• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a three dimension multi-physics code for molten salt fast reactor?

    2014-04-24 09:29:02CHENGMaoSong程懋松andDAIZhiMin戴志敏
    Nuclear Science and Techniques 2014年1期

    CHENG Mao-Song(程懋松)and DAI Zhi-Min(戴志敏)

    1Center for Thorium Molten Salt Reactor System,Shanghai Institute of Applied Physics, Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Development of a three dimension multi-physics code for molten salt fast reactor?

    CHENG Mao-Song(程懋松)1,2and DAI Zhi-Min(戴志敏)1,?

    1Center for Thorium Molten Salt Reactor System,Shanghai Institute of Applied Physics, Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Molten Salt Reactor(MSR)was selected as one of the six innovative nuclear reactors by the Generation IV International Forum(GIF).The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper,a new coupling model is presented that physically describes the inherent relations between the neutron f l ux,the delayed neutron precursor,the heat transfer and the turbulent f l ow.Based on the model, integrating nuclear data processing,CAD modeling,structured and unstructured mesh technology,data analysis and visualization application,a three dimension steady state simulation code system(MSR3DS)for the can-type molten salt fast reactor is developed and validated.In order to demonstrate the ability of the code,the three dimension distributions of the velocity,the neutron f l ux,the delayed neutron precursor and the temperature were obtained for the simplif i ed MOlten Salt Advanced Reactor Transmuter(MOSART)using this code.The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor.Furthermore,the code can well predict the f l ow effect of fuel salt and the transport effect of the turbulent diffusion.

    Molten salt fast reactor,Turbulent model,Delayed neutron precursor,Neutronics,Thermo-hydraulics,Turbulent diffusion

    I.INTRODUCTION

    The f i rst molten salt reactor(MSR)was developed in late 1940s as the aircraft propulsion at Oak Ridge National Laboratory(ORNL).The Aaircraft Reactor Experiment(ARE)[1] in 1954 operated successfully.In 1965,the Molten Salt Reactor Experiment(MSRE)[2]goes critical,and after six months of successful operation the enriched U-235 was removed and replaced by denatured U-233 as f i ssile fuel.In October 1966, the MSRE was the f i rst reactor that reached criticality with U-233.A detailed 1000MWe engineering conceptual design of a Molten Salt Breeder Reactor(MSBR)[3]was developed in 1970s.Even though the concept looked promising,the studies were stopped in 1976.MSR has the potential of meeting the goals of Generation IV reactors and high-level waste transmutation program,being better than solid fuel reactors. Consequently,manycountriesareinterestedindevelopingnew concept MSRs,such as the FUJI series[4],Actinides Molten Salt TransmutER(AMSTER)[5],MOSART[6],Fast Spectrum Molten Salt Reactor(FS-MSR)[7],European Molten Salt Fast Reactor(MSFR)[8],and Small Mobile Molten Salt Reactor(SM-MSR)[9].In 2010,Chinese Academy of Sciences restarted the thorium molten salt reactor project and established the Center for Thorium Molten Salt Reactor System(CTMSRS)in Shanghai Institute of Applied Physics,and CTMSRS f i nished the conceptual design of a Liquid Fuel Thorium Molten Salt Reactor(LF-TMSR).

    The Can-type Molten Salt Fast Reactor(CMSFR)can be employed to consume actinides from light water reac-tor(LWR)fuel or,alternatively,to extend fi ssile resource availability through U/Pu and Th/U breeding.CMSFRs are highly fl exible and can be con fi gured into modi fi ed open or full-recycle con fi guration.Since 2005 the GIF has focused on CMSFR from thermal spectrum molten salt reactor.Many works have been conducted to investigate the complex behavior of the CMSFR.Wanget al.[10]extended the SIMMER-III code for simulating the MOSART with extra thermo-hydraulic andneutronicmodulesattwo-dimension(2D)axial-symmetric geometry.Nicolinoet al.[11]developed a new approach to describe the strong coupling between neutronics and thermofl uid dynamics with particular focus to the MOSART molten salt fast reactor at 2D axial-symmetric geometry.Zhanget al.[12]provided a theoretical model of fl ow coupling the heat transfer and neutronics models at 2D axial-symmetric geometry and calculated of the steady characteristics of a molten salt fast reactor without graphite moderator in the core.

    In all the studies,the transport effect of turbulent diffusion wasn’t taken into account for the delayed neutron precursor(DNP)concentration.In this paper,we present a new modeltodescribetheinherentrelationsbetweentheneutronics and the thermohydraulics.Based on this model,a three dimension steady state simulation code(MSR3DS)for the molten salt fast reactor is developed and validated.Using the multiphysical coupling code,the three dimension distributions of the velocity,neutron fl uxes,DNPs and the temperature are obtained for a simpli fi ed MOSART.

    II.MATHEMATICAL MODEL

    More recently,several f l uoride molten salt fast reactors have been proposed as part of the Gen IV program.These include the European MOSARTreactorusing LiF/NaF/BeF2/(TRU)F3as a fuel salt,and an European MSFR concept using LiF/NaF/(TRU)F3or LiF/NaF/(U+Th)F4.In this paper,in order to establish the theoretical model and develop the simulation code,a core conf i guration shown in Fig.1 is adopted based on the core conf i guration of the MOSART.The main parameters of the core are list in Table 1.The mass proportions at equilibrium in f i nite critical core with 20 cm graphite ref l ector are given in Table 2.Table 3 lists six group delayed neutron fractions and the precursor decay constants.

