• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the behavior of magnesium and CO vapor in the carbothermic reduction of magnesia in a vacuum☆

    2014-04-21 02:16:49,
    Journal of Magnesium and Alloys 2014年1期

    ,

    aNational Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093,China

    bKey Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province,Kunming 650093,China

    cState Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Clear Utilization in Yunnan Province,Kunming 650093,China

    Analysis of the behavior of magnesium and CO vapor in the carbothermic reduction of magnesia in a vacuum☆

    Cheng-bo Yanga,b,c,Yang Tiana,b,c,*,Tao Qua,b,c,Bin Yanga,b,c,Bao-qiang Xua,b,c, Yong-nian Daia,b,c

    aNational Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093,China

    bKey Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province,Kunming 650093,China

    cState Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Clear Utilization in Yunnan Province,Kunming 650093,China

    The aim of this paper is to experimentally investigate the behavior of magnesium and carbon monoxide vapor in the carbothermic reduction of magnesia at condensing zone temperatures ranging from 923 K to 1223 K.The phase,surface morphology,and composition of the condensates obtained were examined by means of scanning electron microscopy and energy-dispersive X-ray spectroscopy.The main f i ndings of this paper include:the reverse reaction products,carbon and magnesium oxide,were formed following the process of magnesium vapor condensation,preventing two metal clusters from mutually combining.Moreover,the nearer the temperature of the condensation zone approached the liquid transformation temperature(810-910 K),the lower the rate of the reverse reaction between carbon monoxide and magnesium vapor.Decrease in the rate of the reverse reaction of magnesium was possible by controlling the condensation temperature.

    Carbon monoxide;Magnesium vapor;Carbothermic reduction;Condensation;Vacuum

    1.Introduction

    Carbothermal reduction has been recognized as conceptually the simplest and cleanest route to produce magnesium metal[1].Winand[2]f i rst discussed the process of producing magnesium vapor through the reduction of magnesia by carbon;however,the experimental conditions and condenser setup necessary to condense the vapor into liquid or solid magnesium were not elucidated.Various experiments to obtain magnesium by carbothermal reduction have failed due to clogging [3].Direct extraction of magnesium from magnesia by carbothermic reduction in a vacuum has been extensively studied[4,5].Such a process requires less energy than previous methods and economically more eff i cient,but the products obtained have a poor crystalline morphology and the method cannot easily be adapted to large-scale industrialization[6].And most of the researchers believed that thedevelopments on the condensation of magnesium produced by carbothermic reduction just concentrated on two process routes:the “quench”route and the “solvent”route[7].Among signif i cant improvements in this f i eld,the work by CSIRO successfully demonstrated a technology that used supersonic quenching of magnesium vapor(the MagSonic? process), resulting in rapid coagulation of magnesium vapor,and reduced magnesium vapor and CO responses[8,9].We have also explored the carbothermic reduction of magnesia in vacuum for many years[10,11],and rather than “quench” or“solvent” route additional process is needed and we aim to directly get the qualif i ed product from condenser located inside the vacuum chamber through control condensation requirement.While we speculate that reversion reactions between magnesium vapor and CO are unavoidable[12], there is still no way of knowing the role of uncoagulable CO vapor in the carbothermic reduction of magnesia,as well as the products of the reverse reaction.In this work,we aim to control the phase transition and formation of magnesium crystals in a vacuum system by a new type of condenser and reduce the rate of the reverse reaction simultaneously.Reports on such topics are scarce and this study is undertaken to bridge these gaps in the literature.

    2.Theoretical analysis

    The rate at which nucleation occurs is related to the chemical makeup of the critical nucleus and the gas concentration of the nucleating species is an important variable in nucleation of vapor in vacuum condensation.Nucleation from the vapor phase is homomolecular when a single type of gas is involved in the formation of a critical nucleus and heteromolecular when several types of gases are involved in the formation of a critical nucleus[13].In the absence of existing heterogeneities, homomolecular nucleation requires an extremely high supersaturation.Magnesium vapor cluster formation is closely linked with the gas phase reaction because the abundances required for nucleation to occur are achieved through a gradual increase in concentration of the nucleating vapors produced from carbothermic reduction[14].

    Under a vacuum pressure of 60 Pa,a number of possible reversion reactions can take place during cooling of an Mg/ CO/inert gas mixture.

    Gas phase reversion reaction:

    Liquid phase reversion reaction:

    Solid phase reversion reaction:

    Fig.1.Free energy changes related to the temperature of reactions(1)-(3)at 60 Pa.

    The Gibbs free energy reactions(1)-(3)at different temperatures and pressures were evaluated,and the results are reported in Fig.1.Thermodynamically,these reversion reactions were exothermic;the gas phase reversion will commence as soon as a saturated gas mixture was cooled. When magnesium steam enters the condensation area,so long as the condensation temperature on the temperature of magnesium gas-liquid transition is controlled,the reverse reaction should be decreased because the reaction between CO and liquid-magnesium is harder than solid phase reaction.After the vapor liquefaction,magnesium vapor will nucleate in the liquid phase and bulk magnesium with large grain size will be obtained.This indicates a means to fundamentally solve the effective consolidation of f i ne powders in the carbon thermal reduction process.

