• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of elastic,mechanical and thermodynamic properties of MgRh intermetallic compound

    2014-04-21 02:16:52
    Journal of Magnesium and Alloys 2014年1期

    Universite′SETIF 1,Laboratoire d’Elaboration de Nouveaux Mate′riaux et Caracte′risations(ENMC),De′partement de Physique,19000 Se′tif,Algeria

    Theoretical study of elastic,mechanical and thermodynamic properties of MgRh intermetallic compound

    S.Boucetta*

    Universite′SETIF 1,Laboratoire d’Elaboration de Nouveaux Mate′riaux et Caracte′risations(ENMC),De′partement de Physique,19000 Se′tif,Algeria

    In the last years,Magnesium alloys are known to be of great technological importance and high scientif i c interest.In this work,density functional theory plane-wave pseudo potential method,with local density approximation(LDA)and generalized gradient approximation(GGA) are used to perform f i rst-principles quantum mechanics calculations in order to investigate the structural,elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure.Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement.The elastic constants were determined from a linear f i t of the calculated stress-strain function according to Hooke’s law. From the elastic constants,the bulk modulus B,shear modulus G,Young’s modulus E,Poisson’s ratio σ,anisotropy factor A and the ratio B/G for MgRh compound are obtained.The sound velocities and Debye temperature are also predicted from elastic constants.Finally,the linear response method has been used to calculate the thermodynamic properties.The temperature dependence of the enthalpy H,free energy F,entropy S,and heat capacity at constant volume Cvof MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the f i rst report.This is the f i rst quantitative theoretical prediction of these properties.

    Intermetallics;Elastic properties;Mechanical properties;Thermodynamic properties;Computer simulations

    1.Introduction

    Magnesium(Mg),with its abundance in the Earth is becoming an important engineering material.The last years, signif i cant progress was made on the science,technology and application of magnesium and its alloys.Research on Mg based alloys is of particular interest due to its low density (~1.74 g/cm3)and high specif i c strength and stiffness than many other engineering materials,including aluminum,steel and polymer-based composites.Magnesium also possess many other attractive properties,such as a high damping capacity, electromagnetic shielding, thermal conductivity, good machinability and high recycling potential[1].Magnesium alloys are among the lightest structural materials known and are used in a variety of applications,particularly in automobile industry and aerospace manufacturing [2].Theabovementioned features motivated us to study these alloys.

    Magnesium forms a wide range of ordered intermetallic compounds with the 4d transition metals(TM),for example the compound MgRh was prepared by heating the elements in stoichiometric proportion and the reaction was carried out in fused quartz tube at 1000°C.The crystal structure of MgRh compound was determined by X-ray powder diffraction,and it crystallizes in B2 type structure[3].To the best of our knowledge,the intermetallic compound MgRh has not beenstudied neither experimentally nor theoretically.Thus,in this work we have carried out a theoretical investigation on the structural,elastic,mechanical and thermodynamic properties of MgRh alloy,in order to provide a sounder basis for further experimental and theoretical studies.Ab initio methods offer one of the most powerful tools carrying out theoretical investigation of an important number of physical and chemical properties of materials with a great accuracy.The rest of this paper is organized as follows:the computational method is described in Section 2,the numerical results and discussions are given in Section 3,and f i nally a conclusion is presented in Section 4.

    2.Computational method

    Our f i rst-principles quantum mechanics calculations are performed with the plane-wave pseudo-potential(PW-PP) total energy method implemented with the CASTEP(Cambridge Serial Total Energy Package)simulation program[4]. This is based on the density functional theory(DFT)[5,6] which is,in principle,an exact theory of the ground state. We have used two approximations.First,the local density approximation(LDA)developed by Ceperley and Adler and parameterized by Perdew and Zunger[7,8],as well as the generalized gradient approximation(GGA),with the new functional of Perdew-Burke-Ernzerhof(PBE),known as PBEsol[9],are made for electronic exchange-correlation potential energy.Second,Coulomb potential energy caused by electron-ion interaction is described using the Vanderbilttype ultrasoft scheme[10],in which the orbitals of Mg (2p63s2),Rh(4d85s1),are treated as valence electrons.The cut-off energy for the plane-wave expansion was chosen at 340 eVand the Brillouin zone sampling was carried out using the 8 × 8 × 8 set of Monkhorst-Pack mesh[11].

    The structural parameter(a)of MgRh was determined using the Broyden-Fletcher-Goldfarb-Shenno (BFGS) minimization technique[12].This method usually provides the fast way of f i nding the lowest energy structure.