    TABLE 1.Main parameters of the core[6]

    Fig.1.(Color online)Geometry of the reactor core(Unit/mm).

    A.Thermohydraulics model

    The fuel salt f l ow in the molten salt fast reactor without moderator in the core like MOSART and MSFR is considered as turbulent f l ow.Their Reynolds numbers in the core region can be higher than 105.Many models can be used to describe turbulent f l ow.The most accurate method is the direct numerical simulation(DNS),which computes the mean f l ow and all turbulent velocity f l uctuations.But the DNS model is highly costly in terms of computing resources,so the method is not used for industrial f l ow computations.The large eddy simulation is an intermediate form of turbulence calculations which tracks the behavior of larger eddies.The effects on the resolved f l ow due to the smallest,unresolved eddies are included by means of a so-called sub-grid scale model in the large eddy method.So,the demands on computing resources in terms ofstorage and volume of calculations are large.The Reynoldsaveraged Navier-Stokes(RANS)equations are focused on the mean f l ow and the effects of turbulence on mean f l ow properties.The computing resources required for reasonably accurate f l ow computations are modest,so this approach has been the mainstay of engineering f l ow calculations in engineering practice.

    TABLE 2.Mass proportion at equilibrium in critical core[6]

    TABLE 3.Delayed neutron fractions and the precursor decay constants[12]

    In this study,the f l ow,heat transfer and turbulent characteristics in the core were obtained by solving the following three-dimensional,incompressible,steady state Navier-Stokes equations and turbulence model.The RANS equations with Boussiesq’s closure hypothesis and the standardk?εturbulence model[13]were adopted.

    The continuity equation is:

    The momentum conservation equation is:

    The transport equations forkandεin the standardk?εturbulence model are:

    and

    Where,Urepresents the mean velocity vector,andk,γ,ρfs,μ,μt,andIare turbulent kinetic energy,turbulent dissipation rate,fuel salt density,dynamic viscosity,turbulent dynamic viscosity and Identity matrix,respectively.The equations contain f i ve constants:Cε1,Cε2,Cμ,σkandσε.The standardk?εturbulence model employs values for the constants that are arrived at by comprehensive data f i tting for a wide range of turbulent f l ows.

    The energy conservation equation of the fuel salt expressed by temperature:

    The energy conservation equation of the ref l ector expressed by temperature:

    Theinnerheatsourcesoffuelsalt(sfs)andtheref l ector(sref) in Eqs.(7)and(8)are calculated using the neutron f i ssion reactions.

    whereTfs,Tref,λT,fs,λT,ref,cp,fsandPrtrespectively represent the temperature of the fuel salt and the ref l ector,thermal conductivity of the fuel salt and the ref l ector,specif i c heat capacity of the fuel salt and turbulent Prandtl number;Ef,φg, Σf,gandγare energy released from each f i ssion reaction,neutron f l ux for groupg,f i ssion cross-section for groupgand the fraction of power released into fuel molten salt,respectively.

    B.Neutronincs model

    According to the basic conservation of the neutron number and DNP concentration in a control volume with the multigroup diffusion theory,the neutronics model of CMSFR can be derived.

    The diffusion equation of the neutron for groupg[11]:

    Thedelayedneutronprecursorsareclassif i edintosixgroups by half-life periods.The balance equation of the DNP concentration for groupi:

    Inaboveequations,ug,Ci,Dn,g,Dc,i,βi,β,ν,Σg′→g,χp,g,χp,i,gand Sctrespectively represent neutron mean velocity for groupg,the DNP for groupi,neutron diffusion coeff i cient for energy groupg,DNP diffusion coeff i cient for groupi,the fraction of delayed neutron for groupi,the total fraction of delayed neutron,the average number of neutrons produced in energy groupg,scatter cross section from energy groupg′to groupg,the f i ssion spectrums of prompt neutron for groupg, the f i ssion spectrums of delayed neutron for energy groupgand delayed neutron groupi,and turbulent Schmidt number.

    In steady state conditions,the time-dependent item can be removed from Eqs.(9)and(10)and the effective multiplication factorkeffis introduced.Therefore,the 3D steady state model of neutronics for molten salt fast reactor can be obtained.

    In addition,the estimate for the effective multiplication factorkeff,may be computed from the Eq.(13):

    where,the superscriptnandn?1 represent the number of iterations.

    In this work,the steady neutronics model consisted of twogroup(G=2)neutron diffusion equations for fast and thermal neutron f l uxes in the fuel molten salt and ref l ector,transport equations for six-group(I=6)DNPs in the fuel salt.The neutron diffusion equations in the fuel salt:

    The neutron diffusion equations in the ref l ector:

    The transport equations for six-group DNPs in the fuel salt:

    The effective multiplication factorkeff:

    where,the subscript fs and ref respectively represent the fuel salt and the ref l ector;Σr,1,fs,Σr,2,fs,Σr,1,refand Σr,2,refrepresent the removal cross section.

    C.Boundary conditions

    1.Thermohydraulics

    (1)Inlet boundary:at the inlet the velocity,the turbulent kinetic energy,the turbulent dissipation rate and the temper-ature are given:

    where,uinletis given as 0.5ms?1;the turbulence intensityIis 10%;Cμis a constant assigned 0.09;lis length scale.Tinletis imposed at 873.15K.