    2.1.Gas-liquid phase transitions

    The dew-point temperature is def i ned as the temperature when the pressure of metal vapor produced by the reaction of different reduction temperatures is equal to the saturated vapor pressure of pure metal[15].

    For the carbothermic reduction of magnesia,that is,the following reaction:

    The relationship between the different reduction temperatures and partial pressures of magnesium vapor can be obtained using Eqs.(1a)and(2a)shown below:

    where ΔG0is Gibbs free energy,PMgis the partial pressure of magnesium vapor andTis the reduction temperature.

    The saturated vapor pressure of magnesium can be calculated using Eqs.(3a)and(4)[14]:

    whereP*is the saturated vapor pressure of magnesium andTis the temperature.

    Fig.2 indicates the relationship between the saturated vapor pressure and partial pressure;the pressure increases with increasingT.The partial pressure of magnesium vapor exceeds that of the saturated gas at higher evaporation temperatures, increasing the likelihood of a reunion of magnesium atoms through collisions,which is benef i cial to the condensed nucleation of magnesium atomsandmagnesium vapor condensation.

    Fig.3 indicates the relationship between the minimum condensation temperature(Tmin)and the dew-point temperature.In Fig.3,increasing the partial pressure also increases the dew-point temperature,which partly ref l ects the minimum temperature necessary for magnesium vapor crystals to nucleate and grow in the liquid phase.

    2.2.The possible gas-liquid phase transition

    The lifetime of cluster is extremely short,but since a dramatically large number of clusters form and dissociate at any time,a few can reach the critical size and continue to grow spontaneously to form larger particles[16,19].From an energetic perspective,the free energy of cluster formation increases with cluster size prior to but decreases after the critical nucleus,reaching a maximal value at the critical size[17,20]. Hence,the critical nucleus can be identif i ed if the free energy surface leading to liquid nucleation growth is available[18].

    Fig.2.Relationship between the saturated vapor pressure and the partial pressure.

    Fig.3.Relationship between Tminand the dew-point temperature.

    Based on the uniform nucleation theory,which affected by the surface tension,resulted in the liquid nucleus of globularity shapes.According to Kelvin’s formula,different metals have different critical nucleation radii[15],which can be determined by Eq.(5)with respect tork,

    where σlvis the coeff i cient of surface tension,Mis the relative atomic weight, ρ is density,Ris Boltzmann constant,Tis temperature,prandp0are the vapor pressure of the curved surface and the vapor pressure of the surface,respectively.

    The number of nucleation atomic in liquid metalNcan be calculated according to the following expression:

    whererkis the critical nucleation radius that we have obtained by Eq.(5),NAis Avogadro constant.

    As Table 1 shows,on the basis of analyzing the relationship between surface tension and temperature,respectively,we got the relationship betweenTandrk,rkandN.When magnesium vapor is in the stage of condensation,the heat exchanging between vapor and walls occurs simultaneously,magnesium vapor is being saturated gradually while the temperature of system decreases.Then reach the advantageous conditions for the formation of liquid nucleus.The number of atoms needed for nucleation will gradually decrease with the gradual increase in the supersaturation of magnesium vapor.From Table1,it is known that the critical radius of the liquid core decreases with the increasing condensing temperature and nucleation requires fewer atoms.When the temperature was close to 810 K,the liquid nucleation radius of magnesium vapor reaches a minimum.According to related references [15],if there is condensation when nucleation,the metal vapor would coagulate at relatively lower saturated degree.So through above analysis,under our vacuum experimental conditions,as long as the condensation is controlled at the right temperature,the magnesium vapor approached to nucleation and growth from liquid phase was possible.

    Table 1Critical radius and number of atoms contained in critical f l uid core at different temperatures.

    3.Experimental

    Materials were vacuum distilled using an internally heated vacuum furnace(Fig 4a).Comparative experiments were done with constant magnesium vapor concentration of 1 and varying CO mole ratio from 1/4 to 3/4,and these processes could be achieved by double evaporation apparatus,in which the top reaction crucible controlled the CO concentration through raw material ratios,and the lower Mg sublimation crucible controlled the rest of magnesium vapor concentration by evaporating pure magnesium,thus maintaining the overall magnesium vapor concentration at 1.

    The longitudinal section of the multistage condenser is shown in Fig.4b.The temperature gradient between evaporation area and the f i rst condensation area of the multi-level condensing collection devices was ΔT1=7 K/mm,temperature gradient between the f i rst level and the second was ΔT2=6 K/mm,temperature gradient between the second level and the third was ΔT3=0.5 K/mm,and temperature gradient between the third level and the last was ΔT4=0.3 K/mm.

