.MLP USED TO FIND GOOD CORE CONFIGURATIONS

    The trained MLP was used as a fi lter in the process of exhaustive enumeration of possible con fi gurations.Given a confi guration,we evaluate it with the MLP and if the predicted output value is greater than certain threshold,then the con fi guration is considered as potentially good and is archived for a later evaluation with SIMULATE-3.

    Table 3 shows,for a given threshold value,the number of core con fi gurations that were considered potentially good,how many of them were effectively good(according to SIMULATE-3),and the relation between both values.

    Using a threshold value of 4.5 gave around 580000 core conf i gurations,being less than 1%of them,effectively good. Using a higher threshold effectively reduced the conf i gurations thatpassedthef i lterandincreasedthepercentageofeffectively good conf i gurations.

    TABLE 3.Results of the exhaustive enumeration process.The total number of core conf i gurations was 7.7×1010

    VI.CORE CONFIGURATIONS ANALYSIS

    In this section we will analyze the conf i gurations obtained after the enumeration process.The study was made for an equilibrium BWR cycle of 18 months,with a cycle length of 10896 MWD/T at full power conditions.For this cycle exposure the targetkeffis set to 0.9978.

    The fuel reload has two fresh fuel bundle batches.The f i rst one(Batch A)has an average uranium enrichment of 3.66%, 10 gadolinia rods and a batch size of 60 fuel bundles.The second batch(Batch B)has the same average uranium enrichment and 8 gadolinia rods and a batch size of 52 fuel bundles.An uranium requirement(UR)for this fuel reload can be def i ned in the following way:

    UFB-Ais the average uranium enrichment for fuel Batch A;

    UFB-Bis the average uranium enrichment for fuel Batch B

    The baseline for the comparison is a reference core conf i guration with UR=409.92%(applying Eq.(6)andkeff?EOC= 0.9978.Core conf i gurations with lower UR value means they save uranium with respect to the reference one.

    From the results shown in Table 3,we have available 1141 core conf i gurations with CPF=5.From this set,we will consider only 165 conf i gurations having akeff?EOCgreater than the reference one.

    Figure 5 shows a scatter plot where each point represents a core conf i guration.The X axis is the uranium saving(according to Eq.(6)and the reference UR=409.92%),while the Y axis indicates the difference against thekeffreference value.

    TABLE 4.Hamming distances between the reference conf i guration and the selected ones

    Fig.5.(Color online)Core conf i gurations performance.Solid circles means good core conf i gurations,solid squares means core conf i guration with economical advantages with respect to the reference one.

    It is clear from the plot that there are better conf i gurations than the reference one,both improvingkeffand uranium savings.Core conf i gurations above the solid line and marked with solidsquaresarethosethatdecreasetheuraniumenrichmentof one of the fresh fuel batches without loss of energy production. These core conf i gurations could have economical advantages with respect to the reference one,both by uranium savings and electrical energy sales.Core conf i gurations under the line(in solid circles)are good core conf i gurations without economical advantages with respect to the reference one.

    Thecoreconf i gurationsanalysiscanalsobedonefromother points of view:

    In f i rst place,we measured the Hamming distance[14]between the reference core conf i guration and the selected ones. We obtained 35 conf i gurations with one position changed;122 with two positions changed and 8 conf i gurations with three changes.

    Then,in order to analyze where those changes happened, i.e.what are the necessary changes in the reference conf i guration to obtain a better solution,we counted for every entry the number of conf i gurations with a different value than that of the reference conf i guration(we must remember that the reference conf i gurations is[1,1,1,1,1,1,1,1]).The maximum value for an entry is 165 stating that all the conf i gurations under analysis have a different value than the reference one.The results are shown in Table 4.

    It is clear that the entries with greater variability are 2,5 and 7;there were no conf i gurations with other alternatives than the reference one for entries 6 and 8.In Table 4,it is clear that the reference fuel lattice number two of both fuel batches can be improved.Almost all good core conf i gurations have different fuel lattices in both batches.Also,both fuel lattices are responsible of the uranium savings.More energy production is due to use of another fuel reload against of the reference one.