    In the structural optimization process,the energy change, maximum force,maximum stress and maximum displacement are set as 1.0 × 10-5eV/atom,0.03 eV/?A,0.05 GPa,and 0.001 ?A,respectively.

    The elastic constants were determined from f i rst-principles calculations by applying a given homogeneous strain(deformation)with a f i nite value and calculating the resulting stress according to Hook’s law[13].The total energy is converged to 2.0 × 10-6eV/atom in the self-consistent calculation.

    The thermodynamic properties of a crystal in a quasiharmonic approximation have been predicted using phonon calculations with the linear response method.

    3.Results and discussion

    3.1.Structural properties

    The atomic structure of MgRh intermetallic compound is known to crystallize in a cubic lattice of CsCl-type structure (B2)with the space group Pm-3m(221)and the equilibrium lattice parameter has a value of(3.099 ± 0.002) ?A[3].The unit cell structural model of the MgRh compound is built according to the experimental data[3],as shown in Fig.1.The crystal structure was optimized at f i rst.The obtained results of calculated lattice parameteraof MgRh intermetallic compound using the(PW-PP)method within both the LDA and the GGA-PBEsol approximations are 3.053 ?A and 3.101 ?A respectively.One can see from the present results that the calculated lattice constantais 1.4%smaller than the experimental value using LDA and it is only 0.06%higher than the experimental value using GGA-PBEsol.Our calculated equilibrium lattice parameter agrees very well with the experimental data,above all in GGA approximation.

    3.2.Elastic and mechanical properties

    Elastic constants are very important material parameters. Evident and direct application of elastic constants is in the evaluation of elastic strains or energies in materials under stresses of various origins:external,internal and thermal[14]. The elastic constants can also provide information on the stability,stiffness,brittleness,ductility,and anisotropy of a material and propagation of elastic waves and normal mode oscillations.Moreover,knowledge of the values of elastic constants is crucial for a sound understanding of the mechanical properties of the relevant material.

    The elasticity of a cubic crystal is specif i ed by the three independent elastic constantsC11,C12andC44.In this work, the calculated elastic constants of MgRh compound at zero pressure and temperature are presented in Table 1.For a cubic crystal,the obtained elastic constants meet the requirements of mechanical stability criteria:C11>0,C44>0,C11-C12>0,C11+2C12>0 andC11>B>C12.From Table 1,one can see that the elastic constants of MgRh compound satisfy all of these conditions,suggesting that the structure of MgRh is mechanically stable.The elastic constants values calculated using the LDA approximation are slightly higher than those obtained with the GGA-PBEsol approximation.To the best of our knowledge,there are no experimental and other theoretical data in literature for the elastic constants(Cij)of MgRh for comparison,so we consider the present results as prediction study which still awaits an experimental conf i rmation.Themost important parameters for estimating mechanical properties of materials such as bulk modulus(B),shear modulus(G), Young’s modulus(E)and Poisson’s ratio(σ)are obtained from results of the calculated single-crystal elastic constantsCijusing the Voigt-Reuss-Hill(VRH)averaging scheme [15].The Voigt-Reuss-Hill approximation gives the effective values of the bulk and shear moduli.For the cubic system,the Voigt bounds[16]of the bulk modulusBVand shear modulusGVare:

    Fig.1.Crystal structure of MgRh.

    Table 1Calculated values of the elastic constants Cij(GPa),bulk modulus B(GPa), shear modulus G(GPa),Young’s modulus E(GPa),Poisson’s ratio σ, anisotropy factor A and B/G of MgRh compound.

    and

    The Reuss bounds[17]of the bulk and shear moduli are:

    and

    Finally,the bulk modulusBand shear modulusG,based on Hill approximation[15]are arithmetic average of Voigt and Reuss elastic moduli.They are expressed as following:

    and

    Young’s modulus(E)and Poisson’s ratio(σ)can be calculated by using Hill’s elastic moduli(B)and(G),which are given as:

    The calculated results for these moduli and Poisson’s ratio for the MgRh compound are listed in Table 1.The bulk modulus is usually assumed to be a measure of resistance to volume change by applied pressure.From Table 1,it can be seen that the value of the bulk modulus of MgRh compound is larger,indicating that it has a strong resistance to volume change by applied pressure.The two constantsEandG,are all that are needed to fully characterize the stiffness of an isotropic material.The present calculated results of these moduli demonstrate that the MgRh compound is stiff.The Poisson’s ratio(σ)def i ned as the ratio of transverse strain to the longitudinal strain is used to ref l ect the stability of the material against shear and provides information about the nature of the bonding forces.It takes the value:-1< σ < ?. No real material is known to have a negative value of σ.So this inequality can be replaced with 0< σ < ?.The low value of Poisson’s ratio indicates a large compression of volume and when σ =0.5 no volume change occurs.Bigger the Poisson’s ratios better the plasticity.The present calculated result of the Poisson’s ratio shows that the MgRh intermetallic compound is of good plasticity.The σ =0.25 and σ =0.5 are the lower limit and upper limit for central forces in solids,respectively. The obtained value of Poisson’s ratio(σ)of MgRh is larger than the lower limit value(σ =0.25),which indicates that the interatomic forces of MgRh are central forces.

    The Zener anisotropy factor(A)is a measure of the degree of anisotropy in solid[18].It takes the value of 1 for an isotropic material.It provides a measure of the degree of elastic anisotropy,when theAvalues are smaller or greater than unity.The Zener anisotropy factor(A)Of MgRh compound is calculated by the following equation:

    As shown in Table 1,that the calculated Zener anisotropy factorAis larger than 1 for both approximations LDA and GGA,which indicates that,the MgRh compound is elastically anisotropic material.

    The ratioB/Gis a simple relationship related to brittle or ductile behavior of materials.It has been proposed by Pugh [19].A highB/Gratio is associated with ductility,whereas a low value corresponds to the brittleness.The critical value separating ductile and brittle material is 1.75.The calculated results are listed in Table 1.In this work,the obtained results of both approximations LDA and GGA indicate that MgRh compound can be classif i ed as ductile material at zero pressure.Another parameter indicating the brittleness or ductility of the material is the Cauchy relation def i ned as:CP=C12-C44.The material is expected to be ductile,if the value of this expression is positive,on the other hand,if its value is negative,the material is brittle[20].At zero pressure,we found 31.89 GPa and 24.81 GPa for Cauchy pressure within both the LDA and the GGA approximations respectively.From these values and according to above criterion,the studied compound is ductile.Thus,the ductile nature of MgRh compound can be related to a metallic character in its bonds.

    3.3.Thermodynamic properties

    The Debye temperature(ΘD)of a material is a suitable parameter to describe phenomena of solid-state physics whichare associated with lattice vibrations.The Debye temperature corresponds in the Debye theory to a maximum phonon frequency.In addition,it ref l ects the structural stability,the strength of bonds and it is closely related to many physical properties such as specif i c heat and melting temperature.The Debye temperature basically depends on the elastic constants. At low temperature the Debye temperature calculated from elastic constants is the same as that determined from specif i c heat measurements.One of the standard methods to calculate the Debye temperature(ΘD)is from elastic data,since ΘDmay be estimated from the average sound velocityvmby the following equation[21]:

    Table 2The calculated density ρ,the longitudinal,transverse and average sound velocities(vl,vtand vm)calculated from elastic moduli,and the calculated Debye temperatures ΘDfor MgRh compound.

    wherehis Plank’s constant,kBBoltzmann’s constant,nis the number of atoms per formula unit andVathe atomic volume. The average sound velocity in the polycrystalline material is given by the following equation[22]:

    wherevlandvtare the longitudinal and transverse sound velocities of an isotropic aggregate,obtained using the shear modulusGand the bulk modulusBfrom Navier’s equation [23]:

    The calculated Debye temperature(ΘD)and sound velocities(vm,vl,vt)as well as the density(ρ)for MgRh compound in both approximations LDA and GGA are listed in Table 2. To the best of our knowledge,there are no experimental and other theoretical data for comparison,so we consider the present results as a prediction study for the f i rst time,which still awaits an experimental conf i rmation.

    Fig.2.(a).Temperature dependence of the free energy for MgRh.(b).Temperature dependence of the enthalpy for MgRh.(c).Temperature dependence of the entropy for MgRh.(d).Temperature dependence of the heat capacity at constant volume for MgRh.

