• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of asymmetric rolling process on the microstructure,mechanical properties and texture of AZ31 magnesium alloys sheets produced by twin roll casting technique

    2014-04-21 02:16:58OzgurDuygulu
    Journal of Magnesium and Alloys 2014年1期

    Ozgur Duygulu

    aTU¨B˙ITAK Marmara Research Center,Materials Institute,Gebze,Kocaeli,Turkey

    bYildiz Technical University,Faculty of Chemical and Metallurgical Engineering,Department of Metallurgy and Materials Engineering,

    34210 Esenler, ˙Istanbul,Turkey

    Effect of asymmetric rolling process on the microstructure,mechanical properties and texture of AZ31 magnesium alloys sheets produced by twin roll casting technique

    Selda Ucuncuoglua,*,Ahmet Ekerimb,Gizem Oktay Secgina,Ozgur Duygulua

    aTU¨B˙ITAK Marmara Research Center,Materials Institute,Gebze,Kocaeli,Turkey

    bYildiz Technical University,Faculty of Chemical and Metallurgical Engineering,Department of Metallurgy and Materials Engineering,

    34210 Esenler, ˙Istanbul,Turkey

    Symmetric rolling(SR)and asymmetric rolling(ASR)processes were carried out on 6 mm thick AZ31 magnesium alloy sheets that were produced by twin roll casting(TRC)technique.Before rolling processes,sheets were heat treated in order to obtain a homogenized microstructure.In this study,for the ASR process the rolling speed ratio between upper roller and lower was selected as 1.25.Both SR and ASR processes were utilized with 40%reduction per passes using 2 pass schedule for a total reduction ratio of 0.67.Symmetric and asymmetric rolled sheets were characterized using optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM) techniques.Texture measurements were performed by using X-ray diffraction(XRD)technique and mechanical properties were investigated by tensile tests and also hardness measurements.

    Asymmetric rolling(ASR);AZ31 magnesium alloy;Texture;Twin roll casting

    1.Introduction

    Magnesium alloys have potential as structural materials due to their excellent properties such as low densities,high specif i c strength,high specif i c stiffness,good castability and machinability,low heat content per unit of volume,high damping capacity and good electromagnetic(EMI)shielding.They are therefore very attractive in applications in electronic,transportation(automotive,railway,aerospace and space)and defense industries where the mass reduction is an important issue [1-4].The use of Mg as a sheet is very limited.The most common magnesium alloy sheet(AZ31 Mg alloy)is produced by rolling of DC(Direct Chill)cast ingots.Conventional magnesium sheet production has a lot of steps such as melting, ingot,homogenization,milling,heating,hot rolling(multiheating),warm rolling(multi-heating),cold rolling and f i nish annealing.This multi-step process is not cost-effective in terms of time and energy.However,the demand for decreasing the magnesium sheet prices is high and can be met through twin roll casting[5,6].The TRC is the most economical process,with investment costs that are 1/3 to 1/4 of the conventional Mg sheet production process[7-9].

    In the last 10-20 years,a lot of companies,institutes and universities produced magnesium alloy sheets as laboratory scaleusingTRC technology[8,10-25].Moreover,M. Masoumiet et al.[26,27],D.Choo et al.[28]and B.Engl[29] et al.investigated the effect of thermomechanical processing on the microstructure and texture of TRC-AZ31 magnesium alloy sheets.They observed that the TRC structure is responsible for the texture alteration upon annealing.Magnesium alloys have poor formability and limited ductility at room temperature because of hexagonal close-packed(HCP) crystal structure and low stacking fault energy[30].Mg alloys only have three independent active slip systems at basal plane. Whereas,according to Taylor criterion at least f i ve independent slip systems are required to achieve homogeneous ductility[31].The microstructure and mechanical properties of Mg alloys are highly dependent on their severe plastic deformation processes such as,equal channel angular extrusion(ECAE),equal channel angular pressing(ECAP),accumulative roll-bonding(ARB),asymmetric rolling(ASR),cross rolling,high pressure torsion(HPT),etc.[32].Above all, asymmetric rolling is expected to improve the grain ref i nement,mechanical properties and formability[33-38].Press formability is strongly affected by the texture and it can be improved by ASR as a consequence of reduction of basal texture intensity.It is important to improve the formability at low temperatures for a wide use of the wrought Mg alloy sheets by changing or weakening the basal texture[39,40].In asymmetric rolling(ASR)process,the circumferential velocities of the upper and lower rolls are different so shear deformation can be applied throughout the thickness of the sheets [41-44].The changes in deformation mode from thickness reduction to shear deformation can change the texture from{0002}texture to other components,and redundant shear deformation can reduce the grain size effectively[45].

    In the present work,effect of ASR process on microstructure and texture of an industrial scale AZ31 magnesium alloy sheet produced by twin roll casting technique was investigated.The result of asymmetric rolling process on microstructure and texture was compared with the results of symmetric rolling process.The TRC magnesium alloy sheets used in this study were produced on an industrial scale and 1500 mm wide magnesium alloy AZ31 sheets of 6 mm thickness have been successfully cast[46-50].

    2.Experimental

    The twin roll casting(TRC)system used had a gas-f i red chamber furnace with a maximum melting capacity of approximately 3200 kg magnesium.Water-cooled steel twin-rolls of 1600 mm wide and 1125 mm diameter with 15°tilt angle were used.The system has a pinch roll unit,a cross-cut shear and a coiler.1500 mm wide magnesium alloy AZ31 sheets of 6 mm thickness have been successfully cast[46-50]. The alloy composition is given in Table 1.The composition well f i ts to the ASTM and ISO standards[1].In the present work,the TRC AZ31 magnesium alloy sheets were used for symmetric rolling and asymmetric rolling processes.