    Inf l uences of condensation temperature,temperature gradient and the partial pressure of magnesium vapor on the metal magnesium condensation were investigated. Fig.5(a)-(d),respectively,indicates the collection eff i ciency of the four condensation layers withTminat 923,1023,1123, and 1223 K.The results ref l ect the ability of the condensing layer with different temperatures to catch magnesium steam at different condensate temperatures.The higher the evaporation temperature of metal magnesium,the larger energy the magnesium steam will carry when running into the condenser. Thus,a moderate temperature gradient eases the phase transition from gas → liquid → solid.As shown in Fig.5,with increased condensation temperature,the magnesium collection ratio is increased.At the maximum collection ratio level,the condensation temperature is relatively closer to the gas-liquid transition temperature and the temperature gradient also decreases compared to the former layer.The closer the condensation temperature is to the gas-liquid phase transition temperature and the smaller the temperature gradient is,the smaller the probability of reaction between magnesium and CO.Thus,magnesium vapor condensation through liquid phase transformation is easier and a higher quality of condensed magnesium is obtained.

    4.Results and discussion

    We compared the results of the condensates of magnesium vapor at the same condensing condition.Fig.6 shows scanning electron microscopy(SEM)micrographs of magnesium vapor condensates collected in the third condenser level whenTmin=923 K at a magnesium vapor concentration of 1.Fig.7shows SEM micrographs of condensed products collected in the third condenser level whenTmin=923 K at a magnesium vapor concentration 1 and CO mole ratio of 1/2.

    Fig.4.The experimental equipment:(a)schematic diagram of vacuum furnace;and(b)the longitudinal section of the multistage condenser.

    Fig.5.The collection ratio of the four condensation layers at different Tmin:(a),Tmin=923 K;(b),Tmin=1023 K;(c),Tmin=1123 K;(d),Tmin=1223 K.

    Fig.7 shows irregular shaped condensation products with a non-compact structure that features numerous small openings where carbon can be seen.In contrast,distillation products in Fig.6 show irregular shapes with a compact structure and good crystallinity.

    Fig.6.SEMimagesofcondensatesofpuremagnesiumwhenTmin=923Katamagnesiumvaporconcentrationof1:(a)magnif i ed30times;and(b)magnif i ed200times.

    Fig.7.SEM image of condensed products when Tmin=923 K at a magnesium vapor concentration of 1 and CO mole ratio of 1/2:(a)magnif i ed 30 times;and(b) magnif i ed 200 times.

    Loosely crystallized magnesium in Fig.7 was due to the carbon and magnesia produced by the reverse reaction.The carbon and magnesia obtained by the reverse reaction block the aggregation of nucleating vapors and prevent coalescence, thereby decreasing the rates of magnesium nucleation and crystal growth.Analysis of the difference in vapor condensation between pure magnesium vapor and a combination of CO and magnesium vapors showed that uncoagulable CO vapor decreases the partial pressure and concentration of magnesium vapor above the condensation surface,decreases the rate of collisions and nucleation between magnesium atoms,shortens the mean free path of magnesium atoms,and is involved in the reaction of magnesium vapor.Large and thermodynamically stable clusters formed during a nucleation event must grow quickly so that they are not scavenged by coagulation through collisions with existing larger particles.While the uncoagulable CO vapor,as an existing heterogeneity,could be helpful for nucleation at extremely low supersaturation;the nucleated magnesium vapor clusters were covered with the reverse reaction products of C and MgO such that two clusters are prevented from combining mutually.

    4.1.Inf l uence of condensation temperature and the temperature gradient on the reverse reaction

    Metal magnesium with different crystal morphologies and impurity contents were obtained from the 1st to 4th layer of the multi-level condenser when the minimum outer layer temperatures(Tmin)of the condenser were held at 923,1023, 1123,and 1223 K,respectively,at an average vacuum pressure of 60 Pa.We found that at differentTmin,the nearer the temperature of the condensation zone approached the temperature of liquid transition,the lower the rate of the reverse reaction between CO and magnesium vapor;this observation was in accordance with the theoretical analysis.Figs.8 and 9 show X-ray diffraction(XRD)results and SEM images, respectively,of the condensates from the 1st to the 4th condensation level whenTmin=923 K at a CO mole ratio of 3/4.Fig.8 shows that the intensities of the XRD peaks for magnesium increased with decreasing condensation temperature and difference in temperature gradient.The intensities of the XRD peaks for magnesium oxide showed marked changes,i.e.,the intensity of diffraction peaks of magnesium oxide signif i cantly decreased in the f i rst layer of the condenser,which had the largest temperature gradient,and then almost completely disappeared in the third layer of the condenser,where the condensation temperature approached the liquid transition temperature and the peaks of magnesium increased sharply.

    Fig.8.XRD pattern of the condensed products when Tmin=923 K at magnesium vapor concentration of 1 and CO mole ratio of 3/4 from the 1st level to the 4th level(from top to bottom).