    (2)Outlet boundary:at the outlet a free outf l ow is assumed.A Neumann boundary condition is used for the velocity,the turbulent kinetic energy,the turbulent dissipation and the temperature.

    (3)Symmetry planes:the symmetry boundary is set for the velocity,the turbulent kinetic energy,the turbulent dissipation and the temperature.

    (4)Wall boundary:the boundary condition at the inner wall is treated by wall function method for the velocity,the turbulent kinetic energy,the turbulent dissipation and the temperature.In the outer wall the temperature is set as a constant(680K).

    2.Neutronics

    (1)Inlet boundary:the fast and thermal neutron f l uxes are imposed to the vacuum boundaries.Due to the DNPs’s decay characteristicsandresidenttimeinexternalloop,theDNPs may return to the inlet.The DNPs at the inlet is:

    whereCi,outletis the DNP groupiin the outlet andτis the resident time out of the core for fuel salt.

    (2)Outlet boundary:the vacuum boundary is for the neutron fl uxes at the outlet,and the DNPs adopt the zero gradient boundary condition.

    (3)Symmetry plane:the neutron fl uxes and the DNPs are all set symmetry boundary condition.

    (4)Wall boundary:in the inner wall the neutron fl uxes use the coupling boundary condition and the DNPs are set to vacuum condition.In the outer wall the vacuum condition is for the neutron fl uxes.

    D.Thermophysical properties and group constants

    Generally,the thermophysical properties in the thermohydraulics and the group constant in the neutronics are both dependent on the temperature.Ignatievet al.[6]gave the LiF/NaF/BeF2solvent system properties including the density, the thermal conductivity,the viscosity and the heat capacity.

    TABLE 4.The thermophysical properties of the graphite ref l ector at 873.15K[11]

    The thermophysical properties of the graphite ref l ector are considered as constants(Table 4).

    The MSR3DS code system uses DRAGON4[14]code based on the XMAS-172 format libraries produced from the ENDF-VII.1 nuclear data to generate the two group macroscopic cross-sections,the diffusion coeff i cients and the neutron group velocities under different temperatures.The relations between group constants and the temperature are f i tted by mean of the 5thorder polynomial curve:

    whereYcdenotes the group constants andTavgis reference temperature.A0–A5are f i tting constants.

    E.Numerical method

    The f i nite volume method(FVM)is widely employed for solution of computational f l uid dynamics(CFD)problems in engineering.The solution domain is subdivided into a f i nite number of small control volumes and the conservation equations are applied to each control volume.And FVM can handle complex geometries.In this paper,the FVM is used for spatial discretization of all equations.

    We have discussed methods of discretizing the governing equations.This process results in a system of linear algebraic equations which needs to be solved.For the discretised equations of the steady neutron diffusion and the heat transfer Gauss-Seidel iterative method is employed.The Preconditioned Bi-Conjugate Gradient Method(PBiCG)is used to solve the discretized equations of the DNPs,the momentum,the turbulent kinetic energy and the turbulent dissipation. And the Preconditioned Conjugate Gradient Method(PCG)is applied in the discretized equations of the pressure correction[15].

    The SIMPLE[13]algorithm gives a method of calculating pressure and velocities.The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations.It was originally put forward by Patankar and Spalding and is essentially a guess-and-correct procedure for calculation of pressure.It is an iterative method,and when other scalars are coupled to the momentum equations the calculation shall be done sequentially.The sequence of operations in the SIMPLE algorithm is given in Fig.2.Fig.3 is the program f l ow diagram of the coupled solver in the MSR3DS code.

    Fig.2.The SIMPLE algorithm.

    Fig.3.The program f l ow diagram in the coupled solver.

    F.The description of the MSR3DS code

    The entire program diagram of the MSR3DS code is shown in Fig.4.The MSR3DS code system consists of the preprocessing,coupled solver and post-processing module.The pre-processing module contains the CAD 3D modeling,meshing and generation of the group constants.The CAD 3D modeling and meshing tool use respectively the SolidWorks and ANSYS ICEM CFD software.

    Fig.4.The program diagram of the MSR3DS code.

    The DRAGON4 generates the group constants under different temperature for the MSR3DS code.The code DRAGON4 is open source and contains a multi-group iterator conceived to control a number of different algorithms for the solution of the neutron transport equation.The SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional(1D)geometries(either plane,cylindrical or spherical)and the interface current method for 2D Cartesian or hexagonal assemblies.The EXCELL option solves the integral transport equation using the collision probability method for general 2D geometries and for 3D assemblies.The MCCG option solves the integrodifferential transport equation using the long characteristics method for general 2D and 3D geometries.

    The ParaView[16]code is as the post-processing module in the MSR3DS code.The ParaView is an open-source,multiplatform data analysis and visualization application.It can be used quickly to build visualizations and to analyze data using qualitative and quantitative techniques.The data exploration can be done interactively in 3D or programmatically using ParaView’s batch processing capabilities.Furthermore,it is easily integrated into the MSR3DS code.

    III.RESULTS AND DISCUSSION

    A.Code validation

    The 3D TWIGL Seed/Blanket problem[17]is adopted to benchmark the neutronics calculation in the MSR3DS code.The effective multiplication factors calculated by CITATION[18]and MSR3DS are listed in Table 5,and the relative error is only 0.00147%.The f l uxes normalized to 1MWthareshown in Figs.5 and 6.The results verify validity of the model for neutronics presented in this study.