    Table 1The chemical composition of TRC magnesium alloy sheet obtained by optical emission spectrometer(mass content,%).

    Fig.1.Schematic pictures of SR and ASR processes.

    Before rolling processes,sheets were heat treated.Homogenization conditions were set as follows:sheets were heated to 425°C for 6 h and then cooled to room temperature in air.After homogenization,sheets have been symmetrically and asymmetrically rolled using a laboratory scale rolling mill.Schematic views of symmetric and asymmetric rolling processes were given in Fig.1;and Table 2 gives the rolling conditions for symmetric rolling(SR)and asymmetric rolling (ASR).Before rolling processes,the sheets were f i rstly heat treated for 30 min at 350°C.For the ASR process the rolling speed ratio between upper and lower rollers was selected as 1.25.Both SR and ASR processes with 40%reduction per passes using 2 pass schedule for a total reduction ratio of 0.67 were utilized and the rolling processes were performed at 300°C.A thermocouple is used to measure the temperature.

    The microstructure examination of the as-cast,homogenized and as-rolled sheets was performed using optical microscopy(OM).Rolled sheets were also compared by using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).

    For optical microscopy,the samples were cold mounted in epoxy and polished starting with SiC paper,followed by 3 and 1 μ diamond slurries and colloidal silica.The specimens were etched in an acetic picral acid solution(4.2 g picric acid,10 mlacetic acid,70 ml ethanol,10 ml water)for 5 s and they were washed with and rinsed in ethanol.Specimens were investigated with a Nikon L150 light microscope in plan view and cross sectional views.According to ASTM E112-96 standard, the Heyn LinealInterceptprocedurewasapplied for measuring the size of the grains[51].In this method,a standard line was drawn and the number of grains intercepted by this line was counted.Upon obtaining at least 50 intercepts, the total line length was divided by the number of intercepts in order to obtain the lineal intercept grain size,d.

    Table 2Rolling conditions of asymmetric and symmetric rolling processes.

    Fig.2.Tension test specimen(dimensions are in mm).

    Scanning electron microscopy(SEM)observations were carried out using a JEOL JSM-6335-F FEG.For transmission electron microscopy(TEM)studies,specimens were cut,3 mm diameterdiscswerepunchedandgroundtoathicknesslessthan 60 μm.PunchedspecimensweredimplegroundwithGatan656 Dimple Grinder.Specimens were ion polished f i rst at 3 kVand afterperforationat1kVwithGatan691PrecisionIonPolishing System(PIPS).The foils were examined with a JEOL JEM 2100 HRTEM with a LaB6f i lament operated at 200 kV.

    Texture measurements were performed by PANalytical X’Pert Pro operated at 45 kVand 40 mA after specimens were polished to third quarters of sheet thickness.Texture pole f i gures were determined by normalization with X’Pert Texture Version 1.1a software.

    To investigate the mechanical properties of the materials,a Zwick Z250 universal testing device was used.For homogenized condition samples were machined with tensile axis parallel to the rolling direction(RD)with a gage section of 50 mm length and 12.5 mm width.After ASR and SR processes the specimens with 20 mm gage,50 mm length and 4 mm width were cut along planes coinciding with the rolling direction(Fig.2).Vickers microhardness measurements were performed with a 200 g applied load with a Zwick ZHV10 device and the average hardness value was calculated from at least f i ve test readings.

    3.Results and discussions

    Fig.3.Plan view microstructures of(a)as-cast and(b)after homogenization at 425°C for 6 h,(c)symmetric rolled and(d)asymmetric rolled AZ31 magnesium alloy sheets.

    In this study,Fig.3 shows plan view microstructures of ascast condition,after homogenization heat treatment,symmetrically rolled and asymmetrically rolled AZ31 magnesium alloy sheets.In the as-cast condition,a dendritic structurewhich is in between die-casting structure and semi-solid casting structure was observed.Although dendritic boundaries were not very clear,the dendritic grain size was measured as approximately 200 μm and secondary dendrite arm spacing(SDAS)was measured as around 15 μm.To obtain a homogenized microstructure,sheets were heat treated at 425°C for 6 h before asymmetric and symmetric rolling processes.

    Recently,many studies about ASR process have been carried out.Watanabe et al.[38]used asymmetric rolling,in which the ratio of the circumferential velocities of the upper and lower rolls was 1.25 with the same roll diameter,to produce the AZ31 sheets with grain sizes of 11-12 μm.Some improvement in tensile elongation from 9%to 15%was achieved.S.H.Kim et al.[52]showed that asymmetric rolling,in which the ratio of the upper roll diameter to the lower roll diameter was 1.5 with the same revolutions per minute, reduced the intensity of the basal texture.Also Lee et al.[53] tried to investigate the ASR process effects on microstructure, texture and formability of AZ31 Mg sheet.As a result of the study they observed that the average grain sizes were about 38 μm for asymmetrically rolled sample and 50 μm forsymmetrically rolled sample.In their study,to evaluate the formability of both AZ31 Mg alloy sheet,the Erichsen test was used.The Erichsen value was measured to be 8.1 for asymmetrically rolled sample and 5.6 for symmetrically rolled sample.This means that asymmetric rolling process predominant method to improve its plastic anisotropy tendency.W.J. Kim et al.[54]reported that by applying a high ratio of the circumferential velocities between the upper and lower rolls in asymmetrical rolling,a very f i ne grain size of 1.4 μm could be achieved after a single pass of 70%thickness reduction.Basal f i ber texture was notably weakened during the rolling.The rolled sheets exhibited high yield stresses over 300 MPa and a maximum elongation of 35%.

