• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER

    2024-03-25 09:30:34MinWang王敏QiuyueNie聶秋月TaoHuang黃韜XiaogangWang王曉鋼andYanjieZhang張彥杰
    Chinese Physics B 2024年3期
    關(guān)鍵詞:王敏

    Min Wang(王敏), Qiuyue Nie(聶秋月), Tao Huang(黃韜),Xiaogang Wang(王曉鋼),3, and Yanjie Zhang(張彥杰)

    1School of Physics,Harbin Institute of Technology,Harbin 150001,China

    2School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin 150001,China

    3Laboratory for Space Environment and Physical Sciences,Harbin Institute of Technology,Harbin 150001,China

    4MOE(Ministry of Education)Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams,

    School of Physics,Dalian Institute of Technology,Dalian 116024,China

    Keywords: HIT-PSI,heat flux,linear plasma,SOLPS-ITER device

    1.Introduction and device description

    Reduction of heat load at the divertor target is a substantial and widely concerned issue in current tokamak research due to its impact on the lifespan and operational characteristics of future fusion reactors,such as ITER and CFETR.[1]The application of linear plasma devices (LPDs) is an important adjunct in the investigation of divertor physics and plasmasurface interaction(PSI).Comparing with tokamak divertors,LPD has significant advantages in cost-effectiveness, convenience of disassembly and target plate replacement, facilitating the evaluation of experimental data,and ability to operate under high heat load conditions with extended pulse durations.Consequently, numerous institutions have devised restrictive LPDs including Magnum-PSI,[2-4]MAGPIE,[5,6]GyM,[7,8]Proto-MPEX,[9,10]and MPS-LPD,[11,12]with the purpose of studying the physics underlying PWI and advancing divertor target materials.According to the heat load estimate of the ITER divertor,the target should be capable of withstanding at least a heat flux of 10 MW·m-2.Hence,the primary objective of LPD research is to develop methods for the target to surpass such a heat load.

    To investigate the phenomena of PWI for establishing a controlled experimental setting to evaluate available divertor target materials, the linear plasma device parameters are needed to replicate as closely as possible the conditions in the tokamak divertor.Currently, only a few devices are available to simulate the divertor parameters or heat load in an ITERlike manner, e.g., Magnum-PSI,[2-4]Proto-MPEX,[9,10]and GAMMA10/PDX.[13,14]Recently, HIT-PSI, a linear plasma device with tesla magnetic confinement, has been developed at the Harbin Institute of Technology,[15]as depicted in Fig.1.Dimensions of the vacuum chamber are 2.16 m in length and 0.46 m in diameter.An arc plasma source is positioned at a distance of 0.5 m to the left of the device.The electron temperature at the source is set in a range of 4.5 eV-5.5 eV,while the electron density is~1021m-3.In order to achieve various incidence directions of the heat flux on the divertor,the target is positioned at a distance of 1.5 m from the source.The target is designed with a rotating structure to produce different angles between the target surface and the plasma heat flux.The magnetic field is a paramount element for the device, as it plays a vital role in confining the plasma beam and generating substantial heat flux density.The scaling law for the Magnum-PSI indicates that a higher magnetic field strength is necessary for the achievement of the target heat flux as specified by ITER requirements.[2]Thus, superconducting magnets are used to attain a magnetic field strength of 2.5 T in the central plasma region.[15]

    The ongoing experiments of the HIT-PSI necessitate the estimation of a reasonable range of operation scenarios by numerical simulation.It is essential to conduct an analysis on the impact of magnetic field intensity on the heat flux of the HITPSI target plate.On the other hand,the low ionization rate and existence of neutral particles should also significantly affect the heat flux density at the target plate.Moreover,investigating the influence of the pumping on the plasma parameters of the HIT-PSI target plate may not only enhance our understanding of the interaction between plasma and neutral particles but also offer more suitable recommendations for machine operation.

    The framework of this paper is outlined as follows: the next section provides a brief overview of the fundamental principles and limitations of numerical simulation; the third section presents and analyzes the outcomes obtained from the simulation;Finally,the conclusion of this study is presented.