    VII.CONCLUSION

    From this work several comments can be made:

    ?It was possible to train a MLP able to catalog good core conf i gurations.A core conf i guration is a combination of fuel lattices,control rod patterns throughout of the cycle and a fuel reload.

    ?The MLP training required around one hour to learn the desired behavior in an AMD processor at 2.1GHz and a RAM of 1.5Gb.This small time interval converts the trained MLP as an excellent tool to be coupled with an optimization system to f i nd the best core conf i guration. The trained MLP could be used like a“bad conf i guration f i lter”to avoid running a time expensive 3D core simulator.

    ?The utility and the quality of the trained MLP was demonstrate by an analysis of results in both test and training sets and their performance when it was coupled with an exhaustive searching algorithm.

    ?A balance between the required time to evaluate core conf i gurations and the analyzed solution space size can be made by f i lter threshold adjusting.Lower threshold values are able to help the coupled system to explore more solutions in the optimization process.High threshold values reduce the required CPU time to f i nd a good core conf i guration.

    ?This coupled system found several good core conf i gurations with any of these advantages(or both):they overcome the energy requirements with the same uranium enrichment,like the reference case or they reach the energy requirements for decreasing the uranium enrichment.Several core conf i gurations satisfy both scenarios.

    ?Table 4 tells us about the performance of optimization designs.We can say that,we are able to design fuel reloads,trying the problem like an independent one, with an acceptable conf i dence.Similar ideas can be said for fuel lattices design.On the other hand,control rod patterns designs have poor performances when they are optimized like an independent problem of the rest of the integral optimization one.

    [1]Ortiz J J,Castillo J A,Pelta D A.Nucl Eng Des.2011,241: 3729–3735.

    [2]Dean D W.SIMULATE-3 Advanced Three-Dimensional Two-Group Reactor Analysis Code,SSP-95/15-Rev 3,Studsvik Scandpower,2005.

    [3]Ortiz J J,Castillo A,Montes J L,et al.Nucl Sci Eng,2009,162: 148–157.

    [4]Castillo A,Ortiz J J,Perusqu′?a R,et al.Prog Nucl Energ,2011,53:368–374.

    [5]Rhodes J and Edenius M.CASMO-4 A Fuel Assembly Burnup Program,SSP-01/400 Rev 4.Studsvik Scandpower,2004.

    [6]Ortiz J J and Requena I.Ann Nucl Energy,2004,31:789–803.

    [7]Castillo J A,Alonso G,Morales L B,et al.Ann Nucl Energy, 2004,31:151–161.

    [8]Haling R K.Operational Strategy for Maintaining an Optimum Power Distribution through Core Life.Proc.ANS Topl.Mtg. Nuclear Performance of Core Power Reactors,TID-7672.US Atomic Energy Comission,1964.

    [9]Castillo A,Ortiz J J,Alonso G,et al.Ann Nucl Energy,2005,32:741–754.

    [10]Ortiz J J and Requena I.Ann Nucl Energy,2006,33:30–36.

    [11]Tenne Y.Eng App Artif iIntel.2012,25:1009–1021.

    [12]Caudill M and Buttler C.Understanding neural networks:Computer explorations.V.1 Basic network.MIT Press(USA),1994.

    [13]Tveter D R.User Manual of Student Version Basis of AI Backprop.Copyright(c)1990–97.

    [14]Zwillinger D(Editor).Standard Mathematical Tables and Formulae.Chapman&Hall/CRC New York(USA),2003.