    TABLE 5.The effective multiplication factors of benchmark

    Fig.5.(Color online)Distributions of the neutron f l uxes calculated by CITATION and MSR3DS at(Z=79.2cm,Y=40cm).

    Fig.6.(Color online)Distributions of the neutron f l uxes calculated by CITATION and MSR3DS at(X=40cm,Y=40cm).

    In order to evaluate the f l ow and heat transfer calculation in the MSR3DS code,a simple pipe case simplif i ed from MOSART is used(Fig.7).The thermophysical properties of the molten salt and the graphite at 873.15K are applied in the process of validation.Similarly,we assume that the velocity in the inlet is 0.5m/s in the validation of the f l ow calculation of the MSR3DS.The results are compared in Figs.8 and 9. From the f i gures,the results calculated by the MSR3DS agree well with those calculated by the Fluent.Therefore,the f l ow calculation in the MSR3DS is valid.

    Fig.7.(Color online)A simple pipe for validation of the f l ow and heat transfer(Unit/m).

    Fig.8.(Color online)Velocities along the symmetry axis.

    Fig.9.(Color online)Velocities along radial direction at the midplane.

    For validation of the heat transfer calculation in the MSR3DS,the temperature in the inlet is assumed as 873.15K, the temperatures in the outlet and other outer boundaries are 300K.Figs.10 and 11 show that the temperatures obtained by the MSR3DS are in accord with those obtained by the Fluent, indicating that the heat transfer calculation in the MSR3DS is acceptable in an engineering context.

    Fig.10.(Color online)Temperatures at the symmetry axis.

    B.Distributions of calculated physical fi elds in the core

    Using the multiphysical coupling code,we calculted under different conditions the 3D distributions of velocity,the turbulent kinematic viscosity,fast and thermal neutron fl uxes,DNPs and the temperature in the core.

    Figures 12-13 show the 3D distributions of the velocity and the turbulent kinematic viscosity.Fig.13,the turbulent kinematic viscosity in the outlet is far greater than that of other locations.

    Figures 14-15 show the 3D distributions of the fast and thermal neutron fl ux without fl ow(a),with convective term(b), and with convective and turbulent diffusion term at Sct=0.7 (c)in the balance equations for six-group DNPs.The turbulent Schmidt number is set to 0.7 as the default value in the ANSYS Fluent.The temperature in the core is set to 900K under no fl ow condition.Figs.14-15(a)and(b)show that the fuel salt fl ow has little effect on the distribution of the fast and thermal neutron fl uxes.And the turbulent diffusion term hardly affect the distribution of the fast and thermal neutron fl uxes comparing Figs.14-15(b)with Figs.14-15(c).

    Fig.12.(Color online)Velocity f i eld in the core(U/m·s?1).

    Fig.13.(Color online)Turbulent kinematic viscosity in the core(νt/m2·s).

    Fig.14.(Color online)Fast neutron f l uxs without f l ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/neutron·m?2·s?1).

    Figures 16-21 display the 3D distributions of DNPs without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)in the balance equations for six-group DNPs.The convective term affects the distribution of the DNPs signi fi cantly as shown in in Figs.16-21(b), and the smaller the delay constant,the greater the in fl uence of the fl ow.After considering the turbulent diffusion term,due to the transport effect of the turbulent diffusion term,the concentrations of the DNPs decrease and the distribution of the DNPs in Figs.16-21(c)are also changed observably,likewise, the smaller the delay constant,the greater the in fl uence of the turbulent diffusion.

    Fig.15.(Color online)Thermal neutron f l uxs without f l ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/neutron·m?2·s?1).

    Fig.16.(Color online)C1 group precursor concentration without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/m?3).

    Fig.17.(Color online)C2 group precursor concentration without fl ow(a),with convectiveterm(b),with convective and turbulent diffusion term at ?

    Fig.18.(Color online)C3 group precursor concentration without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/m?3).

    Fig.19.(Color online)C4 group precursor concentration without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/m?3).

    Fig.20.(Color online)C5 group precursor concentration without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/m?3).

    In order to calculate the temperature distribution in the core, in this paper,the turbulent Prandtl number is imposed at 0.85, which is the same as the default value in the ANSYS Fluent. So,the distributions of calculated temperature with convective term(a),with convective and turbulent diffusion term at Sct=0.7(b)are shown in Fig.22.The results in the f i gure indicate that the distribution of the temperature in the core remains unchanged,because the DNPs affect the neutron f l ux slightly under the steady condition.In addition,because the transport effect of the turbulent diffusion term of the energy conservation equation at the outlet becomes more and more strong with the distribution of the turbulent kinematic viscosity,the fuel temperature at the outlet of the core decreasesslightly in both cases.

    Fig.21.(Color online)C6 group precursor concentration without fl ow(a),with convective term(b),with convective and turbulent diffusion term at Sct=0.7(c)(Unit/m?3).

    Fig.22.(Color online)Temperatures with convective term(a),with convective and turbulent diffusion term at Sct=0.7(b).

