• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and mechanical properties of Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy

    2014-04-21 02:16:56
    Journal of Magnesium and Alloys 2014年1期

    aMachinery and Electric Department,Heilongjiang Institute of Technology,999 Hongqi Street,Harbin 150050,PR China

    bSchool of Materials Science and Engineering,Harbin University of Science and Technology,4 Linyuan Road,Harbin 150040,PR China

    Microstructure and mechanical properties of Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy

    L.H.Wena,b,*,Z.S.Jib,M.L.Hub,H.Y.Ninga

    aMachinery and Electric Department,Heilongjiang Institute of Technology,999 Hongqi Street,Harbin 150050,PR China

    bSchool of Materials Science and Engineering,Harbin University of Science and Technology,4 Linyuan Road,Harbin 150040,PR China

    Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy were prepared by cast-extruding and chip-extruding.Microstructure,tensile and creep properties of the alloy were investigated.The results show that the alloy exhibit particle dynamic recrystallization during extrusion.The cast extruded-T6 rods at room temperature have a highest tensile strength of 258.5 MPa and a highest yield strength of 135.7 MPa.With the increase of test temperature,the strength of the alloy declines and the elongation increases.At 473 K,creep strain in the primary creep stage increases with increasing the creep stresses.Under 110 MPa,time spent during primary creep decreases with increasing the test temperatures.Stress exponent and creep activation energy of the alloy are 4.4 and 104 kJ/mol,respectively.Creep of the alloy can be controlled by dislocation climb mechanism.The morphology of the fracture surfaces was examined by employing scanning electron microscope.

    Mg-3.0Nd-0.4Zn-0.4Zr alloy;Hot extrusion;Microstructure;Properties;Fracture behavior

    1.Introduction

    Magnesium alloy are the lightest alloy used as structural metallic alloy,and magnesium products have been applied for structural uses in the automotive,railway and aerospace industries[1-4].However,because of resource depletion in the future,recycling of materials is becoming more and more important in order to ensure the sustainable development ofsociety.In general,metallic scraps can be remelted to cast into ingot for subsequent processing.However,this liquid state recycling may not be eff i cient for magnesium alloy because of the needs of special protective environment and extra caution. Masaru Nakanishi et al.[5]proposed that extrusion is an effective processing method for eff i ciently reclaiming magnesium machined chips because it is not expensive.Extrusion of machined chips is conducted in a solid state,which does not need a special protective environment or extra caution. Because microstructural control such as grain ref i nement and dispersion of the oxide f i lm on the surface of scraps can be achieved due to the severe deformation during extrusion[6]. The solid recycled materials show excellent mechanical properties[7,8].

    Many studies showed that magnesium alloys such as AZ31, ZK60 and AZ91 prepared by solid recycling process exhibited high tensile strength and high elongation to failure.In this paper,microstructure,tensile and creep properties of Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy produced byextrusion of cast and extrusion of chips are discussed.Coldpressing was employed to prepare extrusion billets of Mg-3.0Nd-0.4Zn-0.4Zrmagnesium alloy chips.Hot extrusion was carried out at 723 K.Extrusion ratio is 11.1:1.

    2.Experimental procedures

    Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy chips were prepared by machining an as-received ingot in a lathe.The size of a chip was 4 mm-5 mm in length,1.5 mm-2 mm in width and 0.5 mm in thickness,as shown in Fig.1.The machined chips were f i lled into a cylindrical container with a diameter of 40 mm and cold-pressed by slowly increasing pressure up to 300 Mpa for 30 s at room temperature into billets.Then chip billets and cast billets were hot extruded into rods.The extrusion temperature was 723 K with a speed of about 0.15 mm/s.The diameter of as-extruded rod was 12 mm with extrusion ratio of 11.1:1.Some of extruded specimens were solution treated at 803 K for 2.5 h in an electric resistance furnace under the mixed atmosphere of SO2and SF6with the ratio of 100:1,quenched into hot water at ~333 K,and then subsequently aged at 473 K for 16 h.

    Tensile experiments at both ambient and elevated temperatures were performed in air using WDW-10 electron universal strength testing machine.Tensile creep tests were carried out using a constant load creep machine with a three zone furnace. The extension of the specimen was measured by a linear variable differential transformer mounted on the specimens. The temperature was maintained constant within ±2°C during testing.The tensile axis was parallel to the extrusion direction. Each datum was the average of results from more than three samples.Specimens were etched in 4%nitric acid liquor for microstructure observation.Microstructures were examined by using OLYMPUS-GX71-6230A optical microscope(OM).A FEI-SIRION scanningelectronmicroscope(SEM)was employed for the observation of the fracture surfaces of the specimens.