    Fig.9.SEM images of the condensed products when Tmin=923 K at magnesium concentration of 1 and CO mole ratio of 3/4 from 1st level to the 4th level(a-d): (a)1st level;(b)2nd level;(c)3rd level;and(d)4th level.

    As shown in Fig.9,the crystal morphologies and impurity contents of magnesium crystals varied with decreasing condensation temperature and gradient.In the f i rst layer, where a large amount of heat exchange and heat loss occurs because of the large gradient,magnesium vapor crossed the liquid phase and directly condensed into solid powder.Thus, we obtained f l ocked magnesium,which has a higher degree of oxidation.We can see from Fig.10 that something like a f l ocking substance was the product of the reverse reaction of magnesium.Bulk magnesium began to appear in the second condensation layer,but some f l ocking f l oe products remained. We obtained the best condensation products from the third layer.The phenomenon of supersaturation steaming through liquid phase uniform growth was even more apparent after the liquid-gas phase transformation,forming clear crystal boundaries and compact structures without obvious oxidation.Bulk magnesium was still obtained,but it was oxidized by CO in the last layer.And some similar results were obtained after comparing the results of others at differentTmin.

    Fig.10.SEM images of f l ocked substances in the condensed products:(a)magnif i ed 2000 times;and(b)magnif i ed 10,000 times.

    Fig.11.SEM image of the condensed products when Tmin=923 K at a magnesium vapor concentration of 1 and CO mole ratio of 1/4 from 1st level to the 4th level (a-d):(a)1st level;(b)2nd level;(c)3rd level;and(d),4th level.

    Thus,control of the condensation temperature and the gradient in the condensation zone tends to change the rate of the reverse reaction of magnesium.

    4.2.Inf l uence of the vapor partial pressure on the reverse reaction

    After conf i rming that the condensation temperature and gradient may decrease the rate of the reverse reaction,we tested the effect of the partial pressure on the condensation of CO and magnesium vapors.Keeping the magnesium vapor concentration constant at 1,decreasing the concentration of CO increased the corresponding partial pressure of magnesium in the condensation system.In contrast to Fig.9,Fig.11 shows SEM images of the condensates from the f i rst to the fourth condensation levels at the sameTminbut different CO mole ratios.

    From the results obtained,we found that the morphology of magnesium crystals signif i cantly changed from irregular growth with rough interfaces to regular growth with large, fused clusters as the magnesium vaporconcentration increased.The oxidation rate decreased with increasing crystallization quality.The increase in concentration improves the partial pressure of magnesium steam on the condensing surface.Thus reduced the likelihood of collisions between magnesium steam and carbon monoxide atoms.Consequently,the oxidation rate decreases to yield higher-purity crystallized magnesium.

    5.Conclusion

    (1)At a vacuum pressure of 60 Pa,after the oversaturation of magnesium vapor,the likelihood that available magnesium atoms will collide with each other and agglomerate increases.If magnesium vapor condenses at temperature lower than those that pass the liquid phase,it will directly condense to the solid phase.

    (2)The quality of condensed magnesium was associated with the concentration of CO.Under the appropriate condensation temperature and temperature gradient conditions, increasing the magnesium vapor concentration could decrease the rate of the reverse reaction of magnesium. This phenomenon explains why we obtained products witha decentralized structure and low metal luster.Thus,a method to separate the magnesium vapor from the carbon monoxide must be determined.Such a method could be a key to obtain a better crystalline structure.

    (3)Controlling the temperature of the condensation zone at 810-910 K such that it approaches the temperature of liquid transition and setting a smaller temperature gradient at ΔT3=0.5 K/mm not only decreases heat loss but also increases the liquid nucleation rate and improves the magnesium steam concentration.Consequently,crystal quality was also improved.Moreover,it helps to avoid rapid solidif i cation while extending the fusion time of the magnesium clusters.

    [1]International Magnesium Association,Years 2012 Primary Magnesium Production[EB],2013.http://www.intlmag.org.

    [2]R.Winand,Trans.Inst.Min.Met.(1990)105-111.

    [3]G.Brooks,S.Trang,P.Witt,M.H.Khan,M.Nagle,JOM 58(5)(2006) 51-55.

    [4]Z.H.Li,Y.N.Dai,H.S.Xue,Nonferrous Met.57(1)(2005)56-59(in Chinese).

    [5]Q.C.Yu,B.Yang,W.H.Ma,Z.H.Li,Y.N.Dai,Chin.J.Vac.Sci. Technol.29(5)(2009)68-71(in Chinese).

    [6]Q.C.Yu,B.Yang,Xu B.Q.,Liu D.C.,Li Z.H.,Dai Y.N.,in:Proceedings of the Ninth Vacuum Metallurgy and Surface Engineering Conference, 2009,pp.428-433.

    [7]H.P.Leon,W.N.Michael,R.D.Timothy,T.Steven,T.Benny,J.Peter, K.Keri,in:TMS2012,2012,pp.31-34.