    IV.CONCLUSION

    In order to investigate the complex behavior of the core in the CMSFR,in this present research,a new multi-physical coupling model including the turbulent diffusion is presented. The model physically describes the mutually dependence in theneutron fl ux,thedelayedneutronprecursor(DNP),theheat transfer and the turbulent fl ow.The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fl uxes considering the fl ow effect of fuel salt,and balance equations for six-group DNPs considering the fl ow effect offuelsaltandthetransporteffectofthe turbulentdiffusion.In the thermohydrualics,the RANS equations with Boussiesq’s closure hypothesis and the standardk?εturbulence model were adopted.Based on the model,integrating open source DRAGON4 and ParaView code,the CAD modeling,structured and unstructured mesh technology,a 3D multi-physical coupling steady state code system is developed and validated. With the purpose of demonstrating the ability of the code,the 3D distributions of the velocity,the temperature,the neutron fl ux and the DNPs are obtained for simpli fi ed MOSART under steady-state condition.The main results are as follows:

    (1)The fuel salt fl ow has little effect on the distribution of the fast and thermal neutron fl uxes.And the turbulent diffusion term hardly affect the distribution of the fast and thermal neutron fl uxes.

    (2)The convective term affects the distribution of the DNPs signi fi cantly,andthesmallerthedelayconstant,thegreater the in fl uence of the fl ow.The turbulent diffusion reduces the concentrations of the DNPs and observably changes the distribution of the DNPs,likewise,the smaller the delay constant,the greater the in fl uence of the turbulent diffusion.

    (3)The turbulent diffusion item in these balance equations for six-group DNPs doesn’t changethe distributionof thetemperature in the core.But the transport effect of the turbulent diffusion term of the energy conservation equation has strong effect on the distribution of the temperature.

    Hence,the MSR3DS code system can be applied to simulate main physical fi elds and describe multi-physical coupling phenomena in the core of molten salt fast reactor and can well re fl ect the fl ow effect of the convective term and the transport effect of the turbulent diffusion term,which is peculiar to cantype molten salt reactor.

    [1]Bettis E S,Cottrell W B,Mann E R,et al.Nucl Sci Eng,1957,2:804–825.

    [2]Robertson R C.MSRE design and operations report,part I,description of reactor design.Technical report:ORNL–TM–0728, 1965.

    [3]RosenthalMW,HaubenreichPN,BriggsRB.Thedevelopment status of molten–salt breeder reactors.Technical report:ORNL–4812,1972.

    [4]Furukawa K,Lecocq A,Kato Y,et al.J.Nucl Sci Technol,1990,27:1157–1178.

    [5]Vergnes J and Lecarpentier D.Nucl Sci Eng,2002,216:43–67.

    [6]Ignatiev V,Feynberg O,Gnidoi I,et al.7548:Progress in development of Li,Be,Na/F molten salt actinide recycler&transmuter concept.Proceedings of ICAPP 2007,Nice,France,May 13–18,2007.

    [7]Holcomb D E,Flanagan G F,Patton B W,et al.Fast spectrum molten salt reactor options.Technical report ORNL/TM–2011/105,2011.

    [8]Merle–Lucotte E,Heuer D,Allibert M,et al.Introduction to the PhysicsofMoltenSaltReactors,MaterialsIssuesforGeneration IV Systems,NATO Science for Peace and Security Series–B, Editions Springer,2008,501–521.

    [9]Casino W A,Sorensen K F,Whitener C A.A small mobile molten salt reactor(sm–msr)for underdeveloped countries and remote locations.The 2007 ANS Student Design Contest,2007.

    [10]Wang S,Rineiski A,Maschek W.Nucl Sci Eng,2006,236: 1580–1588.

    [11]Nicolino C,Lapenta G,Dulla S,et al.Ann Nucl Energy,2008,35:314–322.

    [12]Zhang D L,Qiu S Z,Su G H,et al.Ann Nucl Energy,2009,36: 590–603.

    [13]Versteeg H K,Malalasekera W.An introduction to computationalf l uiddynamics:thef i nitevolumemethod.England:Longman Group Ltd,1995.

    [14]Marleau G,Hebert A,Roy R.A user guide for dragon version4. Qu′ebec:Ecole Polytechnique de Montreal,2013.

    [15]Saad Y.Iterative methods for sparse linear systems,2nd edition. Pennsylvania:Society for Industrial and Applied Mathmatics, 2003.

    [16]ParaView Guide.New York:Kitware,Inc.,2013.

    [17]Taylor J B.The development of a three–dimensional nuclear reactor kinetics methodology based on the method of characteristics,PhD.Thesis(Pennsylvania State University,2007).

    [18]Fowler T B,Vondy D R,Cunningham G W.Nuclear reactor core analysis code:CITATION,ORNL–TM–2496.Tennessee:Oak Ridge National Laboratory,1971.

    10.13538/j.1001-8042/nst.25.010601

    (Received October 10,2013;accepted in revised form November 25,2013;published online February 20,2014)

    ?Supported by the”Strategic Priority Research Program”of the Chinese Academy of Science(No.XD02001004)