    10.13538/j.1001-8042/nst.25.010602

    (Received October 15,2013;accepted in revised form December 6,2013;published online February 20,2014)

    ?Supported in part by Campus CEI-BioTic GENIL,from University of Granada.D.Pelta acknowledges support from Projects TIN2011-27696-C02-01 from the Spanish Ministry of Economy and Competitiveness and P11-TIC-8001 from Andalusian Government.The authors gratefully acknowledge the Departamento de Gesti′on de Combustible of the Comisi′on Federal de Electricidad of M′exico,the support given by CONACyT from Mexico,through the research project CB-2011-01-168722 and the ININ through the research project CA-215

    ?Corresponding author,juanjose.ortiz@inin.gob.mx

    成年女人看的毛片在线观看| 我要搜黄色片| 久久天躁狠狠躁夜夜2o2o| 色视频www国产| 99热精品在线国产| 国产极品精品免费视频能看的| 亚洲成人中文字幕在线播放| 69人妻影院| 一级黄片播放器| 久久人妻av系列| 亚洲色图av天堂| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 性色avwww在线观看| 亚洲av不卡在线观看| 啦啦啦观看免费观看视频高清| 麻豆成人av在线观看| 亚洲精品日韩av片在线观看| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 亚洲在线观看片| 国产高清不卡午夜福利| 最好的美女福利视频网| 久久久久久大精品| 久久精品国产亚洲网站| 免费观看精品视频网站| 久久精品91蜜桃| 日本 av在线| 精品免费久久久久久久清纯| 亚洲第一区二区三区不卡| 18禁黄网站禁片免费观看直播| 亚洲国产欧美人成| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 国产成人一区二区在线| 美女大奶头视频| 欧美一区二区亚洲| 国产单亲对白刺激| 亚洲午夜理论影院| 日韩欧美精品v在线| 日韩强制内射视频| 久久九九热精品免费| 久久精品国产鲁丝片午夜精品 | 国产精品久久视频播放| 一本精品99久久精品77| 动漫黄色视频在线观看| 久久久久久久久久黄片| 男人和女人高潮做爰伦理| 国产在视频线在精品| 看十八女毛片水多多多| 国产91精品成人一区二区三区| 99久久无色码亚洲精品果冻| av黄色大香蕉| 亚洲一区二区三区色噜噜| 亚洲av免费在线观看| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| 日本与韩国留学比较| 色综合站精品国产| 欧美3d第一页| 欧美激情国产日韩精品一区| 精华霜和精华液先用哪个| 亚洲av一区综合| 欧美丝袜亚洲另类 | 欧美成人a在线观看| 欧美成人免费av一区二区三区| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄 | 永久网站在线| 亚洲国产欧美人成| 久久精品国产亚洲网站| 国产精品99久久久久久久久| 午夜a级毛片| 男女视频在线观看网站免费| 国产在视频线在精品| 国产精品1区2区在线观看.| 少妇被粗大猛烈的视频| 俺也久久电影网| 亚洲人成网站高清观看| 动漫黄色视频在线观看| 久久久久久久午夜电影| 麻豆av噜噜一区二区三区| 午夜日韩欧美国产| 波多野结衣高清无吗| 日韩强制内射视频| 99热这里只有精品一区| 99视频精品全部免费 在线| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕| 欧美三级亚洲精品| 国产一区二区在线av高清观看| 久99久视频精品免费| 国产av麻豆久久久久久久| 日韩欧美 国产精品| 少妇的逼好多水| 午夜爱爱视频在线播放| 欧美日本视频| 深夜a级毛片| 在线观看美女被高潮喷水网站| 久久久国产成人精品二区| 国产成人一区二区在线| 91麻豆精品激情在线观看国产| 午夜免费激情av| 国产成人a区在线观看| 午夜福利在线观看免费完整高清在 | 最近最新中文字幕大全电影3| 欧美日韩综合久久久久久 | 国产69精品久久久久777片| 国产探花极品一区二区| 丰满的人妻完整版| av女优亚洲男人天堂| 99久久精品一区二区三区| 男人舔奶头视频| 亚洲性夜色夜夜综合| 51国产日韩欧美| 在线播放无遮挡| 午夜影院日韩av| 国产高清有码在线观看视频| 人妻丰满熟妇av一区二区三区| 国产爱豆传媒在线观看| 