    [8]L.Prentice,N.Haque,in:IMA 67th Annual World Magnesium Conference of International Magnesium Association Hong Kong,PRC,2010, pp.77-82.

    [9]Benny T.Kuan,Peter J.Witt,Chem.Eng.Sci.14(2013)23-39.

    [10]F.L.Zhu,H.B.Yuan,Q.C.Yu,B.Yang,B.Q.Xu,Y.N.Dai,Trans. Nonferrous Met.Soc.China.21(2011)1855-1859.

    [11]Y.Tian,H.X.Liu,B.Yang,T.Qu,Y.N.Dai,B.Q.Xu,S.Geng,Metall. Trans.B 43(2012)657-661.

    [12]Y.Tian,H.X.Liu,B.Yang,T.Qu,Y.N.Dai,J.Vac.Sci.Technol.33 (2013)920-924(in chinese).

    [13]D.Kashchiev,Nucleation:Basic Theory with Applications,Butterworths-Heinemann Press,,Oxford,2000,p.p.37.

    [14]L.Prentice,in:Chemeca 2011,Engineers Australia,Sydney,Australia, 2011,p.79.

    [15]Y.N.Dai,B.Yang,The Vacuum Metallurgical of Nonferrous Metals, Metallurgy Industry Press,Beijing,2000,pp.65-72.

    [16]J.Q.Wan,Principle and Technology of Crystal Growth,Science Press, Beijing,2009,p.p.27.

    [17]Y.Z.Wang,The Technology of Vacuum,Beijing University of Aeronautics and Astronautics Press,Beijing,2007,p.p.34.

    [18]J.C.Barrett,J.Chem.Phys.135(2011)096101.

    [19]L.Y.Shi,Y.M.Liu,J.H.Huang,S.Q.Zhang,X.K.Zhao,Int.J.Min.Met. Mater.19(1)(2012)64.

    [20]L.Chen,E.X.Wu,F.Yin,J.Li,J.Univ.Sci.Technol.Beijing 13(4) (2006)363.

    Received 16 January 2014;revised 14 February 2014;accepted 17 February 2014 Available online 14 April 2014

    ☆Foundation item:Project(No.51304095)supported by National Natural Science Foundation of China;Science and Technology Planning Project of Yunnan Province,China(No.S2013FZ029);Personnel training Funds of Kunming University of Science and Technology,China(No.14118665).

    *Corresponding author.National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093,China.Tel.:+86 871 65161583.