    ?Corresponding author,daizhimin@sinap.ac.cn

    人妻夜夜爽99麻豆av| av.在线天堂| 欧美高清成人免费视频www| 99久久成人亚洲精品观看| 日韩一区二区三区影片| 久久久色成人| 99在线视频只有这里精品首页| 亚洲欧美日韩卡通动漫| 一区二区三区四区激情视频| av视频在线观看入口| av视频在线观看入口| 99国产精品一区二区蜜桃av| 中文字幕熟女人妻在线| 舔av片在线| 观看美女的网站| 两个人视频免费观看高清| 性插视频无遮挡在线免费观看| 日韩av在线大香蕉| 一区二区三区四区激情视频| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区成人| 毛片一级片免费看久久久久| 嫩草影院入口| 毛片一级片免费看久久久久| 99久国产av精品国产电影| 禁无遮挡网站| 国产老妇伦熟女老妇高清| 日本一二三区视频观看| 亚洲av免费高清在线观看| 国产黄色视频一区二区在线观看 | 久久久久久久久中文| 免费人成在线观看视频色| 国产日韩欧美在线精品| 午夜视频国产福利| 久久久久久久久久成人| 黄色一级大片看看| 小说图片视频综合网站| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色麻豆天堂久久 | 亚洲国产最新在线播放| 禁无遮挡网站| 久久久久性生活片| 欧美成人免费av一区二区三区| 色尼玛亚洲综合影院| 国产免费又黄又爽又色| 午夜视频国产福利| 国产精品国产高清国产av| 老司机影院毛片| 精品国产露脸久久av麻豆 | 日韩成人伦理影院| 国产成人一区二区在线| 国内精品一区二区在线观看| 欧美激情久久久久久爽电影| 欧美日韩一区二区视频在线观看视频在线 | 国产 一区精品| 搡女人真爽免费视频火全软件| 日韩欧美三级三区| 亚洲熟妇中文字幕五十中出| 久久久久久久午夜电影| 两个人视频免费观看高清| 春色校园在线视频观看| 51国产日韩欧美| 欧美3d第一页| 日韩欧美国产在线观看| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av涩爱| 欧美日韩综合久久久久久| 两个人的视频大全免费| 亚洲成人中文字幕在线播放| 久久国产乱子免费精品| 亚洲伊人久久精品综合 | 久久精品夜色国产| 成人亚洲精品av一区二区| 又黄又爽又刺激的免费视频.| 波多野结衣巨乳人妻| 国产精品一区二区三区四区免费观看| 亚洲成人av在线免费| 永久网站在线| 亚洲真实伦在线观看| 亚洲成人中文字幕在线播放| 黑人高潮一二区| 最近视频中文字幕2019在线8| 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 桃色一区二区三区在线观看| 久久精品国产鲁丝片午夜精品| 国产色爽女视频免费观看| 欧美变态另类bdsm刘玥| 网址你懂的国产日韩在线| 成人毛片60女人毛片免费| 欧美日韩在线观看h| 日韩三级伦理在线观看| 深爱激情五月婷婷| 一级毛片我不卡| 熟女人妻精品中文字幕| 久久久国产成人精品二区| 中文字幕免费在线视频6| 成人美女网站在线观看视频| 欧美高清成人免费视频www| 波野结衣二区三区在线| 亚洲精品乱码久久久久久按摩| 人人妻人人澡欧美一区二区| 久久亚洲精品不卡| 91久久精品国产一区二区三区| 国产成人福利小说| 亚洲av一区综合| 美女cb高潮喷水在线观看| 久久99热6这里只有精品| 成人美女网站在线观看视频| 国产毛片a区久久久久| 国产乱人视频| 少妇被粗大猛烈的视频| 国产国拍精品亚洲av在线观看| 99久久无色码亚洲精品果冻| 最近2019中文字幕mv第一页| 国产69精品久久久久777片| av线在线观看网站| 在线播放无遮挡| 精品国产露脸久久av麻豆 | www.av在线官网国产| 亚洲电影在线观看av| 国产精品无大码| 亚洲国产欧美在线一区| 校园人妻丝袜中文字幕| 一本一本综合久久| 亚洲国产成人一精品久久久| 99热这里只有是精品50| 国产伦理片在线播放av一区| 精品熟女少妇av免费看| 精华霜和精华液先用哪个| 日韩欧美三级三区| 校园人妻丝袜中文字幕| 亚洲四区av| 国产单亲对白刺激| 国产日韩欧美在线精品| 国产精品一区二区三区四区免费观看| 亚洲精品乱码久久久久久按摩| 精品午夜福利在线看| 综合色丁香网| 亚洲欧美中文字幕日韩二区| 午夜精品国产一区二区电影 | 亚洲激情五月婷婷啪啪| 只有这里有精品99| 亚洲综合色惰| 免费大片18禁| 插阴视频在线观看视频| 超碰97精品在线观看| 99热精品在线国产| 欧美不卡视频在线免费观看| 亚洲精品乱码久久久久久按摩| 我的女老师完整版在线观看| 欧美性感艳星| 日本一二三区视频观看| 如何舔出高潮| 国产日韩欧美在线精品| 黄色日韩在线| 成人三级黄色视频| av播播在线观看一区| av播播在线观看一区| 长腿黑丝高跟| 好男人视频免费观看在线| 超碰97精品在线观看| 大又大粗又爽又黄少妇毛片口| 精品不卡国产一区二区三区| 91aial.com中文字幕在线观看| 99在线人妻在线中文字幕| 91精品伊人久久大香线蕉| 美女高潮的动态| 级片在线观看| 少妇熟女aⅴ在线视频| 婷婷色麻豆天堂久久 | 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 欧美最新免费一区二区三区| 亚洲国产精品sss在线观看| 精品久久久久久久久av| 成人无遮挡网站| 一级av片app| 成人欧美大片| 亚洲中文字幕日韩| 久久精品久久久久久噜噜老黄 | 可以在线观看毛片的网站| 人人妻人人澡人人爽人人夜夜 | 精品酒店卫生间| 日韩av在线免费看完整版不卡| 高清日韩中文字幕在线| 深爱激情五月婷婷| 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看| 久久久久免费精品人妻一区二区| 人体艺术视频欧美日本| 3wmmmm亚洲av在线观看| 国产亚洲最大av| 熟女人妻精品中文字幕| 国产高清三级在线| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 色哟哟·www| 中文字幕熟女人妻在线| 精品一区二区三区视频在线| 国产 一区 欧美 日韩| 国产精品99久久久久久久久| 久久精品人妻少妇| 精品午夜福利在线看| 女人十人毛片免费观看3o分钟| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 欧美bdsm另类| 