• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST

    2022-02-15 11:07:52MinWANG王敏QinmeiXIAO肖青梅XiaogangWANG王曉鋼andDaoyuanLIU劉道遠(yuǎn)
    Plasma Science and Technology 2022年1期
    關(guān)鍵詞:王敏青梅

    Min WANG (王敏), Qinmei XIAO (肖青梅),2, Xiaogang WANG (王曉鋼),2 and Daoyuan LIU (劉道遠(yuǎn))

    1 School of Physics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

    2 Laboratory of Space Environment and Physics Science, Harbin Institute of Technology, Harbin 150001,People’s Republic of China

    3 School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract Impurity seeding has been found effective for divertor detachment operations and the seeding location plays a key role in this process.In this work, we use the fluid code SOLPS-ITER to study the influence of seeding locations on divertor and scrape-off layer (D-SOL) plasmas in Experimental Advanced Superconducting Tokamak (EAST) with neon seeding.Simulation results indicate that the neon is a highly effective impurity in mitigating the heat flux and electron temperature peaks on the target of the divertor and achieving the partial detachment on both inner and outer targets.Further, by comparing results of the seeding at the private-flux region(PFR) plate (called ‘TP’ location) and the outer target (called ‘XP’ location), we find that the impurity density and power radiation for TP case are higher in core and upstream regions and lower in the divertor region than that for seeding at the XP,and the difference becomes more and more obvious as the seeding rate increases.It clearly demonstrates that the seeding at the XP location is more appropriate than at the TP location, especially in high seeding rate conditions.

    Keywords: impurity seeding, detachment, SOLPS-ITER, D-SOL

    1.Introduction

    The control of heat loads and particle flux on the divertor target is crucial but extremely challenging for steady-state operations,particularly for high fusion power devices such as China Fusion Engineering Testing Reactor (CFETR) and International Thermonuclear Experimental Reactor (ITER)[1, 2].Those steady-state operations of fusion reactors suffer an average power load of ~ 1 0 MW · m?2on the first wall and a much higher flux on the target.Thus,one has to cut the load by a great share to decrease the plasma-wall interaction(PWI)and reduce the target electron temperature to a level of<10 eV, for lowering the erosion and extending the servicelife of target materials[3].In recent decades,impurity seeding has been found effective for energy dissipation by impurity radiation [4–6].Particularly, the radiation power can be enhanced by intense collisions between the high electron temperature plasma and impurity particles with a high radiation loss rate.Then, the heat load and electron temperature at the target can be reduced.Such methods have been substantiated in various tokamaks, with the most popular seeding impurities of nitrogen(N),neon(Ne),and argon(Ar)[7–10].However, these impurities are relatively high-Z particles which may degrade energy confinement of the core plasma and cause disruptions in the worst scenario.Therefore,the impurity transport in SOL region is very crucial for stability of the upstream plasma profiles as well as the confinement of the core plasma.The results on JET, ASDEXUpgrade, and Alcator C-Mod revealed that the radiation power of impurities was observed both inside the last closed flux surface (LCFS) and outside the separatrix [8, 11, 12].In EAST, modeling and experimental works illustrated that the impurities easily transported upstream to penetrate into the core region[10,13].Also,the location of the impurity puffing exerted a significant influence on the divertor target detachment process and its magnitude.In addition, as tungsten (W)gradually replaces the carbon (C) plasma-facing materials(PFM)in future tokamaks,its erosion and physical sputtering are dominated by impurity ions rather than deuterium ions[14–16].On the other hand, it is difficult to make a high resolution measurement on the edge for impurity radiation and transport, due to the uncertainty LCFS position.Hence,for better understanding the influence of gas seeding location on detachment process and impurity transport in D-SOL regions, simulation analysis is necessary.

    In this paper, we choose Ne as the impurity, and use the lower single null (LSN) configuration of EAST for transport study.The divertor geometry,seeding locations and modeling setup are described in section 2.In section 3,we compare and analyze the influence of two locations on the detachment process and impurity transport.Then, the conclusion is summarized in the last section.