    3.Results and discussion

    3.1.Microstructure of cast

    Fig.2 shows optical micrographs of as-cast materials in different states.Coarse grains with the eutectic intermetallic phase covering the primary α-Mg grains are seen in Fig.2(a),large precipitates are found along grain boundaries,which make its mechanical properties worse.During homogenizing annealing at 753 K for 48 h,segregation atom can dissolve into matrix structure or form strengthening phase,as shown in Fig.2(b),segregation microstructure is improved.It is obvious that the cast extrusion specimens exhibit dynamic recrystallization and the grains ref i ne greatly.It can be seen from Fig.2(c)that some second-phase particles were broken into small particles and moved from grain boundaries to grain interiors during the hot extrusion process.

    Fig.1.Chips of the Mg-3.0Nd-0.4Zn-0.4Zr alloy.

    3.2.Microstructure of chip cast after hot extrusion

    Fig.3(a)and(b)shows the microstructure of the transverse section and the longitudinal section of the chip-extruded rods, respectively.It can be seen from Fig.3 that some coarse intermetallic phases were broken into small particles and moved from grain boundaries to grain interiors during the hot extrusion process.Fine equiaxed sub-grains exist in elongated grains.This kind of discontinuous particle morphology can improve the ductility of the alloy by reducing the nucleation, growth and coalescence of cracks and cavities at grain boundaries.The broken particles are gathered and distributed perpendicular to the extrusion direction.

    3.3.Tensile properties of Mg-3.0Nd-0.4Zn-0.4Zr alloy

    Table 1 presents the tensile properties at room temperature of the alloy in different conditions.For the cast specimens, improvements of ultimate tensile strength(UTS),tensile yield strength(TYS)and elongation are observed from as-cast to cast-extruded condition,by 63.3 MPa,31.8 MPa and 19.2%, respectively.In comparison with the as-cast condition,further obvious increases of UTS,TYS and elongation are achieved by extrusion of machined chips.After T6 heat-treatment,the UTS and the TYS have a increase,but the elongation decreases due to the precipitation hardening.

    The maximum solid solubility of the neodymium in the α-Mg matrix is as high as 3.6 wt%at 825 K and it decreases rapidly with the decrease of temperature according to the phase diagram[9].At the ambient temperature the solubility of Nd in the α-Mg matrix is negligible.Due to nonequilibrium solidif i cation the α-Mg in the alloy studied is oversaturated and part of neodymium forms divorced eutectic Mg12Nd instead of precipitates in the as-cast alloy,which makesthepropertiesworse.During thehotextrusion process,Mg12Nd intermetallics was destroyed and broken into small particles,responsible for a substantial strengthening.Furthermore,hot extrusion may promote the formation of f i ner microstructure.According to the well-known Hall-Petch relation,the yield stress depends on the grain size as follows [10,11]:

    Fig.2.Microstructures of the cast alloy in different states(a)as-cast(b)cast after homogenizing anneal(c)cast after extruding.

    Fig.3.Microstructures of the chip-extruded rods of Mg-3.0Nd-0.4Zn-0.4Zr alloy(a)transverse section(b)longitudinal section.

    where Δσ0.2is the increase in yield stress due to grain ref i nement,Kis a constant anddis the grain size.It is well known that the strengthening source of T6 specimens is precipitation strengthening.During aging,a large amount of the second phase particles precipitate from the α-Mg matrix. Precipitation of the second phase particles is likely to bring about additional barriers to the movement of dislocations, resulting in the enhancement of tensile strength[12].In addition,due to the uncoordinated deformation with the matrix,the precipitates may act as crack sources and in turn decrease the elongation of tensile samples.

    Table 1Tensile properties of the alloy at room temperature.

    Table 2Tensile properties of the alloy at 150,200 and 250°C.

    Fig.4.Tensile properties of the Mg-3.0Nd-0.4Zn-0.4Zr alloy at different temperatures(a)tensile strengths(b)elongations.

    Fig.5.(a)Creep strain versus 100 h plots tested under the stresses from 70 MPa to 130 MPa at 473 K(b)creep strain versus 100 h plots tested under the stresses from 130 MPa to 150 MPa at 473 K.