    Fig.4.SEM pictures,TEM pictures and selected area electron diffraction(SAED)patterns of symmetrically and asymmetrically rolled AZ31 magnesium alloy sheets.

    Chang et al.[55,56]investigated about ASR processing of a laboratory scale magnesium alloy sheets produced by TRC technique.They used AM31 magnesium alloy.The chemical compositionsof thestripAM31alloywas Mg-2.7% Al-0.97%Mn(wt.%),respectively.After asymmetric rolling process,in which the ratio of the upper roll diameter to the lower roll diameter was 1.2 and 1.5,the elongation of the TRC-AM31 alloys was improved to be 17-19%.After investigation the pole f i gures they reported that maximum pole intensity of the ASR(Rs:1.2-1.5)processed sheets was 10.15 and 13.61,the intensity of the SR processed sheet was 14.76. The mean grain size of the annealed SR-processed sheet was 7.3 μm,while the ASR(Rs=1.2,1.5)processed sheets showed grain size of 6.9 μm and 4.9 μm,respectively.After the study,they reported that texture characteristics had great inf l uence on the evolution of microstructure and texture during the subsequent rolling and annealing process.Strength and ductility was improved by TRC combined with ASR due to grain ref i ning,inclination of basal poles and weakened texture.

    In the present study,after homogenization,the eutectic phases dissolve,equiaxed grain structure was formed and the grain size was ref i ned to 19 μm.For symmetrically rolled sample,the average grain size was achieved as 10 μm and for asymmetrically rolled sample it was observed as 0.7 μm.SEM and TEM pictures of asymmetrically and symmetrically rolled sheets were given in Fig.4.Selected area electron diffraction (SAED)patterns of symmetrically and asymmetrically rolled AZ31 magnesium alloy sheets were also presented.SAED pattern of ASR sheet indicates a spreading of the diffracted beams relative to the SAED pattern of the SR sheet which is evidence of grain ref i nement and larger boundary misorientations by ASR.

    (0002)and(1010)pole f i gures of the commercially available AZ31 1 mm and 2 mm sheets,asymmetrically and symmetrically rolled AZ31 magnesium alloys sheets were given in Fig.5.Symmetric rolling generally gives rise to a strong basal texture,which exhibits low press formability at near room temperature because the basal slip systems hardly become active.This induces the high normal anisotropy in sheet and increases the diff i culty in deformation accompanied with thickness reduction,and consequently leads to a very limited formability near room temperature[57].Therefore,it is important to change or weaken the basal texture for enhancing the formability.ASR is a processing carried out at different rotation speeds for upper and lower rolls so that intense shear deformation can be introduced throughout the sheet thickness,which can result in grain ref i nement and change in texture[58].

    It is known that generally,the symmetrically rolled sample tends to show peak inclined to the rolling direction but the asymmetrically rolled sample tends to show peak slightly inclined to the transverse direction because large shear strain is introduced during asymmetric process,comparing to symmetric process[53].In this study,when the pole f i gures of both asymmetrically and symmetrically rolled AZ31 magnesium sheets investigated,it was found that this effect is less pronounced compared to the literature.They showed peak inclined to the transverse direction and this result can explained that the initial plate used in both rolling processes ismanufactured by the TRC technique.However,as expected, the texture intensities were decreased after asymmetric rolling process.

    Fig.5.(0002)and(1010)pole f i gures of the(a)commercially available AZ31 1 mm sheet,(b)commercially available AZ31 2 mm sheet,(c)symmetrically rolled AZ31 2 mm sheet and(d)asymmetrically rolled AZ31 2 mm sheet.

    Fig.6.Tensile test curves for after homogenization at 425°C for 6 h,asymmetrically and symmetrically rolled AZ31 magnesium alloy sheets.

    The reduction of(0002)texture intensity and grain size after ASR is also expected to lower yield stress and higher elongation values[52,53].However,in this study,it was determined that the mechanical test results of asymmetrically and symmetrically rolled sheets were almost the same.AZ31 homogenized sheet,SR and ASR processed sheets detailed tensile test curves and corresponding results were given in Fig.6 and Table 3.Despite the grain size improvement,lack of change in mechanical properties can be explained that the sheets used for rolling process produced by twin roll strip casting technology as well.Moreover,it should be noted that the samples used in this study were industrial scale sheets and the center line segregation and surface segregation may affect the mechanical properties.The reason also can be related with the long range inhomogeneous microstructure of the twin roll casted AZ31 magnesium alloy sheet that was used for the rolling processes.

    Table 4 shows micro Vickers hardness measurement results from plan view surfaces of asymmetrically and symmetrically rolled and also homogenized Mg alloy sheets.Asymmetrically rolled Mg AZ31 alloy has the highest hardness,with ahardness value of 78HV.Whereas,the hardness value of symmetrical rolled sheet is lower.

    Table 3Tensile test results for after homogenization at 425°C for 6 h,asymmetrically and symmetrically rolled AZ31 magnesium alloy sheets.

    Table 4Hardness measurements results of as asymmetrically and symmetrically rolled and homogenized magnesium AZ31 alloy sheets(HV-200 g).

    Also,the tensile test results and hardness measurements of the homogenized sheets after rolling processes were given in Tables 3 and 4.As shown in Table 3,there are no signif i cant differences for tensile test results after homogenization treatment of ASR and SR processed sheets.However,when the homogenization was applied,it was seen that all the hardness values dropped.