    2.The geometry-modified SOLPS-ITER and boundary conditions

    The SOLPS-ITER is a predominant large-scale fluid code on a global scale,primarily used for simulating tokamak edge plasmas, particularly in divertor and scrape-off-layer (SOL)regions.Empirical evidence has also demonstrated the successful application of this approach in simulating and analyzing the plasma transport process for the linear plasma device with a specific geometry modification.Such a geometry modified SOLPS-ITER code consists of two major components,B2.5 and EIRENE,[16]where B2.5 focuses on solving the electron and ion density, parallel momentum, and energy conservation equation for each particle state,and EIRENE is for distributions of neutral particles with collisions and reactions between neutral particles and plasma.The orthogonal grid is applied for B2.5 calculation,with the transport coefficient that characterizes radial diffusions,while the triangular grid is for EIRENE calculation, plasma reaction, and boundary conditions.The selected boundary conditions in this study include the axial boundaries of the device chamber, which are interpreted as the core boundary of the geometry-modified SOLPSITER code.Additionally, energy and particle flows originate from the left source position of the HIT-PSI.Consequently,the boundary conditions for momentum, particle, and energy flows are chosen at the core boundary, mirroring those at the first wall of the toroidal geometry.Furthermore, a radial decay boundary condition is applied, with the momentum flow at the wall assumed vanished.Finally, the sheath boundary condition is implemented at both ends of the device.

    Due to the configuration of HIT-PSI, the axial symmetry is assumed in the simulation.In the present iteration of the geometry-modified SOLPS-ITER, nevertheless, the fluid code grid is unable to establish a connection with the first wall.Consequently,the radial dimension of the B2.5 grid in the simulation is marginally smaller than the real device radius, as depicted in Fig.1.To enhance the maneuver capability of target plate rotations and facilitate the replacement of target plate materials,the HIT-PSI device employs a significantly reduced target plate diameter.To mitigate the computational grid complexity and enhance the numerical stability of the code, we assume that the grid near the target plate extends radially in the simulation.The simulation employs a grid resolution of 96 axial cells by 36 radial cells.

    Fig.1.The simulation mesh and pumping location.

    On the other hand, the plasma source is significance for the linear device.As previously indicated,the HIT-PSI utilizes an arc plasma source.Considering the complexity of the discharge process driven by the arc plasma source,we in the simulation applied following approximations.The method employed in this study for source processing involves the interpolation of plasma and power density distributions,which are assumed a normal gaussian form,,radially and also axially,the peak value of the power interpolation is 2.5×1019W·m-3and the density is 3×1026particle·m-3,as shown in Fig.2.Subsequently, the plasma is heated to set up the electron temperature distribution at the source.

    Fig.2.The interpolate distributions of particle and energy densities.

    3.Effect of magnetic field strength on target heat flux density

    As mentioned previously,the HIT-PSI uses a cascaded arc plasma source with a relatively moderate discharge energy.[15]Hence,in order to attain a substantial energy density at the target plate,a strong magnetic field is applied to pinch the plasma to a well-confined beam.The diameter of the plasma beam is comparable to the width of the scrape-off layer(SOL)region in a tokamak.This similarity arises from the interplay between the parallel and vertical components of the velocity.Similar to the heat flow size of the plasma in the SOL region,the width of the plasma heat flux (λ) in a linear plasma device can be expressed as

    wherev⊥is the average perpendicular velocity andτis the energy confinement time.By assuming thatneTe=niTi, the relation betweenτand source parameters is

    whereqsis the parallel heat flux in the plasma source,Lis the linear device length;nesandTesare electron density and temperature in the plasma source, respectively.In HIT-PSI,nes,Tes,andqsare determined by plasma parameters at the source.Therefore,in a linear plasma device,λis mainly related to thev⊥.

    Plasma transport is clearly strongly anisotropic.To mitigate severe numerical instability and expedite computational efficiency, SOLPS-ITER employs an approximated approach to handle the transport process in the vertical dimension.The vertical velocity is given by the coefficient

    whereypresents the inhomogeneous direction.

    Utilizing the experimental parameter profiles offers a more suitable and accurate methodology for ascertaining the magnitude and dimensions of the diffusion coefficients.This paper primarily focuses on the transport coefficients simulated for Magnum-PSI,[3,4]which shares a similarity to HIT-PSI which is currently in the initial operation phase.The simulations are conducted under a magnetic field of 5 T, with a density diffusion coefficientDn=0.05 m2·s-1and a corresponding thermal diffusivityχi,e=2.0 m2·s-1.

    Fig.3.The electron density nes (a), and temperature Tes (b)distributions at the source location.