    2.Modeling setup

    In this work, the SOLPS-ITER code package is chosen to simulate the SOL and divertor plasma.SOLPS-ITER is a large fluid code, which is coupled with the B2.5 fluid code and the Eirene kinetic code.B2.5 mainly solves Braginskii equations for ions and electrons, Eirene is a Monte-Carlo transport code which provides the neutral transport as well as its birth and death[17–19].SOLPS-ITER and its old versions have been widely and successfully used on current and future tokamaks [2, 20–22].

    The simulated cross-section of EAST is illustrated in figure 1.In the modeling, the simulation region contains the core region located between core boundary (CEI) and separatrix (SEP), the D-SOL regions, and the private flux region(PFR).The simulation mesh (including triangular meshes) is constructed by 36 cells radially, 96 cells in poloidally, as shown in figure 1.

    The first impurity seeding location is chosen at the PFR plate close to the outer target plate (called the ‘TP’ location),the second location is at the lower main SOL region next to outer-target of the divertor(called the‘XP’location),as shown in figure 1.Or as described in a‘two-point’theory,the first one is in the divertor region and the second one is at the divertor region entrance [23], as shown in figure 1.The impurity seeding rate is ×M10 s20?1, where M is the intensity coefficient.The species in the simulation include deuterium atoms(D), main ions (+D ), electrons, and Ne impurities (with all charge states ofNe0?Ne10+).Since the particle radial diffusion and the thermal conductivity coefficients cannot be exactly calculated in first principle, we thus use an empirical model based on experiments to fit the density and electron temperature profiles on the outer mid-plane (OMP).For L-mode discharges, considering their slow spatial variation feature, we approximate the radial diffusion coeffciient asD⊥=1.0 m2· s?1and the thermal conductivity coeffciient asχe=χi= 1.7 m2 s? 1 in the whole region [24–28].The SOL flows are driven by the poloidal transport asymmetry due to asymmetry of the edge transport between the low-field/badcurvature and the high-field/good-curvature sides [29].Also,in the simulation the EAST LSN configuration is applied with the× ?Bpoints toward the X-point.

    Figure 1.The simulation domain with its mesh structure (triangular grid for neutral particle,orthogonal grid for ion and electron),as well as Ne seeding and gas pumping locations.

    The boundary conditions in modeling are listed as follows.

    2.1.Core boundary

    The main plasma (D+) density: 3.0 × 1019m?3, while other species are set zero, except for the neon density which has a gas puffing source outside of the core edge.The total power flux from the core to SOL is assumed as =Psol1.5 MW.It is also assumed that the total power flux is divided equally into ions and electrons, i.e.,Psol,e=Psol,i= 0.75 MW.

    2.2.Divertor target

    A standard sheath boundary condition is applied.The sheath heat transmission coefficients are set: =ETe0.9 for electrons and =ETi2.5 for ions.

    2.3.SOL and PFR boundaries

    Figure 2.Profiles of (a) the electron density ne and (b) ion + electron temperatures at OMP with seedings at TP and XP.

    The radial decay lengths for both the electron and ion temperatures are set to be 3 cm.For D+and Ne+1?Ne+10,we use the radial leakage boundary condition with Γa=αa Csa na,where the subscriptais for the ions,C as is the sound speed of the ion species;αis the leakage factor.The leakage condition presents the particles leaking out the boundary (α> 0) or recycling to main plasma as the neutral(α< 0).Here,we setαD= ?0.001for D+, andαNe= ?0.003for Ne ions.

    In order to keep the particle balance in the simulation,we add a pumping effect in the modeling with its position being shown in figure 1.Correspondingly, the recycling coefficient is set to be 1.0 at the boundaries of the D-SOL walls,targets,and dome side of private flux regions, as well as 0.95 at the pumping duct outlet.Since the pumping is mainly for neutrals, the effect is then simulated by Eirene in the region covered by triangular cells.