    4.Conclusion

    TRC-AZ31 alloys were heat treated to 425°C for 6 h and then cooled to room temperature in air.After homogenization, sheets have been symmetrically and asymmetrically rolled at a warm temperature of 300°C.Before rolling processes,the sheets were f i rstly heat treated for 30 min at 350°C.For the ASR process the rolling speed ratio between upper and lower rollers was selected as 1.25.Microstructures,textures and mechanical properties of the rolled AZ31 sheets were examined.The results are summarized as follows:

    (1)After microstructural investigation,the mean grain size of the homogenized TRC-AZ31 alloy sheet was calculated as 19 μm,while,for symmetrically rolled sample,the average grain size was observed as 10 μm and for asymmetrically rolled sample it was achieved as 0.7 μm.

    (2)When the pole f i gures were examined,as expected,it was foundthatthebasaltextureintensityofbothasymmetrically and symmetrically rolled sheets were reduced compared to conventional rolling.According to texture studies,the maximum pole intensity values were 17.424,16.231 and 10.052 for commercially available AZ31 1 mm sheet, commerciallyavailableAZ312mmsheetandSRprocessed sheetrespectively.However,minimumvalueof9.490could be achieved for the ASR processed TRC-AZ31 alloy sheet.

    (3)The reduction of(0002)texture intensity and grain size after ASR is also expected to lower yield stress and higher elongation values.However,in this study it was determined that the mechanical test results of asymmetrically and symmetrically rolled sheets were almost the same. Despite the grain size improvement,lack of change in mechanical properties can be explained that the sheetsused for rolling process produced by twin roll strip casting technology as well.Moreover,it should be noted that the samples used in this study were industrial scale sheets and the center line segregation and surface segregation may affect the mechanical properties.The reason also can be related with the long range inhomogeneous microstructure of the twin roll casted AZ31 magnesium alloy sheet that was used for the rolling processes.

    [1]M.M.Avedesian,H.Baker,Magnesium and Magnesium Alloys,ASM Specialty Handbook,Ohio,1999.

    [2]E.F.Emley,Principles of Magnesium Technology,Pergamon,Oxford, 1966.

    [3]E.Beck,The Technology of Magnesium and its Alloys,Hughes,F.A., and Co.Limited,London,1943.

    [4]K.U.Kainer,F.V.Buch,The Current State of Technology and Potential for Further Development of Magnesium Applications,in:K.U.Kainer (Ed.),Magnesium Alloys and Technology,Wiley-VCH,2003.

    [5]F.Moll,M.Mekkaoui,S.Schumann,H.Friedrich,in:6th International Conference Magnesium Alloys and Their Applications,2003,pp. 936-942.

    [6]P.P.Ding,B.Jiang,J.Wang,F.Pan,Mater.Sci.Forum 546-549(2007) 361-364.

    [7]D.R.Herling,J.A.Carpenter,P.S.Sklad,FY2005 Progress Report for Automotive Lightweighting Materials,US Department of Energy,2005.

    [8]H.Watari,T.Haga,N.Koga,K.Davey,J.Mater.Process.Technol. 192-193(2007)300-305.

    [9]D.Liang,C.B.Cowley,JOM 56(2004)26-28.

    [10]D.H.St John,Adv.Mater.Res.29/30(2007)3-8.

    [11]S.S.Park,J.G.Lee,H.C.Lee,N.J.Kim,Magnesium Technology 2004, TMS,Charlotte,North Carolina,2004,pp.14-182.

    [12]S.S.Park,Y.M.Kim,D.H.Kang,N.J.Kim,Mater.Sci.Forum 475/479 (2005)457-462.

    [13]S.S.Park,G.T.Bae,J.G.Lee,D.H.Kang,K.S.Shin,N.J.Kim,Mater. Sci.Forum 539/543(2007)119-126.

    [14]S.B.Kang,H.Chen,H.W.Kim,J.H.Cho,Magnesium Technology 2008, TMS,New Orleans,Louisiana,2008,pp.147-152.

    [15]R.Kawalla,M.Oswald,C.Schmidt,M.Ullmann,H.P.Vogt, N.D.Cuong,Magnesium Technology 2008,TMS,New Orleans,Louisiana,2008,pp.177-182.

    [16]F.W.Bach,M.Rodman,A.Rossberg,Adv.Mater.Res.6/8(2005) 665-672.

    [17]B.Engl,Berlin,in:62nd Annual World Magnesium Conference,2005, pp.27-34.

    [18]R.Kawalla,M.Oswald,C.Schmidt,M.Ullmann,H.P.Vogt, N.D.Cuong,Metalurgija 47(3)(2008)195-198.

    [19]Y.Nakauray,K.Ohori,Mater.Sci.Forum 488/489(2005)419-426.

    [20]H.Watari,K.Davey,M.T.Rasgado,T.Haga,S.Izawa,J.Mater.Process. Technol.155/156(2004)1662-1667.

    [21]T.Haga,H.Watari,S.Kumai,J.Achiev.Manuf.Eng.15(1/2)(2006) 186-192.

    [22]H.Watari,T.Haga,K.Davey,N.Kogan,T.Yamazaki,J.Achiev.Manuf. Eng.16(1/2)(2006)171-175.

    [23]H.Watari,T.Haga,Y.Shibue,K.Davey,N.Koga,J.Achiev.Manuf. Eng.18(1/2)(2006)419-422.

    [24]H.Watari,T.Haga,R.Paisarn,N.Koga,K.Davey,Key Eng.Mater.345/ 346(2007)165-168.

    [25]H.Watari,R.Paisarn,T.Haga,K.Noda,K.Davey,N.Koga,J.Achiev. Mater.Manuf.Eng.20(1/2)(2007)515-518.

    [26]M.Masoumi,F.Zarandi,M.Pekguleryuz,Mater.Sci.Eng.,A 528(2011) 1268-1279.