    In order to evaluate the temperature dependence of the enthalpyH,free energyF,entropyS,and heat capacity at constant volumeCvof a crystal in a quasi-harmonic approximation,we need to calculate the phonon density of states(PDOS),which can obtained by performing phonon calculations.In this work,the phonon contribution to the free energyF,to the enthalpyH,to the entropySand to the specif i c heatCvat temperature for MgRh intermetallic compound,are shown in Fig.2.The calculated value of zero point energy at 0 GPa is 0.0808 eV.From Fig.2(a),we can see that the free energy decreases gradually with increasing temperature.In Fig.2(b)and(c),as temperature increases,the calculated enthalpyH,and entropySincrease continually.At ambient temperature,the heat capacityCvis 10.71 Cal/Cell K and it tend to the asymptotic limit(so called the Dulong-Petit limit) ofCv=11.80 Cal/Cell K=3nNkBat higher temperatures,as is shown in Fig.2(d).The experimental thermodynamic data of MgRh cannot be found,therefore it is diff i cult to evaluate the magnitude of errors between theory and experiment.Our calculated results can be seen as a prediction study for future investigations.

    4.Conclusions

    In the present theoretical study,the structural,elastic,mechanical,and thermodynamic properties of MgRh intermetallic compound with a CsCl-type structure have been investigated by means of the DFT within LDA and GGA approximations.Our results for the optimized lattice parameter (a)are in good agreement with the available experimental data.The elastic constantsCij,and related polycrystalline mechanical parameters such as bulk modulusB,shear modulusG,Young’s modulusEand Poisson coeff i cient σ are calculated.The MgRh compound is mechanically stable according to the elastic stability criteria,while no experimental results of elastic moduli for comparison.The Zener factorA, theB/Gratio and Cauchy pressure(C12-C44)are also estimated.The calculated Zener factor indicates that MgRh compound is elastically anisotropic.The values of the ratioB/Gand Cauchy pressure show a ductile manner for the MgRh compound.Finally,from the knowledge of the elastic constants and the average sound velocities and through the quasiharmonic Debye model using the calculated PDOS the thermodynamic properties have been predicted successfully.The heat capacity at constant volume of MgRh increases sharply with temperatureatlow temperature and ittendsto Dulong-Petit limit at high temperature.

    Acknowledgments

    This work is supported by the(ENMC)Laboratory,University Setif 1,Algeria.

    [1]Changxu Shi,J.Magnesium Alloys 1(2013)1.

    [2]K.U.Kainer,Magnesium-alloys and Technology,Wiley-VCH,Weinheim,2003.

    [3]V.B.Compton,J.Acta Crystallogr.11(1958)446.

    [4]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J.pickard,P.J.Hasnip, S.J.Clark,M.C.Payne,J.Phys.Condens.Matter 14(2002)2717.

    [5]P.Hohenberg,W.Kohn,Phys.Rev.B 136(1964)864.

    [6]W.Kohn,L.J.Sham,Phys.Rev.A 140(1965)113.

    [7]D.M.Ceperley,B.J.Alder,Phys.Rev.Lett.45(1980)566.

    [8]J.P.Perdew,A.Zunger,Phys.Rev.B 23(1981)5048.

    [9]J.P.Perdew,A.Ruzsinszky,G.I.Csonka,O.A.Vydrov,G.E.Scuseria, L.A.Constantin,X.Zhou,K.Burke,Phys.Rev.Lett.100(2008)136406.

    [10]D.Vanderbilt,Phys.Rev.B 41(1990)7892.

    [11]H.J.Monkhorst,J.D.Pack,Phys.Rev.B 13(1976)5188.

    [12]T.H.Fischer,J.Almlof,J.Phys.Chem.96(1992)9768.

    [13]J.F.Nye,Proprie′te′s Physiques des Mate′riaux,Dunod,Paris,1961.

    [14]K.Tanaka,M.Koiwa,Intermetallics 4(1996)S29-S39.

    [15]R.Hill,in:Proc.Phys.Soc.,London,Sect.A 65,1952,p.349.

    [16]W.Voigt,Lehrbuch de Kristallphysik,Terubner,Leipzig,1928.

    [17]A.Reuss,Z.Angew.Math.Mech.9(1929)49.

    [18]C.Zener,Elasticity and Anelasticity of Metals,University of Chicago Press,Chicago,1948.

    [19]S.F.Pugh,Philos.Mag.45(1954)823.

    [20]D.G.Pettifor,Mater.Sci.Technol.8(1992)345.

    [21]P.Wachter,M.Filzmoser,J.Rebisant,J.Phys.B293(2001)199.

    [22]O.L.Anderson,J.Phys.Chem.Solids 24(1963)909.

    [23]E.Schreiber,O.L.Anderson,N.Soga,Elastic Constants and their Measurements,McGraw-Hill,New York,1973.