    3.Simulation results and discussion

    To reveal the effect of impurity seeding locations on D-SOL plasmas, the comparisons between Ne seeding at XP and TP in L modes are made.The Ne seeding rate is5.0 × 1019s?1.The upstream radial profiles of the electron densityne,electron temperatureTe, and ion temperatureTiat OMP are shown in figure 2.It can be seen that, as shown in figure 2(a),compared with the no seeding case, the upstream electron density is raised at a certain position ofr?rSEP,here the subscript‘SEP’stands for‘separatrix’,by the Ne seeding.It is because that some Ne particles transported into the upstream are ionized, resulting in the electron and ion temperatures decreasing.In figure 2(b), one can also find that the ion and electron temperatures are decoupled.It is due to that the ion density is lower than the electron caused by impurity seeding,in this case,Tican be higher thanT.eFurthermore, it is interesting that the electron densities at OMP for two various seeding locations are slightly different, the slope ofnewith seeding at TP is a litter higher than seeding at XP.However,Te,sepandne,sepfor both cases at OMP are almost the same or on the same order of magnitude,which indicates that the both cases have the similar upstream conditions [23].

    Moreover,the upstream profiles of the total neon density and neon ion content by percentage (figure 3(a)), as well as neon ion densities for different charge states at OMP(figure 3(b)), are shown in figure 3.Here, we call neon ions fromNe0?Ne6+as low charge states, and those from Ne7+?Ne10+as high charge states.Then in figure 3(a), it can be seen that the total neon density of the TP case is higher than that of the XP case, with a peak value difference of 6.93 × 1017m?3to8.23 × 1017m?3.The neon content in the TP case is higher than that in the XP case, as increased fromcNe,CEI,XP=1.88%tocNe,CEI,TP=2.13%upstream and fromcNe,SEP,XP=3.55%tocNe,SEP,TP=4.36%downstream,respectively.Also,it is shown in figure 3(b)that the upstream density of the high charge state is much higher than that of the low charge state, due to the high electron temperature upstream.However, thenNeof the TP case at upstream is higher than that of the XP case, due to different features of flows in SOL and PFR regions[15,29].The TP location is in the PFR region,and the most of Ne ions from the TP location move along the magnetic field line to the X-point, and then enter the core boundary and further into the upstream core plasma.Oppositely,the XP location is in the SOL region,and more Ne ions transport along the magnetic field line to the outer target,thus the neon impurities are mostly concentrated in the divertor region.Hence,in order to keep a low impurity concentration in the core plasma,seeding in the XP location is a better option according to our simulation results.

    Figure 4 presents the downstream profile ofne,Te,and the heat load on the outer and inner divertor targets with the two different seeding locations.It can be seen that, with Ne seeding, both targets achieve the partial detachment.However,theneandTepeaks shift to the far SOL region because the vertical shape of the divertor causes a low neutral density, as shown in figure 4 [30].Thus, in the far SOL region,both targets are still in an attached state.On the outer target,Te<5 eV withinr?rSEP<0.01 m for the XP case.For TP case on the other hand, the detachment region is much narrower (r?rSEP<0.001 m).In other words, compared with the TP case,seeding at XP locations has higher density and radiation power loss for the neon impurity.

    Figure 3.(a)The total neon density(solid and dashed curves in teal)and the impurity content(plus and dot curves in olive),(b)the neon ion densities of different charge states at OMP, for seedings at TP and XP respectively.

    Figure 4.The electron density and temperature n e, Te ,and the heat load qtot at the outer(a)and the inner(b)targets,with seedings at XP and TP respectively.

    Furthermore, profiles of the total neon and low charge states densities at the outer target are shown in figure 5, for seedings at two locations respectively, the low charge states are mainly concentrated in the divertor region due to the low electron temperature there.It can be clearly seen that, at the outer target,the total neon density,as well as the low charge states densities of the XP case, is larger than that of the TP case.As learned from these results, for seeding at the XP location, the density and radiation power of the neon are higher, while the electron temperature and the heat load at the target are lower, in comparison with the TP case.

    Figure 5.(a)The total neon density and(b)the neon ion densities of the lower charge states at the outer target,with seedings at TP and XP locations respectively.

    Figure 6.Radiation power density distribution of XP case (a) and TP case (b).

    Table 1.The distribution of radiation power in different regions with seeding at two locations.

    Figure 7.The peak value of (a) electron temperature and (b) heat load at outer target as functions of neon seeding rates.