    Figure 3 illustrates the spatial distribution of plasma parameters at the source, considering the current diffusion coefficient.It is evident that the electron density near the axis is measured approximately 1.21×1021m-3, while the electron temperature is approximately 5.2 eV.These values align within the designated range of the HIT-PSI plasma source.In Fig.4,the distributions of the electron density and heat flux at the target plate are depicted.Notably,the maximum heat flux recorded at the target plate is calculated 7.9 MW·m-2, a bit lower than the specified threshold of 10 MW·m-2.However,a more intensive magnetic field (up to~2 T) can make the heat flux rise above the threshold.

    Fig.4.The electron density net (a),and heat flux density qt (b)distributions at the target.

    In the presence of such a strong magnetic field,the plasma within the HIT-PSI can be characterized as magnetized.The radial density diffusion of plasma follows the Bohm diffusion model.[5]Thus, the thermal diffusivity is assumed to be constant within the magnetic field range specified by the experimental parameters of Mangum-PSI[3,4]and Proto-MPEX.[10]Table 1 presents the values ofDnandχi,ein the simulation under various magnetic field strengths.

    Table 1.The values of Dn and χi,e in various magnetic fields.

    Figure 5 displays the distribution of heat flux with various strengths of magnetic fields.It is clear that when the magnetic field rises, the heat flux at the target plate is elevated,while the radius of the plasma beam is reduced.Under the maximum magnetic field strength of 2.5 T achieved by the device, the current heat flux experienced by the target plate is approximately 10 MW·m-2.Figure 6 illustrates the radial velocity observed at the target plate across various magnetic field strengths.As depicted in Fig.5,the heat flux at the target plate is progressively increasing, to reach 10 MW·m-2when the magnetic field strength exceeds 1 T, thereby satisfying ITER design specifications for the divertor target plate material.

    Fig.6.Distributions of vertical velocity(a)and target heat flux(b)as a function of the magnetic field at R=0.

    4.Effect of neutral pressure on target heat flux

    As mentioned earlier, the arc source generates a plasma with a significant abundance of neutral particles due to its relatively low ionization level.The interaction of neutral and charged particles gives rise to various processes,including ionization and volume recombination,accompanied by the emission of a great amount of energy.The excessive abundance of neutral particles in the device significantly diminishes the heat flux onto the target plate.Consequently, the effective management and reduction of neutral particles constitute a crucial technique for HIT-PSI in order to attain elevated levels of heat flux.

    The utilization of neutral pressure is a common practice in experiments conducted for linear devices for the quantification of the neutral particle content.The regulation of pressure and the interaction between neutral and charged in the plasma for SOLPS-ITER are primarily governed by EIRENE.The pumping efficiency is influenced by the wall recycling coefficientR, which can be calculated by the equation:R=withLfor the effective pumping speed in liters per second,Tfor the temperature of the pumping surface,Afor the surface area of the pumping, andmfor the molecular mass.In this investigation, the molecular mass is set asm=2,for the primary neutral particle H2,while the surface temperature isT=300 K.The determination of the gas pumping window is typically established during the device design phase,thereby impeding subsequent upgrades and modifications.Then, improvements in gas pumping efficiency are primarily manifested by enhancements in aspirator efficiency.Insufficient ionization of the arc source leads to a significant number of neutral particles during the discharge process.The pumping surface, as defined in the simulation, is illustrated in Fig.1.The construction of this entity follows a similar methodology to that of the HIT-PSI.The pumping rate is directly associated with the neutral pressure of the device, as indicated in Table 2.

    Table 2.Neutral pressures for various R.

    Alterations in plasma parameters related to the neutral pressure exhibit minimal variations at the source, as depicted in Fig.7.Particularly at the axis, no obvious differences are observed.The electron density is high under the influence of various neutral pressures.The electron temperature(>5 eV)at the density of 1.0×1021m-3, effectively satisfies the prescribed criteria for the plasma source.Nevertheless,it is clear that there exists a notable discrepancy inneandTeat the target plate under different pressures,as presented in Fig.8.As the neutral pressure increases, there is a corresponding decrease in both theneandTe.The decrease in heat flux at the target plate is also observed, as shown in Fig.9.The observation reveals that at a neutral pressure of~8 Pa, the heat flux at the target plate approaches 13.91 MW·m-2.Conversely, at a neutral pressure of~34 Pa,the heat flux at the target plate is significantly reduced to~0.03 MW·m-2.