    Received 16 March 2014;accepted 14 April 2014 Available online 6 May 2014

    *Tel.:+213 36 87 35 51.

    E-mail addresses:boucetta_said02@yahoo.fr,sd.boucetta@gmail.com.

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.04.001.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲欧美日韩高清在线视频| 我要搜黄色片| 内射极品少妇av片p| 亚洲五月天丁香| 在线观看免费视频日本深夜| 好男人在线观看高清免费视频| 精品久久久久久久久亚洲| 国产精品久久电影中文字幕| 欧美性猛交黑人性爽| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 草草在线视频免费看| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 亚洲av二区三区四区| 午夜激情欧美在线| 亚洲av成人av| 成人亚洲欧美一区二区av| 国产老妇伦熟女老妇高清| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 日本色播在线视频| 级片在线观看| 欧美日韩精品成人综合77777| 亚洲图色成人| 免费观看人在逋| 亚洲欧美精品专区久久| 免费av观看视频| 久久6这里有精品| 26uuu在线亚洲综合色| 赤兔流量卡办理| 亚洲欧美日韩高清专用| 少妇丰满av| 成人永久免费在线观看视频| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看 | 国产精品福利在线免费观看| 成人欧美大片| 综合色av麻豆| 寂寞人妻少妇视频99o| 日本三级黄在线观看| 亚洲国产欧美人成| 免费无遮挡裸体视频| 国产69精品久久久久777片| 久久精品影院6| 小说图片视频综合网站| 乱系列少妇在线播放| 精品久久久久久久久亚洲| 熟妇人妻久久中文字幕3abv| 桃色一区二区三区在线观看| 久久久久九九精品影院| 美女xxoo啪啪120秒动态图| 欧美bdsm另类| 久久精品久久久久久噜噜老黄 | 看免费成人av毛片| 亚洲精华国产精华液的使用体验 | 亚洲欧洲日产国产| 美女黄网站色视频| 少妇的逼好多水| 亚洲av免费在线观看| 男女边吃奶边做爰视频| а√天堂www在线а√下载| 夜夜爽天天搞| 久久久久九九精品影院| 最近2019中文字幕mv第一页| 日本黄色片子视频| 高清毛片免费看| 日韩一区二区视频免费看| 尾随美女入室| 黄色配什么色好看| 亚洲电影在线观看av| 欧美精品一区二区大全| 午夜福利在线在线| 日本色播在线视频| 国产私拍福利视频在线观看| 丰满人妻一区二区三区视频av| 哪里可以看免费的av片| av又黄又爽大尺度在线免费看 | 亚洲最大成人中文| 国产色婷婷99| 久久草成人影院| 成年免费大片在线观看| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av天美| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦观看免费观看视频高清| 91狼人影院| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播放欧美日韩| 成人毛片60女人毛片免费| 人人妻人人澡人人爽人人夜夜 | 国产伦精品一区二区三区视频9| avwww免费| 日日撸夜夜添| 久久久久久国产a免费观看| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| 中文精品一卡2卡3卡4更新| 国产高清激情床上av| 99九九线精品视频在线观看视频| 18禁裸乳无遮挡免费网站照片| a级毛色黄片| 国产 一区 欧美 日韩| 国产精品人妻久久久久久| 国产精品一区二区在线观看99 | or卡值多少钱| 深爱激情五月婷婷| 一个人观看的视频www高清免费观看| 国产片特级美女逼逼视频| 国产91av在线免费观看| 欧美一级a爱片免费观看看| 色综合色国产| 国产亚洲5aaaaa淫片| av又黄又爽大尺度在线免费看 | 精品久久久久久久久av| 午夜福利在线观看吧| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 天堂中文最新版在线下载 | 国产精品久久视频播放| 欧美最黄视频在线播放免费| 日本色播在线视频| 综合色丁香网| 最近2019中文字幕mv第一页| 丰满的人妻完整版| 26uuu在线亚洲综合色| 精品国产三级普通话版| 国产精品国产三级国产av玫瑰| 亚州av有码| 春色校园在线视频观看| 99久久人妻综合| 在线播放无遮挡| 欧美区成人在线视频| eeuss影院久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人特级黄色片久久久久久久| 