    [27]M.Masoumi,F.Zarandi,M.O.Pekguleryuz,Scr.Mater.62(2010) 823-826.

    [28]D.Choo,I.H.Jung,W.Bang,I.J.Kim,H.J.Sung,W.J.Park,S.Ahn, S.W.Choi,S.E.Lee,W.Su,S.H.Cho,Mass Production Technology of Mg Coil by Strip Casting and Coil Rolling Process in POSCO-RIST,in: International Magnesium Association IMA World Magnesium Conference,2007.

    [29]B.Engl,Light Metal Age(2005)14-19.

    [30]J.C.Tan,M.J.Tan,Mater.Sci.Eng.,A 339(2003)124-132.

    [31]J.Koike,R.Ohyama,T.Kobayashi,M.Suzuki,K.Maruyama,Mater. Trans.44(4)(2003)445-451.

    [32]H.Somekawa,H.Hosokawa,H.Watanebe,Mater.Sci.Eng.,A 339 (2003)328-333.

    [33]W.J.Kim,et al.,Scr.Mater.60(2009)897-900.

    [34]Y.H.Ji,J.Park,Mater.Sci.Eng.,A 485(2008)299-304.

    [35]X.Gong,S.B.Kang,S.Li,J.H.Cho,Mater.Des.30(2009)3345-3350.

    [36]B.Beausir,S.Biswas,D.Kim,L.Toth,S.Suwas,Acta Mater.57(2009) 5061-5077.

    [37]X.Gong,L.Hao,S.B.Kang,J.H.Cho,S.Li,Mater.Des.31(2010) 1581-15877.

    [38]J.H.Cho,H.M.Chen,S.H.Choi,H.W.Kim,S.B.Kang,Metall.Mater. Trans.A 41(2010)2575-2583.

    [39]E.Yukutake,J.Kaneko,M.Sugamata,Mater.Trans.44(2003)452.

    [40]K.Iwanaga,H.Tashiro,H.Okamoto,K.Shimizu,J.Mater.Process. Technol.155/156(2004)1313-1316.

    [41]S.H.Lee,D.N.Lee,Int.J.Mech.Sci.43(2001)1997.

    [42]K.H.Kim,D.N.Lee,Acta Mater.49(2001)2583-2595.

    [43]S.H.Kim,J.K.Lee,D.N.Lee,Ultraf i ne Grained Materials,TMS,USA, 2002,pp.55-63.

    [44]S.H.Kim,J.H.Ryu,K.H.Kim,D.N.Lee,Mater.Sci.Res.Int.8 (2002)20.

    [45]T.Imai,S.Dong,N.Saito,I.Shigemastu,Magnesium Technology,TMS, USA,2004,pp.91-96.

    [46]A.A.Kaya,O.Duygulu,S.Ucuncuoglu,G.Oktay,D.S.Temur,O.Yucel, Trans.Nonferrous Met.Soc.China 18(2008)185-188.

    [47]O.Duygulu,S.Ucuncuoglu,G.Oktay,O.Yu¨cel,A.A.Kaya,26-29 October 2009,in:K.U.Kainer(Ed.),Proceeding Book of 8th International Conference on Magnesium Alloys and their Applications,Wiley-VCH,Weimar,Germany,2009,pp.531-537.

    [48]O.Duygulu,S.Ucuncuoglu,G.Oktay,D.S.Temur,O.Yu¨cel,A.A.Kaya, in:Eric A.Nyberg,Sean R.Agnew,Neale R.Neelameggham,Mihriban O.Pekguleryuz(Eds.),Magnesium Technology 2009,TMS(The Minerals,Metals&Materials Society),San Francisco,CA,USA,February 2009,pp.379-384.

    [49]O.Duygulu,S.Ucuncuoglu,G.Oktay,D.S.Temur,O.Yu¨cel,A.A.Kaya, in:Eric A.Nyberg,Sean R.Agnew,Neale R.Neelameggham,Mihriban O.Pekguleryuz(Eds.),Magnesium Technology 2009,TMS(The Minerals,Metals&Materials Society),San Francisco,CA,USA,February 2009,pp.385-390.

    [50]A.A.Kaya,O.Duygulu,O.Yu¨cel,D.Eliezer,Mater.Sci.Forum 546-549(2007)233-236.

    [51]R.F.Allen,Metals Test Methods and Analytical Procedures,in:Annual Book of ASTM Standards,2001.Philadelphia,PA.

    [52]S.H.Kim,B.S.You,C.D.Yim,Y.M.Seo,Mater.Lett.59(2005) 3876-3880.

    [53]J.S.Lee,H.T.Son,Y.K.Kim,K.Y.Lee,H.M.Kim,I.H.Oh,Key Eng. Mater.345-346(2007)77-80.

    [54]W.J.Kim,J.B.Lee,W.Y.Kim,H.T.Jeong,H.G.Jeong,Scr.Mater.56 (2007)309-312.

    [55]L.L.Chang,J.H.Cho,S.K.Kang,Mater.Des.34(2012)746-752.

    [56]L.L.Chang,S.B.Kang,J.H.Cho,Mater.Des.44(2013)144-148.

    [57]H.Watanabe,T.Mukai,K.Ishikawa,J.Mater.Sci.39(2004) 1477-1480.

    [58]H.Zhao,L.J.He,P.J.Li,Trans.Nonferrous Met.Soc.China 21(2011) 2372-2377.

    Received 18 November 2013;accepted 12 February 2014 Available online 27 March 2014

    *Corresponding author.