    Table 2 lists the data of tensile tests of the alloy at elevated temperatures and the variations of tensile properties with the increase of temperature are shown in Fig.4.It can be seen that the alloy in both states exhibit lower strengths but higher ductilities than those at room temperature.The cast-extruded alloy has higher strengths and ductilities than those of the chip-extruded alloy.With the increase of temperature,the strength is decreasing and the elongation is increasing.Hot extrusion makes the magnesium alloy being in three-direction compressed stress state,which means that the alloy are in the high-plasticity.The dominant deforming process during extrusion is grain boundary sliding,which will break and disperse the surface oxide layer of chips[13].Dispersive oxide magnesia grains break continuity of the alloy,which leads to poor mechanical properties.During aging treatment,the tiny precipitates form from the oversaturated matrix.These precipitates have the effect on pinning dislocation movement [14].The β-phase(Mg12Nd)is thermally stable at elevated temperatures and has a certain orientation relationship with the α-Mg matrix.Moreover,the difference of atomic radii between magnesium and neodymium is possible to operate.

    3.4.Creep properties of the chip-extruded(T6)alloy

    3.4.1.Creep curves

    Fig.6.(a)100 h creep curves at temperatures of 423,448 and 473 K under the applied stresses of 110 MPa(b)100 h creep curves at temperatures of 498 and 523 K under the applied stresses of 110 MPa.

    Creep tests were conducted at f i ve temperatures of 423, 448,473,498 and 523 K under the applied stresses from 70 MPa to 150 MPa.Fig.5(a)and(b)shows the typical plot of creep strain versus time up to 100 h for the chip-extruded(T6) specimens tested under the stresses from 70 MPa to 150 MPa at 473 K.Creep Strain and steady-state creep rate of the specimens deformed at a stress of 150 MPa are higher than that of the specimens deformed at other stresses.It is seen from Fig.1 that creep resistance of the alloy is decreasing with increasing the applied stresses.The alloy which were tested under the stresses from 70 MPa to 110 MPa have excellent creep resistant properties.Steady-state creep rate of the specimen tested at 473 K/110 MPa is 5.73 × 10-8s-1. However,steady-state creep rate of the alloy at 473 K/ 150 MPa is added to 1.27 × 10-6s-1,near two order of magnitude higher than that of the alloy at 473 K/110 MPa. Creep curve of the alloy at 473 K/150 MPa ends in the secondary creep stage after 62 h creep deformation and the specimen ruptured after 76 h test.It can be seen from creep curves that creep strain in the primary creep stage increases with the creep stresses increasing.

    Fig.7.The stress dependence on steady-state strain rate(dε/dt)at 473 K.

    Fig.6(a)and(b)shows the 100 h creep curves of the chipextruded(T6)specimens at f i ve temperatures of 423,448,473, 498 and 523 K under the applied stresses of 110 MPa.Creep strain and steady-state creep rate of the specimen at 523 K are sharply higher than that of the specimens at other temperatures,and creep curve ends in the secondary creep stage after 9 h creep deformation and the specimen ruptured after 14 h test.Creep properties of the alloy decrease with increasing test temperature,which is shown in Fig.6.When test temperature is below 473 K,the alloy has excellent creep resistance. Steady-state creep rate of the specimen on the condition of 448 K/110 MPa is 5.14 × 10-8s-1.However,steady-state creep rate of the alloy at 498 K/150 MPa is increased to 2.33 × 10-7s-1,near one order of magnitude higher than that of the alloy at 448 K/110 MPa.Creep curve of the alloy at 498 K/110 MPa ends in the secondary creep stage after 60 h creep deformation and the specimen ruptured after 79 h test.It can be seen from creep curves that creep strain in the primary creep stage increases and time spent in the primary creep stage decreases with increasing test temperatures.

    Fig.8.An Arrhenius plot for the creep test under 110 MPa.

    Fig.9.SEM images of the tensile fracture surfaces of the alloy in different conditions(a)cast extruded-T6 at 250°C(b)chip extruded-T6 at 250°C.

    Themainstrengtheningphaseinthealloyistheplate-shaped β phase,which has a high melting point of approximately 1293 K[15].Although the β phase has a bottom-centered square structure,which is incoherent with the h.c.p.lattice of the magnesium matrix,its high melting point and strong intermetallic bonding as well as the low diffusion rate of Nd element in magnesium all contribute to a thermally stable alloy. Therefore,the sliding of grain boundaries and the slip of dislocations in the matrix were effectively prevented at elevated temperatures,improving the properties at high temperature, especially the creep properties.