一个人免费在线观看电影| 一卡2卡三卡四卡精品乱码亚洲| 国产在视频线在精品| 国产精品98久久久久久宅男小说| 久久国产乱子免费精品| 俄罗斯特黄特色一大片| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 免费电影在线观看免费观看| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 亚洲内射少妇av| x7x7x7水蜜桃| 欧美最新免费一区二区三区| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 国产私拍福利视频在线观看| 色视频www国产| 伦理电影大哥的女人| 99热网站在线观看| 亚洲欧美日韩高清专用| 内射极品少妇av片p| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 国产亚洲精品综合一区在线观看| 香蕉av资源在线| 99精品久久久久人妻精品| 在线观看舔阴道视频| 男女下面进入的视频免费午夜| 在线观看午夜福利视频| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看 | 两个人的视频大全免费| 中文字幕熟女人妻在线| 直男gayav资源| 成年女人看的毛片在线观看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 亚洲精品成人久久久久久| 最近最新免费中文字幕在线| 人人妻人人看人人澡| 中文字幕av成人在线电影| 69人妻影院| 又黄又爽又刺激的免费视频.| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 成人欧美大片| 99久久精品热视频| 97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 欧美潮喷喷水| www日本黄色视频网| 亚洲av熟女| 亚洲美女搞黄在线观看 | 丰满的人妻完整版| 成人二区视频| 一区二区三区高清视频在线| 国产伦人伦偷精品视频| 久久久久久久亚洲中文字幕| 少妇丰满av| 美女cb高潮喷水在线观看| 在线播放无遮挡| 丰满的人妻完整版| 免费看日本二区| 日韩中文字幕欧美一区二区| 两个人视频免费观看高清| 观看免费一级毛片| www日本黄色视频网| 精品欧美国产一区二区三| 色5月婷婷丁香| 一进一出好大好爽视频| 欧美3d第一页| 久久热精品热| 桃红色精品国产亚洲av| 成人高潮视频无遮挡免费网站| 亚洲av美国av| 午夜福利成人在线免费观看| 日韩欧美国产一区二区入口| 日本欧美国产在线视频| 精品福利观看| 欧美性感艳星| 国产精品野战在线观看| 黄片wwwwww| 国产人妻一区二区三区在| 黄色一级大片看看| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲国产一区二区在线观看| 亚洲av中文av极速乱 | 成人二区视频| 亚洲无线在线观看| 桃红色精品国产亚洲av| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 人人妻人人澡欧美一区二区| 免费观看人在逋| 三级毛片av免费| av专区在线播放| 一区二区三区高清视频在线| 99久久中文字幕三级久久日本| 久久久久久久精品吃奶| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| 99在线人妻在线中文字幕| 性色avwww在线观看| 欧美国产日韩亚洲一区| 亚洲色图av天堂| eeuss影院久久| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 内射极品少妇av片p| 91av网一区二区| 日本免费a在线| 亚洲人成网站在线播| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| av在线老鸭窝| 国产精品久久久久久精品电影| 亚洲成a人片在线一区二区| 国产一级毛片七仙女欲春2| 女人十人毛片免费观看3o分钟| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 亚洲人成网站在线播放欧美日韩| 女人十人毛片免费观看3o分钟| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 日韩欧美在线二视频| 午夜福利在线在线| 简卡轻食公司| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 国产精品人妻久久久久久| 国产精品,欧美在线| 极品教师在线视频| 国产精品福利在线免费观看| 国内精品久久久久久久电影| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 久久久久久久久久成人| 综合色av麻豆| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 日韩欧美在线二视频| 亚洲成人精品中文字幕电影| 韩国av在线不卡| 国内精品美女久久久久久| 欧美成人a在线观看| netflix在线观看网站| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 