    E-mail addresses:ycbdsm@126.com(C.-b.Yang),emontian@hotmail.com (Y.Tian),kgyb2005@126.com(B.Yang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.02.003.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    日本av免费视频播放| 亚洲精品一卡2卡三卡4卡5卡 | 免费看不卡的av| 精品一品国产午夜福利视频| 午夜福利一区二区在线看| 久久毛片免费看一区二区三区| 国产主播在线观看一区二区 | 亚洲熟女精品中文字幕| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 欧美成狂野欧美在线观看| 成人黄色视频免费在线看| 免费在线观看黄色视频的| 91国产中文字幕| 亚洲美女黄色视频免费看| 这个男人来自地球电影免费观看| 大型av网站在线播放| 伊人亚洲综合成人网| 麻豆av在线久日| 国产女主播在线喷水免费视频网站| 国产高清不卡午夜福利| 99精国产麻豆久久婷婷| 99国产综合亚洲精品| 国产女主播在线喷水免费视频网站| 国产免费福利视频在线观看| 人成视频在线观看免费观看| 亚洲精品自拍成人| 久久人妻熟女aⅴ| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 男女国产视频网站| 黑人猛操日本美女一级片| 国产精品三级大全| 高清av免费在线| 国产成人啪精品午夜网站| 久久久久视频综合| av片东京热男人的天堂| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 又粗又硬又长又爽又黄的视频| 最新在线观看一区二区三区 | 久久国产亚洲av麻豆专区| 黄色毛片三级朝国网站| 一区二区三区乱码不卡18| 亚洲午夜精品一区,二区,三区| 日韩一区二区三区影片| 天堂俺去俺来也www色官网| 国产精品久久久久久精品古装| 亚洲图色成人| 免费少妇av软件| a级片在线免费高清观看视频| 久久久久精品人妻al黑| 成人亚洲欧美一区二区av| 香蕉丝袜av| 丝袜人妻中文字幕| 97精品久久久久久久久久精品| 丝袜脚勾引网站| 蜜桃国产av成人99| 三上悠亚av全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁狠狠躁夜夜躁狠狠躁| 久久天堂一区二区三区四区| 日韩熟女老妇一区二区性免费视频| 人体艺术视频欧美日本| 叶爱在线成人免费视频播放| 你懂的网址亚洲精品在线观看| 免费女性裸体啪啪无遮挡网站| 国产成人精品久久久久久| 伊人亚洲综合成人网| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区四区五区乱码 | xxxhd国产人妻xxx| 中文字幕高清在线视频| 日韩免费高清中文字幕av| 中文乱码字字幕精品一区二区三区| 欧美日韩av久久| 久久久精品区二区三区| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 久久久欧美国产精品| 久久精品国产亚洲av涩爱| 欧美日韩综合久久久久久| 欧美在线一区亚洲| 免费观看a级毛片全部| 国产成人91sexporn| 多毛熟女@视频| 国产1区2区3区精品| 日本欧美国产在线视频| 性色av一级| 国产亚洲精品第一综合不卡| 国产精品国产av在线观看| videosex国产| 日韩人妻精品一区2区三区| 观看av在线不卡| av片东京热男人的天堂| 青春草亚洲视频在线观看| 热re99久久国产66热| 国产精品久久久久久精品电影小说| 蜜桃国产av成人99| 在线观看一区二区三区激情| 两个人免费观看高清视频| 欧美黄色片欧美黄色片| 亚洲中文av在线| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 国产熟女午夜一区二区三区| 国产成人一区二区三区免费视频网站 | 捣出白浆h1v1| 欧美日韩综合久久久久久| 亚洲人成电影观看| 免费不卡黄色视频| www.精华液| 国产免费视频播放在线视频| 国产片特级美女逼逼视频| 妹子高潮喷水视频| 日本五十路高清| 亚洲久久久国产精品| 亚洲九九香蕉| 免费高清在线观看视频在线观看| 99热网站在线观看| av天堂久久9| 一区二区三区乱码不卡18| 超碰97精品在线观看| 亚洲国产看品久久| 色94色欧美一区二区| 最新的欧美精品一区二区| 精品一区二区三区四区五区乱码 | 亚洲三区欧美一区| 新久久久久国产一级毛片| 国产欧美日韩一区二区三 | 丰满饥渴人妻一区二区三| 伊人久久大香线蕉亚洲五| 久久天堂一区二区三区四区| 国产亚洲精品久久久久5区| 观看av在线不卡| 国产精品 欧美亚洲| 国产在视频线精品| 我要看黄色一级片免费的| 亚洲三区欧美一区| 午夜影院在线不卡| 老汉色av国产亚洲站长工具| 交换朋友夫妻互换小说| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 日日爽夜夜爽网站| 老司机亚洲免费影院| 欧美亚洲日本最大视频资源| 欧美在线黄色| 国产三级黄色录像| 只有这里有精品99| 少妇的丰满在线观看| 国产99久久九九免费精品| 曰老女人黄片| 精品人妻1区二区| 九草在线视频观看| 亚洲人成电影观看| 午夜激情久久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲中文字幕日韩| 欧美在线黄色| 天天添夜夜摸| 国产精品一国产av| 伦理电影免费视频| av不卡在线播放| 丝袜美足系列| www日本在线高清视频| 亚洲图色成人| 日韩,欧美,国产一区二区三区| 国产黄色免费在线视频| 成年女人毛片免费观看观看9 | av在线播放精品| 在线观看www视频免费| 欧美黑人精品巨大| 国产免费福利视频在线观看| 老司机午夜十八禁免费视频| 久久青草综合色| 日韩一区二区三区影片| 精品国产一区二区三区四区第35| 久久国产精品大桥未久av| 成人手机av| 国产男女内射视频| 亚洲欧美清纯卡通| 婷婷成人精品国产| 国产精品香港三级国产av潘金莲 | 黑人欧美特级aaaaaa片| 日韩免费高清中文字幕av| 狂野欧美激情性bbbbbb| tube8黄色片| 久久女婷五月综合色啪小说| 两性夫妻黄色片| 国产成人啪精品午夜网站| 精品少妇内射三级| 亚洲三区欧美一区| 精品亚洲成国产av| 欧美日韩亚洲综合一区二区三区_| 嫁个100分男人电影在线观看 | 搡老岳熟女国产| 久久国产精品大桥未久av| 