    3.4.2.Creep mechanism

    Generally,the steady-state creep rate(dε/dt)can be represented by the relationship between stress(σ)and temperature (T)as follows[16,17]:

    whereAis a constant;nis the stress exponent andQcis the apparent activation energy for creep.Fig.7 illustrates the stress dependence on steady-state strain rate(dε/dt)at 473 K. Fig.8 shows an Arrhenius plot for the creep test of the alloy under 110 MPa.The stress exponent and the creep activation energy of the alloy are 4.4 and 104 kJ/mol,respectively,which suggests the creep of the alloy can be controlled by dislocation climb mechanism[18].

    Fig.10.(a)SEM images of the creep fracture surface of the sample which failed after 76 h at 200°C/150 MPa(b)magnif i cation of pane in Fig.10(a).

    3.5.Fractured surface of the specimen

    3.5.1.Tensile fracture behavior

    Fig.9(a)and(b)shows SEM images of the tensile fractured surfaces of the alloy in different conditions.It can be seen from Fig.9 that the failure surfaces are composed of some small dimples and a few cracked particles.The cracked particles are Nd-containing intermetallics.Due to the fragile characteristic of Nd-containing compounds,the particles were broken during the tensile test(or during extrusion)and become a cracking source.Moreover,apparently tearing ridges are observed in the fracture surface of the alloy.Cleavage planes, some dimples and tear ridges are observed in the failure surface.The cleavage planes mean that the direction of the cracks frequently changes during propagation and the crack extension resistance increases.The cast-extruded alloy present goodductility because the dimples in the fracture surface are more and bigger than that of the chip-extruded alloy.

    3.5.2.Creep fracture behavior

    Fig.10 shows SEM images of the creep fracture surface of the sample which failed after 76 h at 200°C/150 MPa.Many ellipse-like cracks are observed on the creep fracture surface as shown in Fig.10(a).During the creep test,vacancy of crystal lattice moves to the tensile direction at high temperature and stress and stops at grain boundaries that are pulled and f l ows inside grains.Then,voids on the grain boundaries and f l ows inside matrix are formed after a lot of vacancies congregated.Finally,ellipse-like cracks are formed.It can be seen from Fig.10(b)that some dimples and tear ridges are presented in the failure surfaces of the alloy. Some Nd-rich compounds are observed at the bottom of the dimples.

    4.Conclusions

    (1)The microstructure of the as-cast alloy consists of dendritic α-Mg and divorced eutectic Mg12Nd.The castextruded and chip-extruded alloy exhibit particle dynamic recrystallization.

    (2)All the extruded alloy have better tensile properties than the cast alloy.The cast extruded-T6 rods at room temperature have a highest UTS of 258.5 MPa and a highest TYS of 135.7 MPa due to the precipitation hardening. With the increase of test temperature,the strength of the alloy declines and the elongation increases.Stress exponent and Creep activation energy of the alloy are 4.4 and 104 kJ/mol,respectively.Creep of the alloy can be controlled by dislocation climb mechanism.

    (3)SEM observations of the fracture surfaces reveal that the fracture mode of the alloy at elevated test temperature is a mix mechanism with brittle fracture and gliding fracture.

    Acknowledgments

    The authors gratefully acknowledge the f i nancial support by the Chinese National Science Foundation(No.50674038; No.50974048)andtheHarBinScienceandTechnologyBurean (No.2011RFQXG020).

    [1]H.A.Patel,D.L.Chen,S.D.Bhole,K.Sadayappan,J.Alloys Compd. 496(2010)140-148.

    [2]L.Wu,F.S.Pan,M.B.Yang,J.Y.Wu,T.T.Liu,Trans.Nonferr.Met.Soc. China 21(2011)784-789.

    [3]Amir Hadadzadeh,Mary A.Wells,J.Magnesium Alloys 1(2013) 101-114.

    [4]M.B.Yang,C.Y.Qin,F.S.Pan,T.Zhou,J.Rare Earths 29(2011) 550-557.

    [5]M.Nakanishi,M.Mabuchi,N.Saito,M.Nakamura,J.Mater.Sci.Lett. 17(1998)2003-2005.

    [6]Y.Chino,R.Kishihara,K.Shimojima,H.Hosokawa,Y.Yamada, C.Wen,H.Iwasaki,M.Mabuchi,Mater.Trans.43(2002)2437-2442.

    [7]Y.Chino,T.Hoshika,M.Mabuchi,Mater.Trans.47(2006)1040-1046.

    [8]Y.Liu,Y.Y.Li,D.T.Zhang,T.L.Ngai,W.P.Chen,Trans.Nonferr.Met. Soc.China 12(2002)882-885.