    Fig.7.The electron density ne and electron temperature Te distributions at the source location with B=2.5 T.

    Fig.8.The electron density ne and electron temperature Te distributions at the target location with B=2.5 T.

    The primary factor contributing to the observed disparity in heat flux at the target plate can be attributed to variations in the spatial distribution of neutral particles under distinct pressure conditions.In the region of the target plate, the primary reaction is recombination, with both electron-ion recombination (EIR) and molecular-activated recombination (MAR).The HIT-PSI plasma exhibits a significant electron density,leading to the predominant occurrence of the main recombination reaction of MAR.[17]For instances where the degree of detachment is more pronounced,there is an observed rising in the density of hydrogen molecules,[17]leading to a reduction in the heat flux reaching the target plate.

    Fig.9.The heat flux distribution in the entire device(left)and target(right)with various neutral pressures.

    Figure 10 illustrates the variation innD2on the target plate for different pressure conditions.It is indicated that there exists an inverse relationship between pumping efficiency andnD2on the target plate.Additionally, an increase in pumping efficiency leads to a corresponding enhancement in heat flux.Hence,the maintenance of a low neutral pressure is a prerequisite for attaining a high heat flux on the target plate.

    Fig.10.Distributions of nD2 and target heat flux as a function of neutral pressure at R=0.

    Fig.11. Baxial and Pneutral in the plasma beam center for various target heat flux densities scaled in color.

    Based on the previous analysis and examination,figure 11 illustrates the fundamental dispersion pattern of the heat flux density pertaining to the target plate related to the magnetic field and neutral pressure.It is clear that satisfaction of a magnetic field strengthB >1 T and a neutral air pressurePneutral<10 Pa results in the generation of a heat flux at the target plate in HIT-PSI that fulfills the requirements of ITERlike text.The filter target material exhibits a high degree of thermal compliance,enabling it to effectively conduct thermal compliance testing.

    5.Summary

    This study employed the geometry-modified SOLPSITER code to model the steady-state discharge process of the HIT-PSI device.The investigation focused on analyzing the impact of magnetic field strength and neutral pressure on the heat flux experienced by the target plate.The simulation results indicate that,when considering fixed conditions of plasma source parameters and neutral pressure,there is a positive correlation between the magnetic field strength and the heat flux observed at the target plate.When the axial magnetic field surpasses 1 T, the HIT-PSI device has the capability to produce a heat flux with its maximum exceeds 10 MW·m-2at the target plate.With fixed plasma source and magnetic field strength,it can be observed that the heat flux at the target plate diminishes as the neutral pressure rises.However, when the pressure reaches a level below 10 Pa, the HIT-PSI system is capable of producing a heat flux at the target plate that satisfies the specified criteria of ITER.The fundamental parameter range for the heat flux exceeds 10 MW·m-2in HIT-PSI(B >1 T,Pneutral<10 Pa) should be further tested by future measurements of the magnetic field strength and neutral pressure.The simulation results can nevertheless offer a useful benchmark for the upcoming HIT-PSI experiments.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No.2018YFE0303105),the Fundamental Research Funds for the Central Universities (Grant No.2022FRFK060021), and the National MCF Energy Research and Development Program (Grant No.2019YFE03080300).