一夜夜www| 日本黄色片子视频| 美女被艹到高潮喷水动态| 日本黄大片高清| 最近最新中文字幕免费大全7| 色播亚洲综合网| 美女高潮的动态| 日韩欧美在线乱码| 精品国产露脸久久av麻豆 | 麻豆成人av视频| 久久久亚洲精品成人影院| 免费不卡的大黄色大毛片视频在线观看 | 久久国产乱子免费精品| 激情 狠狠 欧美| 国产真实乱freesex| 一级爰片在线观看| 欧美日韩综合久久久久久| 男人舔女人下体高潮全视频| 欧美性感艳星| 国产精品国产三级国产专区5o | 久久久久久久午夜电影| 能在线免费观看的黄片| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 最新中文字幕久久久久| 综合色丁香网| 欧美3d第一页| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 欧美一区二区亚洲| 国产乱来视频区| 赤兔流量卡办理| 22中文网久久字幕| 日本猛色少妇xxxxx猛交久久| 一区二区三区乱码不卡18| av黄色大香蕉| 夫妻性生交免费视频一级片| www.色视频.com| 国产亚洲av嫩草精品影院| 天堂网av新在线| 欧美日韩一区二区视频在线观看视频在线 | 26uuu在线亚洲综合色| 国产高清有码在线观看视频| 久久草成人影院| 人妻制服诱惑在线中文字幕| 国产三级在线视频| 日韩成人av中文字幕在线观看| 免费在线观看成人毛片| 18+在线观看网站| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 2021少妇久久久久久久久久久| 十八禁国产超污无遮挡网站| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 视频中文字幕在线观看| 美女高潮的动态| 特级一级黄色大片| 国产 一区精品| 亚洲欧美日韩卡通动漫| 亚洲国产精品久久男人天堂| 人体艺术视频欧美日本| 黑人高潮一二区| 国产精品久久久久久精品电影小说 | 国产精品一二三区在线看| 日韩一区二区视频免费看| 日本免费一区二区三区高清不卡| 国国产精品蜜臀av免费| 水蜜桃什么品种好| 国产精品人妻久久久久久| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 一个人看的www免费观看视频| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 欧美色视频一区免费| 可以在线观看毛片的网站| 亚洲精品久久久久久婷婷小说 | 成年免费大片在线观看| 91狼人影院| 26uuu在线亚洲综合色| av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 三级经典国产精品| 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 精品人妻一区二区三区麻豆| av.在线天堂| 精品久久久久久久久av| 精品无人区乱码1区二区| 特级一级黄色大片| 美女大奶头视频| 91久久精品国产一区二区成人| 高清在线视频一区二区三区 | 亚洲av成人av| 国产精品国产三级国产专区5o | 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 全区人妻精品视频| 日本猛色少妇xxxxx猛交久久| 免费黄色在线免费观看| 91狼人影院| av国产免费在线观看| 一边摸一边抽搐一进一小说| 成人午夜精彩视频在线观看| 全区人妻精品视频| 观看美女的网站| 99久久成人亚洲精品观看| 日韩,欧美,国产一区二区三区 | 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| a级毛色黄片| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人美女网站在线观看视频| 在线观看av片永久免费下载| av在线天堂中文字幕| 内地一区二区视频在线| 纵有疾风起免费观看全集完整版 | 中文字幕av成人在线电影| 欧美性感艳星| 亚洲国产精品国产精品| 1000部很黄的大片| 欧美性猛交╳xxx乱大交人| 99久国产av精品| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看| 少妇的逼好多水| 一级av片app| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 三级国产精品欧美在线观看| 精品人妻视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 久久精品久久久久久噜噜老黄 | 伦理电影大哥的女人| 国产成年人精品一区二区| 美女高潮的动态| 亚洲成色77777| 色哟哟·www| 国产v大片淫在线免费观看| 高清午夜精品一区二区三区| 日韩欧美三级三区| 最近的中文字幕免费完整| 搞女人的毛片| 男女下面进入的视频免费午夜| 亚洲国产最新在线播放| 乱系列少妇在线播放| 精品欧美国产一区二区三| 欧美日本视频| 少妇丰满av| 国产亚洲精品久久久com| 亚洲成av人片在线播放无| 日韩精品有码人妻一区| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 国产精品,欧美在线| 少妇人妻精品综合一区二区| 女人久久www免费人成看片 | 国产又黄又爽又无遮挡在线| 亚洲精品亚洲一区二区| 欧美激情在线99| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 国产亚洲精品av在线| 国产伦精品一区二区三区视频9| 亚洲精品,欧美精品| 久久精品国产亚洲av天美| 男的添女的下面高潮视频| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 哪个播放器可以免费观看大片| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 亚洲18禁久久av| 中文字幕免费在线视频6| 国内精品美女久久久久久| 日本av手机在线免费观看| 一级爰片在线观看| 日韩欧美精品v在线| 午夜精品在线福利| 国产精品乱码一区二三区的特点| 亚洲国产欧洲综合997久久,| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 少妇的逼水好多| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 