    [9]S.M.Zhu,M.A.Gibson,M.A.Easton,J.F.Nie,Scr.Mater.63(2010) 698-703.

    [11]S.M.Arab,A.Akbarzadeh,J.Magnesium Alloys 1(2013)145-149.

    [12]L.L.Chang,J.H.Cho,S.B.Kang,J.Mater.Process.Technol.211(2011) 1527-1533.

    [13]S.Y.Wu,Z.S.Ji,S.F.Rong,M.L.Hu,Trans.Nonferr.Met.Soc.China 20 (2010)783-788.

    [14]H.Hua,M.Zhou,Z.Z.Sun,N.Li,J.Mater.Process.Technol.201(2008) 364-368.

    [15]X.Gao,S.M.He,X.Q.Zeng,L.M.Peng,W.J.Ding,J.F.Nie,Mater.Sci. Eng.A 431(2006)322-327.

    [17]Y.Mori,Y.Terada,T.Sato,Mater.Trans.46(2005)1749-1752.

    [18]T.G.Langdon,Mater.Trans.46(2005)1951-1956.

    Received 29 October 2013;accepted 6 January 2014 Available online 27 March 2014

    *Corresponding author.Machinery and Electric Department,Heilongjiang Institute of Technology,999 Hongqi Street,Harbin 150050,PR China.Tel.: +86 451 88028776;fax:+86 451 86674840.