    猜你喜歡
    王敏
    Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST
    王敏作品
    A commutation analytical model for quench protection of the CFETR central solenoid model coil
    Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
    魅力中國(2018年4期)2018-07-30 11:11:44
    Electricity supplier era of packaging design Current Situation and Prospects
    東方教育(2017年1期)2017-04-20 02:52:09
    最痛的花心懺悔:自殘“禍根”更有血案
    山東省原省委常委、濟(jì)南市原市委書記 王敏:夫妻聯(lián)手貪 全家齊上陣
    Bromate formation in bromide-containing waters irradiated by gamma rays?
    The effect of bubble plume on oxygen transfer for moving bed biofilm reactor*
    老司机影院成人| av在线观看视频网站免费| 99热这里只有是精品50| 桃色一区二区三区在线观看| 狠狠狠狠99中文字幕| 国产一区亚洲一区在线观看| 天堂中文最新版在线下载 | 特大巨黑吊av在线直播| 日韩三级伦理在线观看| 一个人看的www免费观看视频| 又黄又爽又刺激的免费视频.| 大香蕉97超碰在线| 91久久精品国产一区二区三区| 亚洲欧美日韩无卡精品| 波多野结衣巨乳人妻| 国产精品久久视频播放| 菩萨蛮人人尽说江南好唐韦庄 | 日产精品乱码卡一卡2卡三| 国产在线男女| 国产精品伦人一区二区| 亚洲高清免费不卡视频| a级毛片免费高清观看在线播放| 亚洲成av人片在线播放无| 久久人人爽人人片av| 国产在视频线精品| 日韩高清综合在线| 亚洲欧美成人综合另类久久久 | 国产极品天堂在线| 在线a可以看的网站| 国产高清不卡午夜福利| 亚洲成av人片在线播放无| 老司机影院成人| 亚洲欧美清纯卡通| 久久午夜福利片| 国产精品精品国产色婷婷| 全区人妻精品视频| 国产精品久久久久久久久免| videossex国产| 国产黄片视频在线免费观看| 69av精品久久久久久| 亚洲成人精品中文字幕电影| 一个人看视频在线观看www免费| 联通29元200g的流量卡| 精品久久久久久成人av| 好男人视频免费观看在线| 中文精品一卡2卡3卡4更新| 爱豆传媒免费全集在线观看| 插逼视频在线观看| 欧美不卡视频在线免费观看| 成人二区视频| 乱系列少妇在线播放| 午夜免费激情av| videossex国产| 又粗又硬又长又爽又黄的视频| 中国美白少妇内射xxxbb| 午夜激情福利司机影院| 国产亚洲av嫩草精品影院| 91久久精品国产一区二区成人| 亚洲精品自拍成人| 99视频精品全部免费 在线| 亚洲欧美日韩东京热| 久久这里有精品视频免费| 国产大屁股一区二区在线视频| 国产精品国产三级国产专区5o | 大香蕉97超碰在线| 日韩高清综合在线| 亚洲内射少妇av| 亚洲精品日韩av片在线观看| 亚洲成色77777| 少妇的逼水好多| 久久午夜福利片| 国产黄片美女视频| 联通29元200g的流量卡| 国产免费视频播放在线视频 | 欧美区成人在线视频| 少妇高潮的动态图| 亚洲av二区三区四区| 日本熟妇午夜| 尤物成人国产欧美一区二区三区| 天堂影院成人在线观看| 真实男女啪啪啪动态图| 精品99又大又爽又粗少妇毛片| 国产高清有码在线观看视频| 亚洲欧美日韩无卡精品| 大香蕉久久网| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看免费完整高清在| 亚洲欧美成人精品一区二区| 国产在视频线在精品| 亚洲av不卡在线观看| 久久国内精品自在自线图片| a级毛片免费高清观看在线播放| 国产视频首页在线观看| 听说在线观看完整版免费高清| 又粗又硬又长又爽又黄的视频| 蜜臀久久99精品久久宅男| 男女下面进入的视频免费午夜| 亚洲国产精品sss在线观看| 国产午夜精品一二区理论片| 赤兔流量卡办理| 高清毛片免费看| 高清在线视频一区二区三区 | 免费观看精品视频网站| 亚洲av不卡在线观看| 美女xxoo啪啪120秒动态图| 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 国产高清有码在线观看视频| 99久久精品热视频| 男女啪啪激烈高潮av片| 一区二区三区高清视频在线| 日本-黄色视频高清免费观看| 网址你懂的国产日韩在线| 两性午夜刺激爽爽歪歪视频在线观看| 赤兔流量卡办理| 蜜桃亚洲精品一区二区三区| 亚洲av不卡在线观看| 国内精品宾馆在线| 69人妻影院| 狂野欧美激情性xxxx在线观看| 爱豆传媒免费全集在线观看| 精品久久久久久电影网 | 99久久精品国产国产毛片| 国产精品久久视频播放| 