    The difference in the radiation power between the two seeding location cases is shown in figure 6, where the radiation power dominates the target area since the Ne impurity is concentrated in the divertor region.The radiation power of different regions is listed in table 1.The total power radiation loss of the XP case is about 84.6%, and of the TP case is about 87.6%.The power radiation of the TP case is slightly higher than that of the XP case due to the higher impurity density upstream, which clearly causes a higher radiation power in core and SOL region.

    To further check the influence of seeding locations on the divertor plasma,we also simulate the seeding rate from1019to 1.5 × 1020s?1.The peak values ofTeandqtotat the outer target as functions of the seeding rate are shown in figure 7.It can be seen clearly that, as the seeding rate increases, the peaks ofTeandqtotdecrease;and the peak heat load in the XP case is lower than that in the TP case slightly.It indicates that the difference between two seeding locations is more significant as the seeding rate begins to increase.However,whenTe,peak≤10 eV,the decrease of the peak electron temperature is getting slower as the seeding rate increases,due to the outer target achieving detachment [18, 23].Also, with the rising seeding rate, the peakTeof the two cases at the outer target becomes insignificant.The reason is that in high seeding conditions,the electron temperature variation gets smaller and smaller as the seeding rate rises, due to a deeper and deeper detachment being achieved at the target.

    4.Summary

    The importance of the impurity seeding at different locations and its effect on D-SOL plasma processes has been studied for EAST geometry and parameters, numerically by SOLPSITER code.The simulation results show that the neon impurity seeding is very effective to enhance the radiation power loss, and thus to reduce the temperature and heat load on the divertor target.In the same upstream conditions, the seeding locations have significant effects on both divertor plasmas and upstream profiles.In the divertor region, seedings at the TP and the XP positions can both achieve the partial detachment at the inner and the outer targets, withTe<6 eV at the strike point, though still>10 eV in the far-SOL region.The radiation power loss due to the neon impurity seeding is mainly concentrated in the divertor region in both cases.However, seeding at the XP leads to lower temperature and heat load flux than that for TP in both targets,because the neon density of the XP case is much higher than that of the TP case.As the seeding rate increases, the peak heat load flux at outer target for the XP case is lower than that for the TP case, and the peak temperature variation becomes insignificant.In the upstream region, the electron density profile rises due to the neon impurity seeding, and thus the temperature profile drops.The modeling results show that the neon impurity density is mainly located near the inner LCFS,while the neon content in the core region is still noticeably low (cNe,CEI,TP=2.13%,cNe,CEI,XP=1.88%).Moreover, the impurity density of the TP case is higher than that of the XP case.It indicates that, for seeding at the TP, the neon ions move more easily upstream into the core plasmas.In other words, seeding at the private-flux region (the TP location) is not beneficial for the plasma confinement, especially in high seeding rate conditions.

    Not only is the D-SOL plasma affected by the impurity seeding location, but also the transport coefficients, and the drift in the impurity transport process also plays an important role.Therefore,the impurity transport with different transport coefficients and the influence of drift should be considered and further investigated in future work.

    Acknowledgments

    We would like to express our gratitude to Xavier Bonnin of ITER Organization for the help in the application of the SOLPSITER code.This work was supported by the National Key Research and Development Program (No.2018YFE0303105),National MCF Energy R&D Program(No.2019YFE03080300),and National Natural Science Foundation of China (No.11975087).