    E-mail addresses:selda.ucuncuoglu@tubitak.gov.tr,seldaucuncuoglu@hotmail.com (S.Ucuncuoglu).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.02.001.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    18禁观看日本| 一级片'在线观看视频| 黄色片一级片一级黄色片| 欧美黑人精品巨大| 欧美av亚洲av综合av国产av| 精品亚洲成a人片在线观看| 80岁老熟妇乱子伦牲交| a 毛片基地| 久久久久久免费高清国产稀缺| av在线app专区| 国产主播在线观看一区二区 | 一区二区三区四区激情视频| 丁香六月欧美| 亚洲自偷自拍图片 自拍| 久久 成人 亚洲| www.精华液| 婷婷丁香在线五月| 欧美少妇被猛烈插入视频| 我的亚洲天堂| 美女国产高潮福利片在线看| 欧美国产精品va在线观看不卡| 亚洲精品日本国产第一区| 成年av动漫网址| 999精品在线视频| 国产野战对白在线观看| 热re99久久精品国产66热6| 婷婷成人精品国产| 国产真人三级小视频在线观看| 国产伦理片在线播放av一区| 成年美女黄网站色视频大全免费| 又大又爽又粗| 成人国产av品久久久| 久久青草综合色| 午夜91福利影院| 少妇 在线观看| 男人舔女人的私密视频| 亚洲成人国产一区在线观看 | 午夜福利影视在线免费观看| 久久久久久免费高清国产稀缺| 少妇粗大呻吟视频| 美女中出高潮动态图| 国产欧美日韩精品亚洲av| 中文字幕人妻丝袜制服| 波多野结衣一区麻豆| 中文字幕色久视频| 精品卡一卡二卡四卡免费| 欧美日韩精品网址| 无遮挡黄片免费观看| 国产高清视频在线播放一区 | 又大又黄又爽视频免费| 校园人妻丝袜中文字幕| 秋霞在线观看毛片| 亚洲专区中文字幕在线| 国产欧美日韩一区二区三 | 日本91视频免费播放| 午夜免费观看性视频| 国产三级黄色录像| 中文欧美无线码| 91麻豆av在线| 亚洲国产最新在线播放| 久久久久久人人人人人| 国产91精品成人一区二区三区 | 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 国产亚洲精品第一综合不卡| 精品亚洲成国产av| 天天影视国产精品| 国产亚洲精品第一综合不卡| 亚洲国产毛片av蜜桃av| 国产精品久久久av美女十八| 丝袜在线中文字幕| 少妇 在线观看| 一二三四在线观看免费中文在| 欧美av亚洲av综合av国产av| 性高湖久久久久久久久免费观看| 天天添夜夜摸| 国产免费福利视频在线观看| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 男人爽女人下面视频在线观看| 91字幕亚洲| 一本一本久久a久久精品综合妖精| 精品福利永久在线观看| 日本一区二区免费在线视频| 成人影院久久| 欧美人与性动交α欧美软件| 每晚都被弄得嗷嗷叫到高潮| 韩国精品一区二区三区| 国产精品一区二区精品视频观看| av国产久精品久网站免费入址| 99久久99久久久精品蜜桃| 高清不卡的av网站| 少妇猛男粗大的猛烈进出视频| 高清不卡的av网站| 中文字幕最新亚洲高清| 久久国产精品人妻蜜桃| 99久久精品国产亚洲精品| 欧美日本中文国产一区发布| 手机成人av网站| 国产亚洲欧美精品永久| 日韩av免费高清视频| 免费不卡黄色视频| 国产色视频综合| 一级片免费观看大全| 性高湖久久久久久久久免费观看| 无遮挡黄片免费观看| a 毛片基地| 国精品久久久久久国模美| 亚洲,一卡二卡三卡| 日日夜夜操网爽| 国产免费一区二区三区四区乱码| 国产精品99久久99久久久不卡| 嫩草影视91久久| 久久国产精品男人的天堂亚洲| av有码第一页| 日韩av在线免费看完整版不卡| 久久这里只有精品19| 黑人猛操日本美女一级片| 人妻人人澡人人爽人人| 欧美亚洲日本最大视频资源| 日本91视频免费播放| 丰满少妇做爰视频| 亚洲久久久国产精品| 老熟女久久久| 中文乱码字字幕精品一区二区三区| 国产成人啪精品午夜网站| 老鸭窝网址在线观看| 国产精品国产av在线观看| 女人久久www免费人成看片| 超色免费av| 两人在一起打扑克的视频| 男女国产视频网站| 一边摸一边抽搐一进一出视频| av线在线观看网站| 看免费成人av毛片| 午夜av观看不卡| 高清av免费在线| 黄色毛片三级朝国网站| 欧美成人午夜精品| 国产欧美日韩一区二区三 | 老司机在亚洲福利影院| 777久久人妻少妇嫩草av网站| 好男人视频免费观看在线| 一本色道久久久久久精品综合| 777米奇影视久久| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 亚洲av综合色区一区| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 亚洲国产精品一区三区| 亚洲精品成人av观看孕妇| 免费黄频网站在线观看国产| 色网站视频免费| 久久精品久久久久久噜噜老黄| 成人18禁高潮啪啪吃奶动态图| 精品久久久精品久久久| 久久青草综合色| 亚洲av男天堂| av在线播放精品| svipshipincom国产片| 国产欧美日韩综合在线一区二区| 欧美精品av麻豆av| 中文乱码字字幕精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 性高湖久久久久久久久免费观看| 视频区图区小说| 免费在线观看日本一区| 婷婷色av中文字幕| 国产精品国产av在线观看| 亚洲七黄色美女视频| 最黄视频免费看| 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 日本欧美视频一区| 黑丝袜美女国产一区| 亚洲五月婷婷丁香| 成人国产av品久久久| 欧美人与性动交α欧美软件| 欧美成狂野欧美在线观看| 亚洲av日韩在线播放| 国产一区二区三区av在线| 国产视频首页在线观看| 汤姆久久久久久久影院中文字幕| 久久天堂一区二区三区四区| 美女午夜性视频免费| 亚洲 国产 在线| 久久久精品区二区三区| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 日本色播在线视频| 真人做人爱边吃奶动态| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| bbb黄色大片| 黄色a级毛片大全视频| 激情视频va一区二区三区| 免费看不卡的av| 亚洲av日韩在线播放| 