禁无遮挡网站| 欧美区成人在线视频| 亚洲七黄色美女视频| 亚洲成av人片在线播放无| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 午夜a级毛片| 欧美色欧美亚洲另类二区| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品合色在线| 观看美女的网站| 国产探花在线观看一区二区| 亚洲av.av天堂| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 国产精品一区www在线观看 | www.www免费av| 日韩,欧美,国产一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区亚洲| 欧美日本视频| av在线天堂中文字幕| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 免费看日本二区| 亚洲真实伦在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看| 亚洲七黄色美女视频| 国产成人一区二区在线| 免费观看人在逋| 日韩在线高清观看一区二区三区 | 床上黄色一级片| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本亚洲视频在线播放| 美女高潮的动态| 此物有八面人人有两片| 免费观看的影片在线观看| 一个人看视频在线观看www免费| 18禁黄网站禁片免费观看直播| 综合色av麻豆| 国内精品久久久久久久电影| 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va| 性欧美人与动物交配| 99久久精品热视频| 日本a在线网址| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 嫁个100分男人电影在线观看| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 人妻制服诱惑在线中文字幕| 久久精品影院6| 亚洲avbb在线观看| 日韩欧美 国产精品| 亚洲性夜色夜夜综合| 性欧美人与动物交配| av福利片在线观看| 97超视频在线观看视频| 国产真实乱freesex| 18+在线观看网站| 国产精品av视频在线免费观看| 免费人成视频x8x8入口观看| 99热这里只有精品一区| 亚洲成人免费电影在线观看| 国产精品日韩av在线免费观看| 久久精品国产亚洲av天美| 91午夜精品亚洲一区二区三区 | 日日摸夜夜添夜夜添av毛片 | 黄色丝袜av网址大全| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看 | 亚洲电影在线观看av| 一级毛片久久久久久久久女| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 国产人妻一区二区三区在| 黄色日韩在线| 九九热线精品视视频播放| 亚洲人成网站在线播| 少妇丰满av| 免费黄网站久久成人精品| 午夜a级毛片| 亚洲国产精品久久男人天堂| 免费av毛片视频| 天堂影院成人在线观看| 亚洲18禁久久av| 日韩大尺度精品在线看网址| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 亚洲精华国产精华液的使用体验 | 天堂√8在线中文| 联通29元200g的流量卡| 欧美一区二区国产精品久久精品| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件 | 18禁裸乳无遮挡免费网站照片| 国产熟女欧美一区二区| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 成人av一区二区三区在线看| 热99re8久久精品国产| 97碰自拍视频| 老司机午夜福利在线观看视频| www日本黄色视频网| 国产精品久久电影中文字幕| 色吧在线观看| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 18+在线观看网站| 欧美性感艳星| 伦理电影大哥的女人| 欧美成人一区二区免费高清观看| 动漫黄色视频在线观看| 午夜爱爱视频在线播放| 亚洲乱码一区二区免费版| 在线免费观看不下载黄p国产 | 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 久久精品国产鲁丝片午夜精品 | 中文资源天堂在线| 亚洲av一区综合| 婷婷亚洲欧美| a在线观看视频网站| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 此物有八面人人有两片| 极品教师在线视频| 国产私拍福利视频在线观看| 成人欧美大片| 少妇裸体淫交视频免费看高清| 人妻制服诱惑在线中文字幕| 99riav亚洲国产免费| 麻豆久久精品国产亚洲av| 欧美xxxx性猛交bbbb| 午夜福利18| 精品午夜福利视频在线观看一区| 国产三级在线视频| 国产中年淑女户外野战色| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 日韩av在线大香蕉| 