亚洲欧美日韩卡通动漫| 青青草视频在线视频观看| 国产一区二区亚洲精品在线观看| 久久久成人免费电影| 黄片wwwwww| 午夜福利在线在线| 男人舔奶头视频| 国产女主播在线喷水免费视频网站 | 欧美性猛交╳xxx乱大交人| eeuss影院久久| 日韩一本色道免费dvd| 永久网站在线| 日日啪夜夜撸| 天天一区二区日本电影三级| 天堂网av新在线| av卡一久久| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区国产| 99久国产av精品国产电影| 中文精品一卡2卡3卡4更新| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| 亚洲国产色片| 成人性生交大片免费视频hd| 精品久久国产蜜桃| 日韩av在线免费看完整版不卡| 你懂的网址亚洲精品在线观看 | 91在线精品国自产拍蜜月| 高清日韩中文字幕在线| 欧美日韩综合久久久久久| 一级黄色大片毛片| 亚洲av二区三区四区| 亚洲国产日韩欧美精品在线观看| 中文资源天堂在线| 亚洲中文字幕日韩| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 日本wwww免费看| 久久人人爽人人爽人人片va| 亚洲av.av天堂| 黄片wwwwww| 久久精品影院6| 狠狠狠狠99中文字幕| 人妻少妇偷人精品九色| 欧美3d第一页| 日本欧美国产在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影| 日韩欧美三级三区| 久久综合国产亚洲精品| 97在线视频观看| 久久久久久伊人网av| 免费电影在线观看免费观看| АⅤ资源中文在线天堂| 国产精品三级大全| 舔av片在线| 一级二级三级毛片免费看| 久久午夜福利片| 日本免费a在线| or卡值多少钱| 一个人免费在线观看电影| 日韩成人av中文字幕在线观看| 少妇裸体淫交视频免费看高清| 99九九线精品视频在线观看视频| 日韩成人av中文字幕在线观看| 久久6这里有精品| av女优亚洲男人天堂| 99在线视频只有这里精品首页| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 久久久成人免费电影| 搡女人真爽免费视频火全软件| 波野结衣二区三区在线| 亚洲中文字幕日韩| 久久热精品热| 久久精品国产自在天天线| 久久欧美精品欧美久久欧美| 久久久午夜欧美精品| 三级国产精品欧美在线观看| 久久国产乱子免费精品| 精品午夜福利在线看| 嫩草影院入口| 精品无人区乱码1区二区| 极品教师在线视频| 欧美成人午夜免费资源| 欧美日韩国产亚洲二区| 午夜福利高清视频| 亚洲自拍偷在线| 午夜日本视频在线| 成人亚洲欧美一区二区av| 天堂中文最新版在线下载 | 少妇人妻一区二区三区视频| 欧美精品国产亚洲| 国产精品,欧美在线| 九色成人免费人妻av| 免费看美女性在线毛片视频| 在现免费观看毛片| 色视频www国产| 成人欧美大片| 国产极品精品免费视频能看的| 国产一区二区在线观看日韩| 中文字幕熟女人妻在线| 国产高清国产精品国产三级 | 在线免费观看的www视频| 国产高清国产精品国产三级 | 天美传媒精品一区二区| 中文精品一卡2卡3卡4更新| 美女国产视频在线观看| 国产高清国产精品国产三级 | 国产亚洲最大av| 国产视频首页在线观看| 毛片一级片免费看久久久久| 在现免费观看毛片| 婷婷色av中文字幕| 99热这里只有精品一区| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 波多野结衣高清无吗| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 国产精品久久久久久av不卡| 国产亚洲精品久久久com| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影 | 欧美日本视频| 在线观看66精品国产| 久久热精品热| 少妇丰满av| 亚洲国产欧美在线一区| 欧美zozozo另类| 一区二区三区四区激情视频| 亚洲国产色片| 亚洲国产欧美人成| 欧美色视频一区免费| 日韩欧美国产在线观看| 欧美另类亚洲清纯唯美| 欧美成人免费av一区二区三区| 能在线免费看毛片的网站| 免费看日本二区| 色5月婷婷丁香| 久久久午夜欧美精品| 亚洲av免费在线观看| 国产免费视频播放在线视频 | 校园人妻丝袜中文字幕| 青春草国产在线视频| 成人欧美大片| 国产精品.久久久| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看 | 国语对白做爰xxxⅹ性视频网站| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 久久久午夜欧美精品| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品专区久久| 在线观看一区二区三区| 亚洲国产欧洲综合997久久,| 久久久久久久午夜电影| 少妇裸体淫交视频免费看高清| 国产视频内射| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久这里只有精品中国| av在线播放精品| 干丝袜人妻中文字幕| 国产大屁股一区二区在线视频| 色综合色国产| 亚洲欧洲国产日韩| 国产高清有码在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 99久久九九国产精品国产免费| 日韩av在线免费看完整版不卡| 亚洲欧洲国产日韩| 欧美一区二区国产精品久久精品| 欧美成人一区二区免费高清观看| 级片在线观看| 精品国产一区二区三区久久久樱花 | 男的添女的下面高潮视频| www.