女人精品久久久久毛片| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 国产伦理片在线播放av一区| 国产熟女午夜一区二区三区| 中文字幕色久视频| 精品一区二区三区四区五区乱码 | 亚洲 国产 在线| 亚洲一区中文字幕在线| 性高湖久久久久久久久免费观看| 欧美在线一区亚洲| 一区二区三区四区激情视频| 美女中出高潮动态图| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| 一个人免费看片子| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 精品一品国产午夜福利视频| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说| 免费在线观看完整版高清| 女警被强在线播放| 丰满饥渴人妻一区二区三| 宅男免费午夜| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 欧美日韩综合久久久久久| 日韩av免费高清视频| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| av在线播放精品| 精品国产一区二区三区四区第35| 亚洲美女黄色视频免费看| 色播在线永久视频| 在线观看免费视频网站a站| 亚洲天堂av无毛| 老司机深夜福利视频在线观看 | 久久天堂一区二区三区四区| 亚洲精品乱久久久久久| 久久久久久久国产电影| 又大又爽又粗| 黄色怎么调成土黄色| 国产在线免费精品| 亚洲久久久国产精品| 国产伦理片在线播放av一区| 高清视频免费观看一区二区| 午夜激情久久久久久久| 大片免费播放器 马上看| 91麻豆av在线| 大陆偷拍与自拍| 国产福利在线免费观看视频| 美女中出高潮动态图| 午夜福利乱码中文字幕| 国产精品久久久人人做人人爽| 亚洲伊人色综图| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 黄色一级大片看看| 免费女性裸体啪啪无遮挡网站| 视频在线观看一区二区三区| 久久精品久久久久久噜噜老黄| 欧美中文综合在线视频| 一本久久精品| 女人被躁到高潮嗷嗷叫费观| 国产一卡二卡三卡精品| 国产成人精品久久二区二区91| 午夜av观看不卡| 国产精品三级大全| 精品国产国语对白av| 国产91精品成人一区二区三区 | cao死你这个sao货| xxxhd国产人妻xxx| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 99国产综合亚洲精品| 少妇人妻久久综合中文| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 国产欧美亚洲国产| 欧美日韩视频精品一区| 2018国产大陆天天弄谢| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 久久久久网色| 自线自在国产av| 免费在线观看完整版高清| 欧美日韩综合久久久久久| 亚洲五月婷婷丁香| 日韩伦理黄色片| 成人影院久久| a级毛片黄视频| 亚洲少妇的诱惑av| 女人被躁到高潮嗷嗷叫费观| 久久久精品免费免费高清| 日韩,欧美,国产一区二区三区| 国产成人精品久久二区二区91| 亚洲五月婷婷丁香| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 亚洲情色 制服丝袜| 国产老妇伦熟女老妇高清| 国产日韩欧美亚洲二区| 色94色欧美一区二区| 久9热在线精品视频| 少妇猛男粗大的猛烈进出视频| 国产精品久久久人人做人人爽| 日韩中文字幕视频在线看片| 一个人免费看片子| 国产97色在线日韩免费| av线在线观看网站| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 成人手机av| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| av国产精品久久久久影院| 国产不卡av网站在线观看| 久久久国产一区二区| videos熟女内射| 免费在线观看黄色视频的| 性色av一级| 天天躁夜夜躁狠狠久久av| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| 深夜精品福利| 午夜免费鲁丝| 捣出白浆h1v1| 亚洲精品av麻豆狂野| 国产成人一区二区在线| 久久国产精品人妻蜜桃| 亚洲视频免费观看视频| 在线观看国产h片| 日韩精品免费视频一区二区三区| 2018国产大陆天天弄谢| avwww免费| xxx大片免费视频| 精品亚洲成a人片在线观看| 黄色片一级片一级黄色片| 亚洲国产欧美日韩在线播放| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 久久精品久久久久久噜噜老黄| 美女视频免费永久观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜视频精品福利| 女警被强在线播放| 亚洲av在线观看美女高潮| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 最黄视频免费看| 婷婷成人精品国产| 啦啦啦在线观看免费高清www| 国产亚洲精品第一综合不卡| 性少妇av在线| 亚洲av在线观看美女高潮| 国产成人av教育| 亚洲专区中文字幕在线| 国产麻豆69| 亚洲图色成人| 七月丁香在线播放| 国产一区有黄有色的免费视频| 少妇人妻久久综合中文| 无遮挡黄片免费观看| 午夜老司机福利片| 国产日韩欧美亚洲二区| 中文字幕色久视频| 国产淫语在线视频| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 2021少妇久久久久久久久久久| 丰满饥渴人妻一区二区三| 1024香蕉在线观看| 天天躁夜夜躁狠狠久久av| av一本久久久久| 美国免费a级毛片| 搡老岳熟女国产| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 男女午夜视频在线观看| 亚洲人成电影观看| 亚洲av片天天在线观看| 亚洲第一av免费看| 久久中文字幕一级| 少妇的丰满在线观看| 人妻人人澡人人爽人人| 一个人免费看片子| 99国产综合亚洲精品| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 精品少妇内射三级| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| 国语对白做爰xxxⅹ性视频网站| 丁香六月天网| 