日日干狠狠操夜夜爽| 国产高清三级在线| 精品人妻视频免费看| 国产真实乱freesex| 日韩国内少妇激情av| 欧美精品国产亚洲| 亚洲精品456在线播放app| 1000部很黄的大片| 六月丁香七月| 午夜免费男女啪啪视频观看| 国产精品一及| 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版 | 日韩av不卡免费在线播放| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 国产真实伦视频高清在线观看| 偷拍熟女少妇极品色| 欧美成人一区二区免费高清观看| 男人的好看免费观看在线视频| 99久国产av精品国产电影| 1024手机看黄色片| 午夜激情欧美在线| 国产精品一二三区在线看| 91狼人影院| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 天堂中文最新版在线下载 | 亚洲av中文字字幕乱码综合| 亚洲国产精品合色在线| 欧美三级亚洲精品| 观看美女的网站| 秋霞伦理黄片| 国产精品,欧美在线| 中文字幕亚洲精品专区| 国产爱豆传媒在线观看| 性色avwww在线观看| 少妇熟女aⅴ在线视频| 国产视频首页在线观看| 国产成人a区在线观看| 精品久久久久久久久亚洲| 成年免费大片在线观看| 男女啪啪激烈高潮av片| 国产精华一区二区三区| www.av在线官网国产| 舔av片在线| 午夜激情欧美在线| 在线a可以看的网站| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产乱来视频区| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| .国产精品久久| 岛国在线免费视频观看| 免费av观看视频| 亚洲国产欧洲综合997久久,| 精品人妻一区二区三区麻豆| 午夜a级毛片| 91精品国产九色| 只有这里有精品99| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 国产精品久久视频播放| 黄色配什么色好看| 激情 狠狠 欧美| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 99久久成人亚洲精品观看| 欧美bdsm另类| 女人被狂操c到高潮| 日日啪夜夜撸| 亚洲欧美中文字幕日韩二区| 永久网站在线| 禁无遮挡网站| 欧美区成人在线视频| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 欧美性感艳星| 欧美高清成人免费视频www| 亚洲av成人av| 国产成人精品一,二区| 久久婷婷人人爽人人干人人爱| 精品99又大又爽又粗少妇毛片| 国产真实伦视频高清在线观看| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 能在线免费观看的黄片| 身体一侧抽搐| 久久国内精品自在自线图片| 在线观看66精品国产| 六月丁香七月| 久久久久久久久久久免费av| 日韩av在线大香蕉| 色综合色国产| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 我要搜黄色片| 久久久久久久久久成人| 一个人免费在线观看电影| 人人妻人人看人人澡| 淫秽高清视频在线观看| 久久久欧美国产精品| 国产精品日韩av在线免费观看| av专区在线播放| 成年女人永久免费观看视频| 看片在线看免费视频| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 欧美一区二区国产精品久久精品| a级一级毛片免费在线观看| 国产精品三级大全| 可以在线观看毛片的网站| 国产av不卡久久| 国产一区有黄有色的免费视频 | 中文天堂在线官网| 国产精品一区www在线观看| 国产高潮美女av| 久久精品夜色国产| 久久欧美精品欧美久久欧美| 青春草国产在线视频| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 精华霜和精华液先用哪个| 中文字幕制服av| 日韩制服骚丝袜av| 尤物成人国产欧美一区二区三区| 精品一区二区免费观看| av黄色大香蕉| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 亚洲av成人av| 精品99又大又爽又粗少妇毛片| 精品国产三级普通话版| 欧美成人午夜免费资源| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| 国产男人的电影天堂91| 国产伦精品一区二区三区四那| or卡值多少钱| 国产伦在线观看视频一区| 观看美女的网站| 白带黄色成豆腐渣| 性色avwww在线观看| 精品熟女少妇av免费看| 亚洲四区av| 纵有疾风起免费观看全集完整版 | 噜噜噜噜噜久久久久久91| 国产精品不卡视频一区二区| 观看美女的网站| 网址你懂的国产日韩在线| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 听说在线观看完整版免费高清| 日韩国内少妇激情av| 男女视频在线观看网站免费| 伦理电影大哥的女人| 久久久久九九精品影院| 身体一侧抽搐| 麻豆乱淫一区二区| 欧美日韩在线观看h| 免费黄网站久久成人精品| 日日撸夜夜添| 99热这里只有是精品50| 一边亲一边摸免费视频| 天堂av国产一区二区熟女人妻| 欧美性猛交╳xxx乱大交人| 国产精品国产高清国产av| 男人的好看免费观看在线视频| 寂寞人妻少妇视频99o| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 亚洲怡红院男人天堂| 啦啦啦观看免费观看视频高清| or卡值多少钱| 欧美激情久久久久久爽电影| 97热精品久久久久久| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| eeuss影院久久| 乱码一卡2卡4卡精品| 欧美精品国产亚洲| 国产在线男女| 久久99热这里只频精品6学生 | 人人妻人人澡欧美一区二区| 欧美另类亚洲清纯唯美| 免费av毛片视频| 国产日韩欧美在线精品| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 六月丁香七月| 三级国产精品欧美在线观看| 久久人人爽人人片av| 少妇被粗大猛烈的视频| 国产高清三级在线|