欧美日韩福利视频一区二区| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影小说| 嫩草影视91久久| 久久人妻熟女aⅴ| 制服人妻中文乱码| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠躁躁| 看免费成人av毛片| 久久精品成人免费网站| 亚洲欧洲日产国产| 69精品国产乱码久久久| 制服人妻中文乱码| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 国内视频| 国产国语露脸激情在线看| 一级毛片女人18水好多 | 久久精品久久久久久噜噜老黄| 人人妻人人澡人人看| 我的亚洲天堂| 秋霞在线观看毛片| 美女中出高潮动态图| 51午夜福利影视在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 麻豆av在线久日| 成人三级做爰电影| 欧美性长视频在线观看| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线观看99| 99香蕉大伊视频| 亚洲,一卡二卡三卡| 国产一级毛片在线| 国产在线视频一区二区| 成人手机av| 国产精品一区二区免费欧美 | 亚洲国产成人一精品久久久| 看免费成人av毛片| 一级片免费观看大全| av网站在线播放免费| 在现免费观看毛片| 欧美97在线视频| 岛国毛片在线播放| 香蕉国产在线看| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 赤兔流量卡办理| 欧美xxⅹ黑人| 大码成人一级视频| 亚洲精品国产av成人精品| 嫩草影视91久久| 久久国产精品大桥未久av| 日本一区二区免费在线视频| 亚洲情色 制服丝袜| 美女国产高潮福利片在线看| 丝袜喷水一区| 成人免费观看视频高清| 两人在一起打扑克的视频| 99久久综合免费| 午夜免费成人在线视频| 丝袜美腿诱惑在线| 操美女的视频在线观看| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区激情| 男女免费视频国产| xxx大片免费视频| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 男女下面插进去视频免费观看| 午夜激情久久久久久久| 久久久久网色| 亚洲国产看品久久| 交换朋友夫妻互换小说| 欧美中文综合在线视频| 免费日韩欧美在线观看| av欧美777| 亚洲一区二区三区欧美精品| 久久久久精品国产欧美久久久 | 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 看免费成人av毛片| 别揉我奶头~嗯~啊~动态视频 | 99九九在线精品视频| 免费少妇av软件| av网站免费在线观看视频| 国产男女内射视频| 亚洲国产精品成人久久小说| 亚洲成人免费av在线播放| videosex国产| 午夜老司机福利片| 亚洲国产最新在线播放| 自线自在国产av| 国产熟女欧美一区二区| 婷婷丁香在线五月| 亚洲国产精品成人久久小说| 国产主播在线观看一区二区 | 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 国产精品欧美亚洲77777| 亚洲成人免费电影在线观看 | 黑人欧美特级aaaaaa片| 亚洲欧美日韩另类电影网站| 久久精品aⅴ一区二区三区四区| cao死你这个sao货| 狂野欧美激情性xxxx| 中文字幕精品免费在线观看视频| av天堂在线播放| 夫妻性生交免费视频一级片| 国产一区二区在线观看av| 亚洲中文日韩欧美视频| 国产深夜福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人看| 精品高清国产在线一区| 老汉色∧v一级毛片| 99re6热这里在线精品视频| 观看av在线不卡| 亚洲成人手机| 美女中出高潮动态图| 亚洲人成电影观看| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| 欧美精品av麻豆av| 少妇粗大呻吟视频| www.av在线官网国产| 亚洲美女黄色视频免费看| 国产成人av激情在线播放| 丝袜在线中文字幕| 成人免费观看视频高清| 国产成人91sexporn| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 午夜av观看不卡| 一本一本久久a久久精品综合妖精| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 国产亚洲精品第一综合不卡| 亚洲国产欧美一区二区综合| av在线播放精品| 国产精品久久久av美女十八| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 欧美亚洲 丝袜 人妻 在线| 9色porny在线观看| 亚洲av在线观看美女高潮| 99国产精品一区二区蜜桃av | 一级毛片女人18水好多 | 一区二区av电影网| 久久久久网色| 亚洲,欧美精品.| 亚洲伊人久久精品综合| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 成人黄色视频免费在线看| 最近手机中文字幕大全| 18禁国产床啪视频网站| 亚洲熟女精品中文字幕| netflix在线观看网站| 久久久精品免费免费高清| 在线观看免费午夜福利视频| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| 色综合欧美亚洲国产小说| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 成人影院久久| 91字幕亚洲| 男女边摸边吃奶| 亚洲国产最新在线播放| 欧美黄色片欧美黄色片| 91麻豆av在线| 欧美日韩亚洲高清精品| 成在线人永久免费视频| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 欧美精品av麻豆av| 日本91视频免费播放| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 亚洲精品日韩在线中文字幕| 咕卡用的链子| 熟女av电影| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| 国产免费一区二区三区四区乱码| 1024香蕉在线观看| 亚洲精品乱久久久久久| 女人被躁到高潮嗷嗷叫费观| a级毛片在线看网站| 一级毛片我不卡| 精品人妻熟女毛片av久久网站| 国产男女内射视频| 精品人妻一区二区三区麻豆| 国产精品成人在线| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 国产一区二区在线观看av| 啦啦啦啦在线视频资源| 久久精品国产亚洲av高清一级| 午夜福利视频精品| 国产又色又爽无遮挡免| 亚洲成国产人片在线观看| 在线亚洲精品国产二区图片欧美| 亚洲激情五月婷婷啪啪| 一本综合久久免费| 国产一区二区激情短视频 | 久久 成人 亚洲| 1024香蕉在线观看| 大片电影免费在线观看免费| 亚洲av在线观看美女高潮| 成年人黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡 | 国产午夜精品一二区理论片| 99热网站在线观看| 亚洲中文字幕日韩| 精品福利永久在线观看| 精品少妇内射三级| 亚洲,欧美精品.