欧美一区二区精品小视频在线| 一区福利在线观看| 六月丁香七月| 亚洲第一电影网av| 美女脱内裤让男人舔精品视频 | 日本免费a在线| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 日本av手机在线免费观看| 成人亚洲精品av一区二区| 久久精品国产亚洲av涩爱 | 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线播放欧美日韩| 国产亚洲5aaaaa淫片| 久久精品影院6| 日本一二三区视频观看| 一本精品99久久精品77| 在线天堂最新版资源| 国产成人精品婷婷| 天天躁日日操中文字幕| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 国产一区二区三区av在线 | 亚洲欧美精品综合久久99| 人人妻人人看人人澡| 三级经典国产精品| 国产精品,欧美在线| 亚洲av熟女| 最近2019中文字幕mv第一页| 亚洲在线自拍视频| 在线观看66精品国产| 国产精品福利在线免费观看| 欧美一区二区国产精品久久精品| 国产日本99.免费观看| 内地一区二区视频在线| 好男人在线观看高清免费视频| 国产日韩欧美在线精品| 老熟妇乱子伦视频在线观看| 天天躁夜夜躁狠狠久久av| 精品一区二区免费观看| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 亚洲国产精品久久男人天堂| 国产欧美日韩精品一区二区| 一级黄色大片毛片| 日韩欧美精品v在线| 天堂√8在线中文| 一个人免费在线观看电影| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 欧美日韩一区二区视频在线观看视频在线 | 国产av不卡久久| 国产成人a∨麻豆精品| 成人漫画全彩无遮挡| 欧美xxxx黑人xx丫x性爽| 亚洲av第一区精品v没综合| 国产成人精品婷婷| 春色校园在线视频观看| 国产黄色视频一区二区在线观看 | 一级毛片aaaaaa免费看小| 人妻制服诱惑在线中文字幕| 夜夜看夜夜爽夜夜摸| 少妇丰满av| 日韩强制内射视频| 日本爱情动作片www.在线观看| av视频在线观看入口| 午夜爱爱视频在线播放| 久久精品国产鲁丝片午夜精品| 久久草成人影院| 国产 一区 欧美 日韩| 国产精品一区二区在线观看99 | 久久精品久久久久久久性| 男女那种视频在线观看| 搞女人的毛片| 亚洲人成网站在线播放欧美日韩| 亚洲乱码一区二区免费版| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 亚洲av中文字字幕乱码综合| 大香蕉久久网| 国产女主播在线喷水免费视频网站 | 亚洲av电影不卡..在线观看| 美女 人体艺术 gogo| 精品久久久噜噜| 91久久精品电影网| 国产 一区精品| 免费看a级黄色片| a级毛片免费高清观看在线播放| 亚洲国产精品成人久久小说 | 国产精品国产三级国产av玫瑰| 婷婷六月久久综合丁香| 少妇的逼好多水| 嫩草影院精品99| 韩国av在线不卡| 国产亚洲精品av在线| 波野结衣二区三区在线| 国产精品福利在线免费观看| 97在线视频观看| a级毛色黄片| 小蜜桃在线观看免费完整版高清| 白带黄色成豆腐渣| 在线观看66精品国产| avwww免费| 久久久精品94久久精品| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 亚洲最大成人中文| 精品人妻视频免费看| 久久精品国产亚洲av香蕉五月| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 一本久久精品| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av天美| 成人综合一区亚洲| 国产欧美日韩精品一区二区| 看免费成人av毛片| 1000部很黄的大片| 亚洲av.av天堂| 国产高清视频在线观看网站| 国产成年人精品一区二区| 亚洲国产欧美在线一区| 国产精品一区二区三区四区久久| 青青草视频在线视频观看| 精品久久久久久久久久久久久| 两个人的视频大全免费| 变态另类丝袜制服| 国产69精品久久久久777片| 99精品在免费线老司机午夜| 国产精品一区二区在线观看99 | 亚洲欧美精品综合久久99| 国产一级毛片七仙女欲春2| 成人午夜高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 久久久久久久久久黄片| 天堂影院成人在线观看| eeuss影院久久| 日韩一区二区三区影片| 国产乱人视频| 国产精品久久久久久精品电影小说 | 欧美精品一区二区大全| videossex国产| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 欧美潮喷喷水| 少妇的逼好多水| 最近最新中文字幕大全电影3| 日本色播在线视频| 99热全是精品| 久久精品人妻少妇| 国产人妻一区二区三区在| 美女脱内裤让男人舔精品视频 | 亚洲性久久影院| 成年女人永久免费观看视频| 成人欧美大片| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 精品国产三级普通话版| 国产91av在线免费观看| 一区福利在线观看| 亚洲久久久久久中文字幕| 欧美日韩在线观看h| 热99re8久久精品国产| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 三级经典国产精品| 69av精品久久久久久| 欧美日韩国产亚洲二区| 超碰av人人做人人爽久久| 国产伦精品一区二区三区四那| 黑人高潮一二区| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 精品日产1卡2卡| 中文欧美无线码| 在线免费十八禁| av.