美女大奶头黄色视频| 久久ye,这里只有精品| 啦啦啦啦在线视频资源| 大香蕉久久网| 最新在线观看一区二区三区 | 久久久精品区二区三区| 国产免费现黄频在线看| 日韩大片免费观看网站| 亚洲精品一卡2卡三卡4卡5卡 | 一级毛片女人18水好多 | 欧美精品一区二区免费开放| 欧美日韩av久久| 国产男女超爽视频在线观看| 久久青草综合色| 精品视频人人做人人爽| 七月丁香在线播放| 免费看av在线观看网站| 亚洲精品美女久久久久99蜜臀 | 日韩一区二区三区影片| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 我要看黄色一级片免费的| 99国产精品免费福利视频| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 国产av国产精品国产| 亚洲av美国av| 丰满人妻熟妇乱又伦精品不卡| 午夜影院在线不卡| 美女主播在线视频| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| 午夜日韩欧美国产| www.999成人在线观看| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 一本久久精品| 国产精品二区激情视频| 国产精品成人在线| 一区二区三区四区激情视频| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 国产精品一区二区免费欧美 | www.精华液| 嫩草影视91久久| 日韩av在线免费看完整版不卡| 丝袜美足系列| 国产精品国产av在线观看| 热re99久久国产66热| 久久国产精品男人的天堂亚洲| 亚洲色图 男人天堂 中文字幕| 五月天丁香电影| www.av在线官网国产| 男女边吃奶边做爰视频| 乱人伦中国视频| 在线观看免费日韩欧美大片| av不卡在线播放| 男女床上黄色一级片免费看| 精品第一国产精品| 日韩视频在线欧美| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 嫁个100分男人电影在线观看 | 大话2 男鬼变身卡| 国产免费一区二区三区四区乱码| 国产在线免费精品| 脱女人内裤的视频| 十八禁网站网址无遮挡| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 91麻豆av在线| 天天影视国产精品| 七月丁香在线播放| www.自偷自拍.com| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 捣出白浆h1v1| 高潮久久久久久久久久久不卡| 欧美在线黄色| 搡老乐熟女国产| 久久精品人人爽人人爽视色| 久久精品国产综合久久久| 亚洲一码二码三码区别大吗| 蜜桃国产av成人99| 可以免费在线观看a视频的电影网站| 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 一级,二级,三级黄色视频| 欧美日韩av久久| 纵有疾风起免费观看全集完整版| 悠悠久久av| 日韩中文字幕视频在线看片| 欧美黄色淫秽网站| 国产不卡av网站在线观看| 午夜福利视频精品| 一级片免费观看大全| 女人被躁到高潮嗷嗷叫费观| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 91九色精品人成在线观看| 亚洲精品日韩在线中文字幕| 18禁观看日本| 爱豆传媒免费全集在线观看| 亚洲,欧美,日韩| 无限看片的www在线观看| 日韩av在线免费看完整版不卡| 侵犯人妻中文字幕一二三四区| 国产黄色免费在线视频| 伊人久久大香线蕉亚洲五| 国产男女内射视频| 久久久欧美国产精品| 青春草亚洲视频在线观看| 在线精品无人区一区二区三| 久久精品亚洲熟妇少妇任你| 波多野结衣一区麻豆| 免费少妇av软件| 国产高清国产精品国产三级| 99国产综合亚洲精品| 亚洲欧美激情在线| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久人人做人人爽| 精品少妇内射三级| 中国美女看黄片| 人人妻,人人澡人人爽秒播 | 国产免费又黄又爽又色| 高潮久久久久久久久久久不卡| 亚洲欧美精品自产自拍| 另类精品久久| 啦啦啦在线观看免费高清www| 捣出白浆h1v1| 欧美日韩精品网址| 精品国产一区二区久久| 国产又色又爽无遮挡免| 一区二区三区乱码不卡18| 国产精品偷伦视频观看了| 午夜福利视频在线观看免费| 欧美久久黑人一区二区| 中文字幕另类日韩欧美亚洲嫩草| 激情视频va一区二区三区| 久久久久视频综合| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 黄色片一级片一级黄色片| 亚洲人成网站在线观看播放| 精品国产国语对白av| 久久99精品国语久久久| av在线老鸭窝| 日日夜夜操网爽| 人成视频在线观看免费观看| 国产深夜福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜制服| 晚上一个人看的免费电影| 熟女少妇亚洲综合色aaa.| 亚洲av日韩精品久久久久久密 | www.av在线官网国产| 欧美精品亚洲一区二区| 国产成人91sexporn| 1024香蕉在线观看| 国产精品久久久久成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 日日夜夜操网爽| 国产成人精品久久二区二区91| 亚洲 国产 在线| 黑人猛操日本美女一级片| 亚洲av电影在线进入| 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| 亚洲男人天堂网一区| 国产精品熟女久久久久浪| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 美国免费a级毛片| 欧美人与性动交α欧美精品济南到| 欧美黑人精品巨大| 99九九在线精品视频| 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 欧美乱码精品一区二区三区| 免费观看a级毛片全部| 午夜福利一区二区在线看| 午夜91福利影院| 波多野结衣一区麻豆| 赤兔流量卡办理| 老司机深夜福利视频在线观看 | 青青草视频在线视频观看| 精品福利永久在线观看| 国产爽快片一区二区三区| 久久久久精品国产欧美久久久 | 中国美女看黄片| 国产精品久久久av美女十八| 一区二区三区四区激情视频| 电影成人av| 精品亚洲乱码少妇综合久久| 亚洲精品久久午夜乱码| 1024视频免费在线观看|