久久精品91蜜桃| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 超碰av人人做人人爽久久| 搞女人的毛片| а√天堂www在线а√下载| 尾随美女入室| 国产蜜桃级精品一区二区三区| 搡女人真爽免费视频火全软件 | 久久人人爽人人爽人人片va| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 99热这里只有是精品50| 亚洲自偷自拍三级| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 亚洲人成网站高清观看| 国产精品,欧美在线| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 成人美女网站在线观看视频| 欧美黑人欧美精品刺激| 级片在线观看| 国产伦精品一区二区三区视频9| 欧美中文日本在线观看视频| 日韩人妻高清精品专区| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 国产亚洲精品久久久久久毛片| 欧美激情在线99| 看片在线看免费视频| 国产精品人妻久久久影院| 日本在线视频免费播放| 国产亚洲91精品色在线| 国产精品99久久久久久久久| 午夜福利在线观看吧| 免费在线观看影片大全网站| 成年免费大片在线观看| 草草在线视频免费看| 国产精品一区二区免费欧美| 乱人视频在线观看| 亚洲经典国产精华液单| 久久九九热精品免费| 婷婷精品国产亚洲av| 春色校园在线视频观看| 婷婷精品国产亚洲av在线| 亚洲精品456在线播放app | 波多野结衣巨乳人妻| 日日干狠狠操夜夜爽| 欧美三级亚洲精品| 国产成人aa在线观看| 精品人妻视频免费看| 中文在线观看免费www的网站| 国产成人福利小说| 亚洲最大成人中文| 69av精品久久久久久| 日韩,欧美,国产一区二区三区 | 国语自产精品视频在线第100页| 亚洲av免费高清在线观看| 最好的美女福利视频网| 午夜久久久久精精品| 久久久久久国产a免费观看| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 精品一区二区三区人妻视频| 久久精品夜夜夜夜夜久久蜜豆| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 亚洲av成人av| 国产大屁股一区二区在线视频| 亚洲自偷自拍三级| 成人综合一区亚洲| 狂野欧美激情性xxxx在线观看| 在线国产一区二区在线| 日韩欧美免费精品| 欧美不卡视频在线免费观看| 亚洲五月天丁香| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看| 免费无遮挡裸体视频| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 日韩欧美 国产精品| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 高清在线国产一区| 国产精品自产拍在线观看55亚洲| av天堂中文字幕网| 99热6这里只有精品| 一进一出好大好爽视频| 尾随美女入室| 亚洲四区av| 精品人妻视频免费看| 午夜精品一区二区三区免费看| 亚洲av第一区精品v没综合| 麻豆久久精品国产亚洲av| 老司机福利观看| 色哟哟·www| 白带黄色成豆腐渣| 在线免费观看不下载黄p国产 | 日日夜夜操网爽| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 黄色丝袜av网址大全| 99九九线精品视频在线观看视频| 久久精品91蜜桃| 99久国产av精品| 国产欧美日韩精品亚洲av| 黄色配什么色好看| 精品一区二区三区视频在线| 国内揄拍国产精品人妻在线| 午夜日韩欧美国产| 春色校园在线视频观看| 18禁黄网站禁片免费观看直播| 美女被艹到高潮喷水动态| 最近最新免费中文字幕在线| 亚洲精品一区av在线观看| 国产成人a区在线观看| 成人午夜高清在线视频| 老熟妇仑乱视频hdxx| 国内久久婷婷六月综合欲色啪| 极品教师在线免费播放| 成年女人看的毛片在线观看| 人妻久久中文字幕网| 亚洲国产欧美人成| 小说图片视频综合网站| 又爽又黄无遮挡网站| 99在线人妻在线中文字幕| 一个人看的www免费观看视频| 精品无人区乱码1区二区| 成人国产麻豆网| 韩国av一区二区三区四区| 国产亚洲精品久久久com| 精品人妻视频免费看| 国产欧美日韩精品一区二区| 欧美成人一区二区免费高清观看| 亚洲自拍偷在线| 日日夜夜操网爽| 欧美成人一区二区免费高清观看| 精品久久久久久,| 日日夜夜操网爽| 在线观看午夜福利视频| 成人三级黄色视频| a级一级毛片免费在线观看| 亚洲va在线va天堂va国产| 国产真实伦视频高清在线观看 | av视频在线观看入口| 国产三级中文精品| 亚洲人成网站高清观看| 亚洲国产精品成人综合色| 亚洲av中文av极速乱 | 欧美日韩乱码在线| 欧美一区二区精品小视频在线| 乱码一卡2卡4卡精品| av视频在线观看入口| 亚洲精品在线观看二区| 午夜精品一区二区三区免费看| 欧美成人a在线观看| 日韩精品青青久久久久久| 国产高清三级在线| 99国产精品一区二区蜜桃av| 亚洲 国产 在线| 男女那种视频在线观看|