    E-mail address:jmswlh2000@aliyun.com(L.H.Wen).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.01.007.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    精品国产一区二区三区四区第35| 国产精品免费一区二区三区在线 | 涩涩av久久男人的天堂| 欧美精品啪啪一区二区三区| 日日爽夜夜爽网站| 日韩人妻精品一区2区三区| 欧美亚洲日本最大视频资源| 色婷婷久久久亚洲欧美| 国产aⅴ精品一区二区三区波| 亚洲国产欧美在线一区| 久久久精品94久久精品| 高潮久久久久久久久久久不卡| 夫妻午夜视频| 大片电影免费在线观看免费| 欧美一级毛片孕妇| 欧美中文综合在线视频| 777米奇影视久久| 多毛熟女@视频| 在线播放国产精品三级| 91老司机精品| 欧美久久黑人一区二区| 啦啦啦中文免费视频观看日本| 国精品久久久久久国模美| 亚洲av片天天在线观看| 自线自在国产av| 99在线人妻在线中文字幕 | 日韩有码中文字幕| 91精品国产国语对白视频| 亚洲中文字幕日韩| 一本一本久久a久久精品综合妖精| av超薄肉色丝袜交足视频| 超碰97精品在线观看| 久久精品aⅴ一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 一本—道久久a久久精品蜜桃钙片| 精品少妇内射三级| 蜜桃国产av成人99| 亚洲成人国产一区在线观看| 欧美午夜高清在线| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人久久精品综合| 高清在线国产一区| 国产成人精品久久二区二区免费| 国产精品99久久99久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩视频精品一区| 国产麻豆69| 亚洲欧洲日产国产| 亚洲中文日韩欧美视频| 老司机深夜福利视频在线观看| 亚洲精品国产区一区二| 午夜福利欧美成人| 亚洲精品久久成人aⅴ小说| 久久精品aⅴ一区二区三区四区| 十八禁网站网址无遮挡| 99精国产麻豆久久婷婷| 男女免费视频国产| 桃红色精品国产亚洲av| 少妇的丰满在线观看| 伦理电影免费视频| 免费一级毛片在线播放高清视频 | 亚洲精品国产区一区二| 久久狼人影院| 91成年电影在线观看| 久久午夜亚洲精品久久| 午夜激情久久久久久久| 淫妇啪啪啪对白视频| 午夜91福利影院| 久久久久网色| 999精品在线视频| 久久国产精品男人的天堂亚洲| 1024香蕉在线观看| 国产精品久久久人人做人人爽| 91麻豆精品激情在线观看国产 | 欧美久久黑人一区二区| 亚洲成人手机| 国产精品熟女久久久久浪| 曰老女人黄片| 国产无遮挡羞羞视频在线观看| 999久久久精品免费观看国产| 精品人妻1区二区| 精品人妻在线不人妻| 在线天堂中文资源库| 久久人妻福利社区极品人妻图片| 中国美女看黄片| 性少妇av在线| 精品少妇内射三级| 搡老岳熟女国产| 51午夜福利影视在线观看| 狂野欧美激情性xxxx| 热99国产精品久久久久久7| 日韩成人在线观看一区二区三区| 亚洲黑人精品在线| 亚洲情色 制服丝袜| 成人特级黄色片久久久久久久 | 欧美成人免费av一区二区三区 | 精品一区二区三区视频在线观看免费 | 成人18禁在线播放| 最新美女视频免费是黄的| 国产男女超爽视频在线观看| www.999成人在线观看| 人人妻人人澡人人爽人人夜夜| 人成视频在线观看免费观看| 日韩大码丰满熟妇| 菩萨蛮人人尽说江南好唐韦庄| 麻豆国产av国片精品| 最黄视频免费看| 欧美日韩福利视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| bbb黄色大片| 2018国产大陆天天弄谢| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 亚洲欧美精品综合一区二区三区| 99久久人妻综合| 国产精品自产拍在线观看55亚洲 | 国产男女内射视频| 国产一区二区三区视频了| 国产在线视频一区二区| 一本色道久久久久久精品综合| 757午夜福利合集在线观看| 久久精品熟女亚洲av麻豆精品| 电影成人av| 久久影院123| 精品一区二区三区视频在线观看免费 | 黄色a级毛片大全视频| 美女视频免费永久观看网站| 久久中文字幕一级| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 精品国产一区二区久久| 国产老妇伦熟女老妇高清| 咕卡用的链子| h视频一区二区三区| 777米奇影视久久| 黄色成人免费大全| 女人久久www免费人成看片| 操美女的视频在线观看| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 中文字幕人妻熟女乱码| 欧美精品啪啪一区二区三区| 99国产精品免费福利视频| 免费在线观看黄色视频的| 9191精品国产免费久久| 久热这里只有精品99| 91国产中文字幕| 少妇猛男粗大的猛烈进出视频| av线在线观看网站| 久久亚洲真实| 我的亚洲天堂| 91成人精品电影| 男女下面插进去视频免费观看| 久久ye,这里只有精品| 热99国产精品久久久久久7| 乱人伦中国视频| 亚洲第一av免费看| 色94色欧美一区二区| 国产免费福利视频在线观看| 国产欧美日韩一区二区精品| 午夜久久久在线观看| 一本综合久久免费| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 另类亚洲欧美激情| 人人妻人人澡人人爽人人夜夜| a在线观看视频网站| 欧美黄色淫秽网站| 免费一级毛片在线播放高清视频 | 91成人精品电影| 日韩三级视频一区二区三区| 国产黄色免费在线视频| 人人妻人人澡人人看| 国产精品一区二区在线不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成伊人成综合网2020| 黄色成人免费大全| 天天添夜夜摸| 国产日韩一区二区三区精品不卡| 精品亚洲成a人片在线观看| 亚洲黑人精品在线| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 亚洲av国产av综合av卡| 真人做人爱边吃奶动态| 亚洲视频免费观看视频| av片东京热男人的天堂| 国产亚洲一区二区精品| 男女之事视频高清在线观看| 脱女人内裤的视频| 久久久精品免费免费高清| 成年人黄色毛片网站| 大片免费播放器 马上看| 精品一区二区三卡| 国产国语露脸激情在线看| 五月天丁香电影| 免费在线观看完整版高清| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| 