色视频.com| 搡老妇女老女人老熟妇| 午夜激情欧美在线| 99热这里只有是精品50| 免费无遮挡裸体视频| 黄片wwwwww| 免费大片18禁| 日本三级黄在线观看| 成年版毛片免费区| 国产三级在线视频| 亚洲av成人av| 毛片一级片免费看久久久久| 99热这里只有是精品在线观看| 青春草视频在线免费观看| 99久久九九国产精品国产免费| 波多野结衣高清无吗| 国产精品一区二区三区四区久久| 欧美激情在线99| 99热6这里只有精品| av在线老鸭窝| 网址你懂的国产日韩在线| 国产精品福利在线免费观看| 久久人人爽人人爽人人片va| 亚洲国产最新在线播放| 久久草成人影院| 亚洲精华国产精华液的使用体验| 日本黄大片高清| 免费电影在线观看免费观看| 69av精品久久久久久| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱| 男人舔女人下体高潮全视频| 亚洲婷婷狠狠爱综合网| 免费黄网站久久成人精品| 老师上课跳d突然被开到最大视频| 日韩成人伦理影院| 黄色一级大片看看| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 久久人妻av系列| 成年女人看的毛片在线观看| 99久久成人亚洲精品观看| 欧美+日韩+精品| 日韩欧美精品v在线| videossex国产| 久久精品夜色国产| 三级经典国产精品| 国产一区二区亚洲精品在线观看| av福利片在线观看| 天堂√8在线中文| av线在线观看网站| 汤姆久久久久久久影院中文字幕 | 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 好男人视频免费观看在线| 精品久久久久久久人妻蜜臀av| 国产精品一及| 日韩欧美国产在线观看| 亚洲精品成人久久久久久| 建设人人有责人人尽责人人享有的 | 天堂中文最新版在线下载 | www.色视频.com| 国产麻豆成人av免费视频| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 老司机影院毛片| 国产高清有码在线观看视频| 国产探花极品一区二区| 国产黄色小视频在线观看| 国产又色又爽无遮挡免| 少妇的逼好多水| av线在线观看网站| 久久99热这里只有精品18| 18禁动态无遮挡网站| 亚洲乱码一区二区免费版| 热99re8久久精品国产| 纵有疾风起免费观看全集完整版 | 人妻系列 视频| 中文字幕av成人在线电影| 1024手机看黄色片| 我的老师免费观看完整版| 日本一二三区视频观看| 亚洲电影在线观看av| av国产久精品久网站免费入址| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 精品少妇黑人巨大在线播放 | 成人亚洲欧美一区二区av| 国产免费视频播放在线视频 | 免费播放大片免费观看视频在线观看 | 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 欧美97在线视频| 我的女老师完整版在线观看| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 男女那种视频在线观看| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久 | 久久精品影院6| 黄色欧美视频在线观看| 中文字幕av成人在线电影| 村上凉子中文字幕在线| 欧美日本亚洲视频在线播放| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 亚洲欧美日韩卡通动漫| 国产单亲对白刺激| 成人一区二区视频在线观看| 久久久久久久久久久免费av| 三级男女做爰猛烈吃奶摸视频| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 老司机影院成人| 国产高清三级在线| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 亚洲国产精品成人久久小说| 中文字幕av在线有码专区| 91久久精品电影网| 亚洲自偷自拍三级| 精品免费久久久久久久清纯| 久久久国产成人免费| 国产片特级美女逼逼视频| av线在线观看网站| 国产欧美日韩精品一区二区| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 午夜老司机福利剧场| 一本久久精品| 国产精品三级大全| 亚洲最大成人手机在线| 免费观看性生交大片5| 嫩草影院精品99| 