    猜你喜歡
    王敏青梅
    Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
    且將蠶豆伴青梅
    青梅煮酒論英雄 下
    Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
    魅力中國(2018年4期)2018-07-30 11:11:44
    夏季養(yǎng)顏“青梅酒”
    Electricity supplier era of packaging design Current Situation and Prospects
    東方教育(2017年1期)2017-04-20 02:52:09
    福建·詔安首季出口青梅制品3 356 t
    自制青梅酒,生津和胃
    自制青梅酒,生津和胃
    Bromate formation in bromide-containing waters irradiated by gamma rays?
    在线av久久热| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 成人av一区二区三区在线看| 黄色a级毛片大全视频| 欧美精品人与动牲交sv欧美| 免费观看人在逋| 国产精品av久久久久免费| 午夜福利,免费看| 黄片小视频在线播放| 一本一本久久a久久精品综合妖精| 亚洲男人天堂网一区| a级片在线免费高清观看视频| 国产精品一区二区精品视频观看| 国产精品99久久99久久久不卡| 女同久久另类99精品国产91| 亚洲欧美激情在线| 热re99久久精品国产66热6| 久久久久久免费高清国产稀缺| 久久久久久久大尺度免费视频| 手机成人av网站| 亚洲三区欧美一区| 欧美日韩黄片免| 18禁观看日本| 99久久人妻综合| 丁香欧美五月| 考比视频在线观看| 一进一出好大好爽视频| 午夜福利,免费看| 国产精品一区二区在线观看99| 欧美变态另类bdsm刘玥| 美女高潮喷水抽搐中文字幕| 亚洲久久久国产精品| 国产精品九九99| 欧美国产精品一级二级三级| 久久午夜综合久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| 怎么达到女性高潮| 国产成人免费无遮挡视频| 亚洲av成人一区二区三| 一本久久精品| 变态另类成人亚洲欧美熟女 | 亚洲情色 制服丝袜| 一级毛片精品| 在线观看舔阴道视频| 国产精品国产高清国产av | 国产精品久久久久久精品古装| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品第一综合不卡| 免费少妇av软件| 午夜福利,免费看| 国产精品一区二区在线观看99| 亚洲精品中文字幕一二三四区 | 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区激情视频| 国产高清视频在线播放一区| 涩涩av久久男人的天堂| 少妇精品久久久久久久| 国产又色又爽无遮挡免费看| 亚洲视频免费观看视频| 19禁男女啪啪无遮挡网站| 极品教师在线免费播放| 国产成人精品无人区| 亚洲av国产av综合av卡| 久久香蕉激情| 亚洲免费av在线视频| 最新在线观看一区二区三区| 中文字幕色久视频| 一本—道久久a久久精品蜜桃钙片| 亚洲第一欧美日韩一区二区三区 | 黄色视频在线播放观看不卡| 黄网站色视频无遮挡免费观看| 飞空精品影院首页| 十八禁高潮呻吟视频| 日韩欧美一区视频在线观看| 亚洲久久久国产精品| 国内毛片毛片毛片毛片毛片| av网站免费在线观看视频| 久久精品亚洲av国产电影网| 日韩一卡2卡3卡4卡2021年| 国产熟女午夜一区二区三区| 亚洲免费av在线视频| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜添小说| 热99国产精品久久久久久7| 亚洲欧美日韩另类电影网站| 91字幕亚洲| 日韩视频在线欧美| 国产精品二区激情视频| 国产男女超爽视频在线观看| 亚洲精品中文字幕一二三四区 | 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 丝瓜视频免费看黄片| 男女无遮挡免费网站观看| 国产精品香港三级国产av潘金莲| 老汉色av国产亚洲站长工具| 99国产综合亚洲精品| 国产精品 国内视频| 操出白浆在线播放| 中文字幕色久视频| 天堂8中文在线网| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费视频日本深夜| 大型黄色视频在线免费观看| 人人妻,人人澡人人爽秒播| 国产av一区二区精品久久| 成年人免费黄色播放视频| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看| 亚洲国产av影院在线观看| 国产人伦9x9x在线观看| av不卡在线播放| 午夜视频精品福利| 久久精品熟女亚洲av麻豆精品| 精品人妻熟女毛片av久久网站| 免费观看人在逋| 日本av免费视频播放| 成人国语在线视频| 脱女人内裤的视频| 欧美精品啪啪一区二区三区| 