美女扒开内裤让男人捅视频| 飞空精品影院首页| 久久天躁狠狠躁夜夜2o2o| 免费在线观看日本一区| 国产高清激情床上av| 男人操女人黄网站| 欧美性长视频在线观看| 岛国毛片在线播放| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 法律面前人人平等表现在哪些方面| 国产亚洲一区二区精品| 欧美精品一区二区大全| 99久久99久久久精品蜜桃| 欧美变态另类bdsm刘玥| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 亚洲情色 制服丝袜| 国产野战对白在线观看| 亚洲人成电影观看| 我要看黄色一级片免费的| 黄片小视频在线播放| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 人人妻人人添人人爽欧美一区卜| 色在线成人网| 日本av免费视频播放| 99国产精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 国产极品粉嫩免费观看在线| 建设人人有责人人尽责人人享有的| 午夜福利在线免费观看网站| 久久青草综合色| 精品视频人人做人人爽| 亚洲成a人片在线一区二区| 黄网站色视频无遮挡免费观看| 免费观看人在逋| 高潮久久久久久久久久久不卡| 国产xxxxx性猛交| 操出白浆在线播放| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 国产av国产精品国产| 亚洲精品久久成人aⅴ小说| 国产成人av教育| 变态另类成人亚洲欧美熟女 | 激情在线观看视频在线高清 | 国产麻豆69| 亚洲欧美激情在线| 一级片免费观看大全| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影观看| 九色亚洲精品在线播放| 免费日韩欧美在线观看| 露出奶头的视频| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 狠狠狠狠99中文字幕| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 欧美精品一区二区大全| 欧美性长视频在线观看| 国产精品.久久久| 高清在线国产一区| 巨乳人妻的诱惑在线观看| 中文字幕人妻熟女乱码| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 亚洲熟妇熟女久久| 两个人看的免费小视频| kizo精华| svipshipincom国产片| 丝袜喷水一区| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 精品一区二区三区视频在线观看免费 | 一级黄色大片毛片| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 精品亚洲成国产av| 久久这里只有精品19| 日本黄色视频三级网站网址 | 午夜激情久久久久久久| 色在线成人网| 国产97色在线日韩免费| 乱人伦中国视频| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 黄片大片在线免费观看| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看| 成人永久免费在线观看视频 | 不卡av一区二区三区| 国产成人精品在线电影| 精品少妇内射三级| 视频区欧美日本亚洲| 国产在线精品亚洲第一网站| av欧美777| 性少妇av在线| 黑人巨大精品欧美一区二区mp4| 亚洲午夜理论影院| 久久毛片免费看一区二区三区| 桃花免费在线播放| 日本黄色视频三级网站网址 | 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区 | 啦啦啦中文免费视频观看日本| 日韩免费av在线播放| 十八禁网站免费在线| 国产成人一区二区三区免费视频网站| 丝袜美足系列| 免费黄频网站在线观看国产| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 日韩免费av在线播放| 黄频高清免费视频| 成人影院久久| 亚洲全国av大片| 一夜夜www| 最近最新中文字幕大全电影3 | 亚洲免费av在线视频| 热re99久久精品国产66热6| 久久久久国内视频| 欧美精品亚洲一区二区| 亚洲精华国产精华精| www日本在线高清视频| 日韩欧美免费精品| 国产精品久久久久成人av| 国产av精品麻豆| 大片免费播放器 马上看| 国产精品九九99| 91大片在线观看| 久久毛片免费看一区二区三区| 亚洲国产中文字幕在线视频| 日韩 欧美 亚洲 中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 丝瓜视频免费看黄片| 麻豆国产av国片精品| 欧美日韩黄片免| 欧美精品一区二区免费开放| 丝袜在线中文字幕| 欧美日韩一级在线毛片| 91字幕亚洲| 日韩有码中文字幕| 国产深夜福利视频在线观看| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 91成人精品电影| 国产区一区二久久| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 国产真人三级小视频在线观看| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| 多毛熟女@视频| 久久久精品免费免费高清| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 精品欧美一区二区三区在线| av在线播放免费不卡| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 日本vs欧美在线观看视频| 我要看黄色一级片免费的| 国产av一区二区精品久久| 日韩有码中文字幕| 一本久久精品| 99riav亚洲国产免费| av一本久久久久| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 黄色怎么调成土黄色| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 国产免费现黄频在线看| 国产在视频线精品| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 国产av又大| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 欧美日韩av久久| a级毛片在线看网站| 久热爱精品视频在线9| 