日韩欧美精品免费久久| 高清毛片免费看| 天美传媒精品一区二区| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 国产精品三级大全| 日韩 亚洲 欧美在线| 日韩精品有码人妻一区| 乱系列少妇在线播放| 日韩精品青青久久久久久| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 99久久人妻综合| 美女黄网站色视频| 国产探花在线观看一区二区| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 国产成人a∨麻豆精品| 小说图片视频综合网站| 一本一本综合久久| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 久久精品久久久久久噜噜老黄 | 午夜福利网站1000一区二区三区| 久久精品夜色国产| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 欧美一区二区亚洲| 国产午夜精品论理片| 两个人视频免费观看高清| 在线a可以看的网站| 国内精品宾馆在线| 国产精品国产三级专区第一集| 男人狂女人下面高潮的视频| 搡女人真爽免费视频火全软件| 又黄又爽又刺激的免费视频.| 久久精品综合一区二区三区| 高清视频免费观看一区二区 | 亚洲国产精品国产精品| 精品午夜福利在线看| 麻豆一二三区av精品| 免费大片18禁| 亚洲经典国产精华液单| 毛片女人毛片| 男人舔奶头视频| 久久草成人影院| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 国产亚洲av嫩草精品影院| 精品人妻偷拍中文字幕| 男人狂女人下面高潮的视频| av免费在线看不卡| 天堂av国产一区二区熟女人妻| 偷拍熟女少妇极品色| 免费av不卡在线播放| 老司机影院成人| 亚洲欧美精品专区久久| 亚洲国产精品久久男人天堂| 精品久久久久久久久av| 日本熟妇午夜| 男插女下体视频免费在线播放| 男人舔奶头视频| 精品久久久久久成人av| 国产高清视频在线观看网站| 亚洲成av人片在线播放无| 欧美成人a在线观看| 一区二区三区高清视频在线| 欧美3d第一页| 亚洲精品乱久久久久久| kizo精华| 天天躁日日操中文字幕| 日本免费一区二区三区高清不卡| 久热久热在线精品观看| 国产成年人精品一区二区| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 日本三级黄在线观看| 国产成人精品婷婷| 高清视频免费观看一区二区 | 久久久久久久亚洲中文字幕| 激情 狠狠 欧美| 国产精品1区2区在线观看.| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品久久男人天堂| 久久久精品94久久精品| 国产成人freesex在线| 国语对白做爰xxxⅹ性视频网站| 男女啪啪激烈高潮av片| 亚洲图色成人| 久久久久久国产a免费观看| 伦理电影大哥的女人| 久久久久网色| 日本色播在线视频| 亚洲人成网站高清观看| 国产黄色小视频在线观看| 亚洲欧美精品自产自拍| 干丝袜人妻中文字幕| 国产精品一及| 欧美日韩国产亚洲二区| 毛片女人毛片| www日本黄色视频网| 国产日韩欧美在线精品| 淫秽高清视频在线观看| 一个人看的www免费观看视频| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 成人亚洲欧美一区二区av| 久久久久性生活片| 国产精品国产三级国产av玫瑰| 国产午夜精品一二区理论片| 丰满少妇做爰视频| 日产精品乱码卡一卡2卡三| 国产大屁股一区二区在线视频| 深爱激情五月婷婷| 亚洲中文字幕一区二区三区有码在线看| 美女高潮的动态| 五月伊人婷婷丁香| 久久人妻av系列| 欧美一区二区亚洲| 日本免费在线观看一区| 人妻系列 视频| 亚州av有码| 人妻制服诱惑在线中文字幕| 99在线视频只有这里精品首页| 午夜a级毛片| 成人一区二区视频在线观看| 天天躁日日操中文字幕| 日本五十路高清| 国产av一区在线观看免费| or卡值多少钱| 久久精品91蜜桃| 极品教师在线视频| 亚洲av男天堂| 赤兔流量卡办理| videossex国产| 亚洲欧美精品专区久久| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 久久精品人妻少妇| 在线播放国产精品三级| 欧美性猛交╳xxx乱大交人| 永久网站在线| 老司机福利观看| 欧美性猛交黑人性爽| 成人亚洲欧美一区二区av| 又爽又黄无遮挡网站| 少妇的逼好多水| 成人亚洲欧美一区二区av| 又爽又黄无遮挡网站| 精品久久国产蜜桃| 亚洲av二区三区四区| 国产69精品久久久久777片| 亚洲自偷自拍三级| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲av男天堂| 亚洲最大成人中文| 国产精品美女特级片免费视频播放器| 美女国产视频在线观看| 国产成人一区二区在线| 好男人在线观看高清免费视频| 久久精品国产自在天天线| kizo精华| 精品一区二区三区视频在线|