老司机靠b影院| 日韩 欧美 亚洲 中文字幕| 国产在线视频一区二区| 国产成人精品久久二区二区91| av福利片在线| 黄色丝袜av网址大全| 女人爽到高潮嗷嗷叫在线视频| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 亚洲成人国产一区在线观看| 精品久久久久久久毛片微露脸| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 久久人妻av系列| 欧美 亚洲 国产 日韩一| 国产精品一区二区精品视频观看| 窝窝影院91人妻| 久久 成人 亚洲| 一边摸一边抽搐一进一出视频| 亚洲国产成人一精品久久久| 免费少妇av软件| 成人免费观看视频高清| 久久人妻福利社区极品人妻图片| 亚洲av国产av综合av卡| 99热网站在线观看| 午夜免费鲁丝| 精品福利观看| 久久精品国产a三级三级三级| 国产欧美日韩精品亚洲av| av超薄肉色丝袜交足视频| 日本撒尿小便嘘嘘汇集6| 黄色a级毛片大全视频| 岛国在线观看网站| 91成人精品电影| 蜜桃在线观看..| 亚洲九九香蕉| 波多野结衣一区麻豆| 国产精品欧美亚洲77777| 亚洲av成人一区二区三| 日韩一区二区三区影片| 国产又爽黄色视频| 亚洲精品国产精品久久久不卡| 久久久久久久久久久久大奶| 性少妇av在线| 精品国产乱子伦一区二区三区| 一边摸一边抽搐一进一出视频| 免费看a级黄色片| 国产欧美亚洲国产| 免费看十八禁软件| 大码成人一级视频| 脱女人内裤的视频| 国产视频一区二区在线看| 国产在线一区二区三区精| 欧美激情 高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 美女主播在线视频| 在线播放国产精品三级| 91精品国产国语对白视频| 亚洲成人免费电影在线观看| 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕 | 国产极品粉嫩免费观看在线| 国产人伦9x9x在线观看| 老司机亚洲免费影院| 18禁观看日本| 欧美激情 高清一区二区三区| 国产精品 国内视频| 亚洲第一欧美日韩一区二区三区 | 日韩免费av在线播放| 久久天堂一区二区三区四区| 久久99一区二区三区| 亚洲国产av新网站| 色视频在线一区二区三区| 九色亚洲精品在线播放| 午夜福利视频在线观看免费| 亚洲精品粉嫩美女一区| 99riav亚洲国产免费| av网站在线播放免费| 高清欧美精品videossex| 乱人伦中国视频| 久久久久精品人妻al黑| 超色免费av| 熟女少妇亚洲综合色aaa.| 精品久久久精品久久久| 好男人电影高清在线观看| 深夜精品福利| 国产成人影院久久av| 国产精品久久电影中文字幕 | 色综合欧美亚洲国产小说| 中文字幕av电影在线播放| 一边摸一边做爽爽视频免费| 国产一区有黄有色的免费视频| 久久久水蜜桃国产精品网| 久久性视频一级片| 多毛熟女@视频| www日本在线高清视频| 色在线成人网| 天天添夜夜摸| 亚洲人成电影免费在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲五月色婷婷综合| av欧美777| 大型av网站在线播放| 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| 老熟女久久久| 国产在线免费精品| 欧美精品一区二区免费开放| 国产男女内射视频| www日本在线高清视频| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 别揉我奶头~嗯~啊~动态视频| av天堂久久9| 亚洲五月色婷婷综合| 考比视频在线观看| 亚洲精华国产精华精| 免费久久久久久久精品成人欧美视频| 欧美精品啪啪一区二区三区| 午夜福利视频在线观看免费| 黄色视频,在线免费观看| 中文字幕人妻熟女乱码| 国产精品一区二区在线不卡| 五月天丁香电影| 少妇精品久久久久久久| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 色视频在线一区二区三区| 亚洲熟女毛片儿| 热99久久久久精品小说推荐| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 国产亚洲精品一区二区www | 中文字幕制服av| 精品人妻在线不人妻| 91av网站免费观看| 色婷婷av一区二区三区视频| 啦啦啦中文免费视频观看日本| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| 极品教师在线免费播放| 国产麻豆69| 大片免费播放器 马上看| videos熟女内射| 国产有黄有色有爽视频| 国产精品秋霞免费鲁丝片| 少妇猛男粗大的猛烈进出视频| 韩国精品一区二区三区| av有码第一页| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 999久久久精品免费观看国产| 久久久精品免费免费高清| 18在线观看网站| 黑人猛操日本美女一级片| 麻豆成人av在线观看| 国产伦理片在线播放av一区| 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| 欧美激情久久久久久爽电影 | 另类亚洲欧美激情| 母亲3免费完整高清在线观看| www.