| 亚洲欧洲日产国产| 午夜影院在线不卡| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 亚洲国产日韩一区二区| av天堂久久9| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 精品国产国语对白av| 成年人免费黄色播放视频| 久久久久精品国产欧美久久久 | 国产一级毛片在线| 在线看a的网站| 一级毛片我不卡| 国产精品.久久久| 黄色a级毛片大全视频| 80岁老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 亚洲专区中文字幕在线| 大香蕉久久成人网| www日本在线高清视频| 看十八女毛片水多多多| 91老司机精品| kizo精华| 亚洲精品国产一区二区精华液| 欧美av亚洲av综合av国产av| 性少妇av在线| 99久久人妻综合| 国产黄频视频在线观看| 曰老女人黄片| 免费黄频网站在线观看国产| 极品人妻少妇av视频| av线在线观看网站| 午夜av观看不卡| 久久精品久久久久久久性| 亚洲精品日韩在线中文字幕| 9热在线视频观看99| 性色av乱码一区二区三区2| 丰满少妇做爰视频| 国产成人精品在线电影| 日日爽夜夜爽网站| 亚洲国产日韩一区二区| 高潮久久久久久久久久久不卡| 亚洲国产精品999| 中国国产av一级| kizo精华| 中文字幕最新亚洲高清| 久久久欧美国产精品| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 午夜激情久久久久久久| 亚洲第一av免费看| 少妇的丰满在线观看| 一个人免费看片子| 各种免费的搞黄视频| 亚洲第一av免费看| 精品欧美一区二区三区在线| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 国产熟女欧美一区二区| 亚洲成人免费电影在线观看 | av欧美777| 亚洲精品久久午夜乱码| 欧美激情高清一区二区三区| 亚洲三区欧美一区| e午夜精品久久久久久久| 国产午夜精品一二区理论片| 精品少妇内射三级| 国产女主播在线喷水免费视频网站| 超碰97精品在线观看| 十分钟在线观看高清视频www| 赤兔流量卡办理| 精品高清国产在线一区| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 少妇人妻 视频| 在线观看国产h片| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 别揉我奶头~嗯~啊~动态视频 | 成人国产一区最新在线观看 | 国产精品麻豆人妻色哟哟久久| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 青春草亚洲视频在线观看| 宅男免费午夜| 国产精品一区二区免费欧美 | 国产精品一区二区在线观看99| 午夜日韩欧美国产| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 成年美女黄网站色视频大全免费| 日韩 亚洲 欧美在线| 国产精品偷伦视频观看了| 老汉色∧v一级毛片| 操出白浆在线播放| 亚洲国产精品国产精品| 首页视频小说图片口味搜索 | av网站在线播放免费| 国产主播在线观看一区二区 | 国产一卡二卡三卡精品| av天堂久久9| 91精品三级在线观看| 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 日韩免费高清中文字幕av| cao死你这个sao货| 99热全是精品| 亚洲天堂av无毛| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 国产xxxxx性猛交| 久久久久精品国产欧美久久久 | 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| 国产成人系列免费观看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 国产人伦9x9x在线观看| 国产成人一区二区在线| 日日爽夜夜爽网站| 人体艺术视频欧美日本| www日本在线高清视频| 麻豆av在线久日| 免费看av在线观看网站| 99热国产这里只有精品6| 国产在线一区二区三区精| 各种免费的搞黄视频| 久久精品aⅴ一区二区三区四区| 制服人妻中文乱码| 久久鲁丝午夜福利片| 99久久99久久久精品蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 国产片特级美女逼逼视频| 十八禁人妻一区二区| 中文字幕制服av| 国产97色在线日韩免费| avwww免费| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密 | 午夜福利乱码中文字幕| 亚洲国产精品一区三区| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区久久| 母亲3免费完整高清在线观看| 亚洲精品第二区| 亚洲欧洲国产日韩| 欧美激情 高清一区二区三区| 欧美性长视频在线观看| 国产国语露脸激情在线看| 国产一卡二卡三卡精品| 欧美国产精品va在线观看不卡| 日本一区二区免费在线视频| 欧美变态另类bdsm刘玥| 又黄又粗又硬又大视频| 免费在线观看黄色视频的| 1024香蕉在线观看| 老司机亚洲免费影院| 午夜老司机福利片| 深夜精品福利| 欧美日韩精品网址| 久久久久久亚洲精品国产蜜桃av| 欧美日本中文国产一区发布| 侵犯人妻中文字幕一二三四区| 亚洲精品乱久久久久久| 五月开心婷婷网| 韩国高清视频一区二区三区| 2018国产大陆天天弄谢| 色网站视频免费| 国产日韩欧美视频二区| 午夜老司机福利片| 国产伦理片在线播放av一区| 亚洲国产精品成人久久小说| 少妇人妻久久综合中文| 日本黄色日本黄色录像| 狂野欧美激情性bbbbbb| 久久久久视频综合|