在线天堂| 乱人视频在线观看| 国产av一区在线观看免费| 免费观看a级毛片全部| 男插女下体视频免费在线播放| 国产激情偷乱视频一区二区| 天堂√8在线中文| 国产在线精品亚洲第一网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人舔奶头视频| 在线免费十八禁| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 欧美区成人在线视频| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 69人妻影院| 欧美+日韩+精品| 成人漫画全彩无遮挡| 久久久久久久久中文| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 黑人高潮一二区| 丝袜喷水一区| 长腿黑丝高跟| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 久久久欧美国产精品| 一边亲一边摸免费视频| 可以在线观看毛片的网站| 波多野结衣高清作品| 男女那种视频在线观看| 久久人人爽人人爽人人片va| 国产在线精品亚洲第一网站| 欧美精品国产亚洲| 国产激情偷乱视频一区二区| 噜噜噜噜噜久久久久久91| 午夜视频国产福利| 日韩强制内射视频| 欧美人与善性xxx| 欧美日韩乱码在线| 日本熟妇午夜| 国产成人a∨麻豆精品| 白带黄色成豆腐渣| 午夜老司机福利剧场| .国产精品久久| 免费搜索国产男女视频| 日本成人三级电影网站| 国产成人影院久久av| 九九在线视频观看精品| 亚洲欧美日韩高清专用| 大型黄色视频在线免费观看| 少妇熟女欧美另类| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看 | 直男gayav资源| 最新中文字幕久久久久| 日本在线视频免费播放| 国产精品,欧美在线| 久久人妻av系列| 国产精品,欧美在线| 国产色爽女视频免费观看| 亚洲av免费在线观看| 99热这里只有是精品50| 亚洲精品粉嫩美女一区| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 亚洲精华国产精华液的使用体验 | 国语自产精品视频在线第100页| 欧美在线一区亚洲| 免费av不卡在线播放| 久久午夜福利片| 国产高清不卡午夜福利| 禁无遮挡网站| 在线观看av片永久免费下载| 麻豆乱淫一区二区| 五月伊人婷婷丁香| 国产乱人偷精品视频| 国产精品免费一区二区三区在线| 99热精品在线国产| 青春草亚洲视频在线观看| 国产午夜精品论理片| 日韩成人av中文字幕在线观看| 亚洲最大成人中文| 97热精品久久久久久| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 22中文网久久字幕| 人妻系列 视频| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 一本精品99久久精品77| 精品久久久久久久久av| 尾随美女入室| 夜夜爽天天搞| 永久网站在线| 午夜激情福利司机影院| 少妇人妻一区二区三区视频| 国内久久婷婷六月综合欲色啪| 美女黄网站色视频| av专区在线播放| a级毛片a级免费在线| 国产在线男女| 少妇裸体淫交视频免费看高清| 亚洲国产精品合色在线| 在线观看午夜福利视频| 人妻夜夜爽99麻豆av| 最近的中文字幕免费完整| 久久99精品国语久久久| 成人二区视频| 久久99热这里只有精品18| 男女那种视频在线观看| a级毛片a级免费在线| 伦精品一区二区三区| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| 日本欧美国产在线视频| 午夜福利在线在线| 成年av动漫网址| 免费电影在线观看免费观看| a级一级毛片免费在线观看| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 老司机影院成人| 亚洲精品日韩在线中文字幕 | 日韩三级伦理在线观看| 在线国产一区二区在线| 一区二区三区四区激情视频 | 一级黄片播放器| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 联通29元200g的流量卡| 黄色视频,在线免费观看| 久久久久国产网址| 给我免费播放毛片高清在线观看| 