精华液| 一本大道久久a久久精品| 一个人免费看片子| cao死你这个sao货| 老司机福利观看| 变态另类成人亚洲欧美熟女 | 精品福利观看| 91麻豆精品激情在线观看国产 | 热re99久久精品国产66热6| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频| 在线观看免费高清a一片| 十八禁高潮呻吟视频| 日本a在线网址| √禁漫天堂资源中文www| 在线观看www视频免费| 国产精品九九99| 少妇的丰满在线观看| 国产老妇伦熟女老妇高清| 亚洲男人天堂网一区| 黄色片一级片一级黄色片| 成人永久免费在线观看视频 | 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 视频区欧美日本亚洲| 老司机午夜福利在线观看视频 | 久久久欧美国产精品| 亚洲熟女精品中文字幕| 中文字幕高清在线视频| 丁香欧美五月| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| 久久久久久久国产电影| 欧美激情高清一区二区三区| 国产成人啪精品午夜网站| 国产精品免费视频内射| 欧美日本中文国产一区发布| 午夜老司机福利片| 欧美性长视频在线观看| 国产91精品成人一区二区三区 | 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 精品欧美一区二区三区在线| 黄色成人免费大全| 中文字幕人妻丝袜一区二区| 午夜老司机福利片| 国产精品熟女久久久久浪| 国产精品免费一区二区三区在线 | 精品国产一区二区三区久久久樱花| av又黄又爽大尺度在线免费看| 侵犯人妻中文字幕一二三四区| 一本一本久久a久久精品综合妖精| 99久久国产精品久久久| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 成人手机av| 美国免费a级毛片| 久久精品aⅴ一区二区三区四区| 99香蕉大伊视频| 又黄又粗又硬又大视频| 宅男免费午夜| 精品国产一区二区久久| 欧美日韩av久久| 黄色视频不卡| 久久久久国产一级毛片高清牌| 丰满饥渴人妻一区二区三| 国产成人精品在线电影| 国产精品 欧美亚洲| 日韩免费av在线播放| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 国产精品久久久av美女十八| 日本av免费视频播放| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 最新在线观看一区二区三区| 一级a爱视频在线免费观看| 大香蕉久久网| 欧美一级毛片孕妇| 999精品在线视频| 男女免费视频国产| 色视频在线一区二区三区| 丁香六月天网| 久久性视频一级片| 国产在视频线精品| 1024香蕉在线观看| aaaaa片日本免费| a级毛片黄视频| 日韩精品免费视频一区二区三区| 国产精品自产拍在线观看55亚洲 | 久久免费观看电影| 国产精品一区二区在线不卡| 中国美女看黄片| 国产精品自产拍在线观看55亚洲 | 欧美精品av麻豆av| 国产精品一区二区精品视频观看| 久久久久精品人妻al黑| 狂野欧美激情性xxxx| 在线观看www视频免费| 亚洲av日韩在线播放| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 亚洲久久久国产精品| 国产成人啪精品午夜网站| 男人舔女人的私密视频| 亚洲av日韩在线播放| 看免费av毛片| 精品视频人人做人人爽| 亚洲人成电影免费在线| 国产精品国产高清国产av | 五月开心婷婷网| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 美女福利国产在线| 亚洲第一青青草原| bbb黄色大片| 97人妻天天添夜夜摸| 亚洲中文av在线| 欧美大码av| 91成人精品电影| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 亚洲黑人精品在线| av国产精品久久久久影院| 国产高清激情床上av| av片东京热男人的天堂| 亚洲欧美精品综合一区二区三区| 国产精品一区二区在线观看99| 777米奇影视久久| 三上悠亚av全集在线观看| 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 国产一卡二卡三卡精品| 亚洲国产av影院在线观看| 黄色视频在线播放观看不卡| 国产亚洲欧美在线一区二区| 欧美国产精品一级二级三级| 极品少妇高潮喷水抽搐| 久久九九热精品免费| 水蜜桃什么品种好| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 一个人免费看片子| 欧美日韩一级在线毛片| 亚洲精品成人av观看孕妇| 亚洲av第一区精品v没综合| bbb黄色大片| 女同久久另类99精品国产91| 天堂中文最新版在线下载| 午夜免费鲁丝| 