国产黄色免费在线视频| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 在线亚洲精品国产二区图片欧美| 午夜老司机福利片| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 国产高清国产精品国产三级| 亚洲熟妇熟女久久| netflix在线观看网站| 叶爱在线成人免费视频播放| 岛国在线观看网站| 中亚洲国语对白在线视频| 亚洲欧美激情在线| 视频在线观看一区二区三区| 欧美日韩黄片免| 美女主播在线视频| 精品亚洲成a人片在线观看| 中文字幕色久视频| 日韩欧美一区二区三区在线观看 | 大片电影免费在线观看免费| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲国产一区二区在线观看 | 中文字幕制服av| 热99re8久久精品国产| videos熟女内射| 成年女人毛片免费观看观看9 | 18禁国产床啪视频网站| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 国产精品电影一区二区三区 | 国产欧美亚洲国产| 国产高清国产精品国产三级| 国产又色又爽无遮挡免费看| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 色老头精品视频在线观看| 女人久久www免费人成看片| 日日夜夜操网爽| 午夜福利,免费看| 多毛熟女@视频| 免费少妇av软件| 久久这里只有精品19| 久久婷婷成人综合色麻豆| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 亚洲七黄色美女视频| 成人永久免费在线观看视频 | 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 黄片播放在线免费| 国产欧美日韩一区二区三| 国产精品久久电影中文字幕 | 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲| 最近最新免费中文字幕在线| 久久久久久久大尺度免费视频| 国产成人免费观看mmmm| av视频免费观看在线观看| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 成人国语在线视频| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 欧美精品一区二区大全| 午夜91福利影院| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 少妇粗大呻吟视频| a在线观看视频网站| 国产精品1区2区在线观看. | 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器 | 欧美成人免费av一区二区三区 | 在线观看www视频免费| av超薄肉色丝袜交足视频| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| 麻豆成人av在线观看| 成人黄色视频免费在线看| 极品少妇高潮喷水抽搐| 色尼玛亚洲综合影院| 国产在线视频一区二区| 欧美性长视频在线观看| 欧美精品一区二区免费开放| 91成人精品电影| 黄色丝袜av网址大全| 五月开心婷婷网| 免费日韩欧美在线观看| 制服诱惑二区| 国产精品久久久av美女十八| 国产一区二区 视频在线| 黑丝袜美女国产一区| 黄色成人免费大全| 人人妻人人澡人人看| 国产淫语在线视频| 久久青草综合色| 18禁美女被吸乳视频| 丰满饥渴人妻一区二区三| 亚洲国产av新网站| 国产精品久久久人人做人人爽| 一级毛片精品| 久久久久久久精品吃奶| 丝袜在线中文字幕| 欧美一级毛片孕妇| 久久久久精品人妻al黑| 在线十欧美十亚洲十日本专区| 中文欧美无线码| 日本五十路高清| 伦理电影免费视频| 久久国产精品大桥未久av| 久热爱精品视频在线9| 黄色片一级片一级黄色片| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 国产精品久久久久久人妻精品电影 | 亚洲国产精品一区二区三区在线| 欧美亚洲日本最大视频资源| 精品欧美一区二区三区在线| 99re6热这里在线精品视频| 久久精品亚洲精品国产色婷小说| 久久精品亚洲av国产电影网| 一个人免费看片子| 人人妻人人添人人爽欧美一区卜| 亚洲av第一区精品v没综合| 欧美日韩黄片免| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区| 国产精品熟女久久久久浪| 在线看a的网站| 一区二区三区激情视频| 桃花免费在线播放| 美女高潮喷水抽搐中文字幕| 超碰成人久久| 午夜精品久久久久久毛片777| 午夜福利欧美成人| 亚洲精品av麻豆狂野| 亚洲黑人精品在线| 国产一区二区三区视频了| 精品欧美一区二区三区在线| 在线天堂中文资源库| 老司机在亚洲福利影院| 视频区图区小说| 考比视频在线观看| 91九色精品人成在线观看| a在线观看视频网站| 免费黄频网站在线观看国产| 高潮久久久久久久久久久不卡| 亚洲七黄色美女视频| 午夜视频精品福利| 国产激情久久老熟女| 日韩熟女老妇一区二区性免费视频| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久电影网| 精品乱码久久久久久99久播| 热99国产精品久久久久久7| 久久香蕉激情| 一区二区日韩欧美中文字幕| 亚洲午夜理论影院| 久久性视频一级片| 免费少妇av软件| 日日爽夜夜爽网站| 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 国产精品一区二区免费欧美| 国产成人精品久久二区二区91| 亚洲全国av大片| 国产高清国产精品国产三级| 黄频高清免费视频| 欧美国产精品一级二级三级| 国产男女超爽视频在线观看| 激情视频va一区二区三区| 精品久久蜜臀av无| av有码第一页| 国产视频一区二区在线看| 桃花免费在线播放| 国产欧美日韩精品亚洲av| 国产老妇伦熟女老妇高清| 人人妻人人澡人人看| 国产一卡二卡三卡精品| 久久精品亚洲精品国产色婷小说| 69精品国产乱码久久久| 国产高清激情床上av| 女人爽到高潮嗷嗷叫在线视频| 后天国语完整版免费观看| 久久亚洲精品不卡| 午夜91福利影院| 亚洲熟女精品中文字幕| 久热这里只有精品99| 日韩免费高清中文字幕av| 制服诱惑二区| 精品人妻在线不人妻| 日韩免费高清中文字幕av| 99精品久久久久人妻精品| 国产免费av片在线观看野外av| 一本大道久久a久久精品| 99热国产这里只有精品6| 亚洲视频免费观看视频| 不卡av一区二区三区| 日本wwww免费看|