91午夜精品亚洲一区二区三区| 性欧美人与动物交配| 亚洲欧美成人综合另类久久久 | 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| av在线天堂中文字幕| 午夜视频国产福利| 变态另类丝袜制服| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 欧美成人免费av一区二区三区| 久久99蜜桃精品久久| 精品无人区乱码1区二区| 国产精品一区二区性色av| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 日日摸夜夜添夜夜爱| 久久久久国产网址| 最近中文字幕高清免费大全6| 欧美日韩国产亚洲二区| 久久久久久大精品| 欧美变态另类bdsm刘玥| 亚洲国产欧美人成| 成人高潮视频无遮挡免费网站| videossex国产| 欧美一区二区精品小视频在线| 免费看av在线观看网站| 国产私拍福利视频在线观看| 小蜜桃在线观看免费完整版高清| 丝袜美腿在线中文| 三级国产精品欧美在线观看| 成人二区视频| 99热只有精品国产| 久久久久免费精品人妻一区二区| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 不卡视频在线观看欧美| 国产亚洲av嫩草精品影院| 又粗又爽又猛毛片免费看| 人妻久久中文字幕网| 国产成年人精品一区二区| 亚洲国产日韩欧美精品在线观看| 好男人视频免费观看在线| 国产免费一级a男人的天堂| 夜夜夜夜夜久久久久| 搡女人真爽免费视频火全软件| 免费观看精品视频网站| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 青春草国产在线视频 | 免费看日本二区| 国产私拍福利视频在线观看| 91精品一卡2卡3卡4卡| 精品久久久久久久末码| 欧美+亚洲+日韩+国产| 蜜桃久久精品国产亚洲av| 变态另类丝袜制服| 大香蕉久久网| 久99久视频精品免费| av国产免费在线观看| 成人美女网站在线观看视频| 欧美日韩乱码在线| 永久网站在线| 蜜桃亚洲精品一区二区三区| 国产男人的电影天堂91| 看免费成人av毛片| av女优亚洲男人天堂| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| 91久久精品国产一区二区三区| 亚洲欧美日韩东京热| 国产亚洲精品久久久com| 亚洲自拍偷在线| 又黄又爽又刺激的免费视频.| 18禁在线播放成人免费| 插逼视频在线观看| 麻豆av噜噜一区二区三区| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 成人无遮挡网站| av天堂在线播放| av黄色大香蕉| 18禁在线播放成人免费| 夜夜看夜夜爽夜夜摸| 亚洲一区高清亚洲精品| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 久久久国产成人免费| 精华霜和精华液先用哪个| 99热精品在线国产| 超碰av人人做人人爽久久| h日本视频在线播放| 国产精华一区二区三区| 岛国毛片在线播放| 色哟哟哟哟哟哟| 亚洲婷婷狠狠爱综合网| h日本视频在线播放| 性插视频无遮挡在线免费观看| 熟女电影av网| 老司机影院成人| 欧美+亚洲+日韩+国产| 国产日本99.免费观看| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 中文欧美无线码| 午夜精品国产一区二区电影 | 国内少妇人妻偷人精品xxx网站| 简卡轻食公司| 2022亚洲国产成人精品| 国产老妇伦熟女老妇高清| 亚洲激情五月婷婷啪啪| 欧美3d第一页| 看非洲黑人一级黄片| 直男gayav资源| 深夜精品福利| 亚洲av中文字字幕乱码综合| 99九九线精品视频在线观看视频| 日韩国内少妇激情av| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 麻豆国产av国片精品| 亚洲乱码一区二区免费版| 亚洲精品乱码久久久v下载方式| 国产一区二区三区在线臀色熟女| 熟女电影av网| 极品教师在线视频| 久久精品综合一区二区三区| 九九在线视频观看精品| 性欧美人与动物交配| 天堂√8在线中文| 看十八女毛片水多多多| 韩国av在线不卡| 亚洲一级一片aⅴ在线观看| 亚洲久久久国产精品| 女性被躁到高潮视频| 久久精品国产自在天天线| av视频免费观看在线观看| av卡一久久| 只有这里有精品99| 国产成人精品一,二区| 久久综合国产亚洲精品| 国产成人精品无人区| 亚洲美女搞黄在线观看| 亚洲精品国产色婷婷电影| 国产熟女欧美一区二区| 飞空精品影院首页| 免费av中文字幕在线| 精品国产一区二区三区久久久樱花| 热re99久久精品国产66热6| 又粗又硬又长又爽又黄的视频| 日韩熟女老妇一区二区性免费视频| 秋霞在线观看毛片| 最近最新中文字幕免费大全7| 免费看光身美女| 亚洲人与动物交配视频| 成人国产av品久久久| 欧美性感艳星| 成年美女黄网站色视频大全免费 | 欧美精品国产亚洲| 成人亚洲精品一区在线观看| 国产亚洲一区二区精品|