久久精品国产亚洲av香蕉五月 | 法律面前人人平等表现在哪些方面| 国产野战对白在线观看| 成人手机av| 亚洲专区国产一区二区| 成在线人永久免费视频| 人人妻人人添人人爽欧美一区卜| av欧美777| 成人国语在线视频| 日韩欧美国产一区二区入口| 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 91九色精品人成在线观看| 亚洲熟妇熟女久久| av天堂久久9| 人妻 亚洲 视频| 狂野欧美激情性xxxx| av天堂在线播放| 亚洲国产av新网站| 成人国产一区最新在线观看| 香蕉国产在线看| 亚洲色图av天堂| 中文字幕另类日韩欧美亚洲嫩草| av国产精品久久久久影院| 亚洲第一青青草原| 国产激情久久老熟女| 国产精品麻豆人妻色哟哟久久| 亚洲国产av影院在线观看| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 老司机在亚洲福利影院| 亚洲精品中文字幕一二三四区 | 性高湖久久久久久久久免费观看| 国产日韩一区二区三区精品不卡| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产免费现黄频在线看| 我的亚洲天堂| 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕 | 黑人巨大精品欧美一区二区mp4| 免费观看av网站的网址| netflix在线观看网站| 五月开心婷婷网| 午夜成年电影在线免费观看| 欧美在线黄色| 18禁裸乳无遮挡动漫免费视频| 99国产极品粉嫩在线观看| 日本一区二区免费在线视频| 国产高清视频在线播放一区| 久久香蕉激情| 欧美日韩黄片免| 超色免费av| 激情视频va一区二区三区| 丝袜人妻中文字幕| 少妇 在线观看| 电影成人av| 久热爱精品视频在线9| 久久久久久久精品吃奶| 99国产精品一区二区三区| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区免费| 大香蕉久久网| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 国产精品一区二区在线不卡| 他把我摸到了高潮在线观看 | av视频免费观看在线观看| 多毛熟女@视频| 欧美黑人精品巨大| 国产亚洲午夜精品一区二区久久| 男女无遮挡免费网站观看| 91麻豆av在线| 韩国精品一区二区三区| 黄色片一级片一级黄色片| 蜜桃国产av成人99| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 成人手机av| 999久久久精品免费观看国产| 久久精品亚洲av国产电影网| 一区二区三区激情视频| 日韩大码丰满熟妇| 动漫黄色视频在线观看| 青草久久国产| 婷婷成人精品国产| 男人操女人黄网站| 成人av一区二区三区在线看| 制服诱惑二区| 老司机靠b影院| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久精品免费观看国产| 国产色视频综合| 久久婷婷成人综合色麻豆| 久9热在线精品视频| 美女视频免费永久观看网站| 最黄视频免费看| 午夜视频精品福利| 女警被强在线播放| 99久久人妻综合| av片东京热男人的天堂| 波多野结衣av一区二区av| 成人三级做爰电影| av在线播放免费不卡| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线 | 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 99热国产这里只有精品6| av线在线观看网站| 国产单亲对白刺激| avwww免费| 色尼玛亚洲综合影院| 1024香蕉在线观看| 天堂8中文在线网| 国产精品九九99| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 一本大道久久a久久精品| 国产福利在线免费观看视频| 欧美日韩av久久| 大香蕉久久成人网| 久久久久久久大尺度免费视频| 午夜老司机福利片| 国产精品麻豆人妻色哟哟久久| www.精华液| 欧美黄色片欧美黄色片| 色视频在线一区二区三区| 国产亚洲欧美在线一区二区| 搡老熟女国产l中国老女人| 满18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 亚洲精品在线美女| 99热国产这里只有精品6| 亚洲美女黄片视频| 国产激情久久老熟女| 亚洲,欧美精品.| 丁香六月欧美| 精品国产一区二区三区久久久樱花| av不卡在线播放| 国产精品 国内视频| 精品一区二区三区视频在线观看免费 | 日本撒尿小便嘘嘘汇集6| 亚洲欧美色中文字幕在线| 亚洲国产中文字幕在线视频| 久久av网站| 亚洲av成人一区二区三| 91av网站免费观看| 国产精品99久久99久久久不卡| 亚洲色图 男人天堂 中文字幕| 国产精品影院久久| 久久精品国产99精品国产亚洲性色 | www日本在线高清视频| 中国美女看黄片| 中文字幕制服av| 十分钟在线观看高清视频www| 精品一品国产午夜福利视频|