• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body f l uid

    2014-04-21 02:16:53
    Journal of Magnesium and Alloys 2014年1期

    Department of Materials and Engineering,Sharif University of Technology,P.O.Box 11155-9466,Tehran,Iran

    The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body f l uid

    B.Salami*,A.Afshar,A.Mazaheri

    Department of Materials and Engineering,Sharif University of Technology,P.O.Box 11155-9466,Tehran,Iran

    In recent years,magnesium and its alloys are considered as biodegradable implants.However magnesium implants may rapidly corrode before the natural healing process of the tissue is completed.In this investigation,micro arc oxidation process has been studied for avoiding primary corrosion of the magnesium alloy in simulated body f l uid.Anodized coating was formed on AZ31 alloy in nontoxic silicate-alkaline solution at constant current.The effects of silicate concentration and conductivity of electrolyte solution on microstructure and corrosion properties of coating were evaluated.Scanning electron microscopy showed that a thick and condensed coating is formed after enough anodizing period.Energy dispersive spectroscopy showed that Si,O and Mg are the main components of the coating.Corrosion resistance of the coated and uncoated samples was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy tests in SBF at 37°C and pH of 7.4.Maximum corrosion resistance was achieved at 30 g/L concentration of sodium silicate in anodizing solution.It was observed that further increase in silicate concentration decreased the corrosion resistance.

    Magnesium alloy;Micro arc oxidation;Sodium silicate;Conductivity;Corrosion properties

    1.Introduction

    Researches on biocompatible,biodegradable and bioactive implants are highly popular in the f i eld of corrosion and biomaterial engineering.Currently,permanent metallic implants are titanium,stainless steel and poly-L Lactic acid as a polymer implant material[1,2].For the metallic implants, there is a high probability of toxic ion release and a secondary surgery is needed after the complete healing of the tissue,inorder to remove the implant[3].Polymer implants do not have the desired mechanical strength and their applications are limited[4].Magnesium and its alloys are widely used in industries where high strength to weight ratio is required. Fortunately,magnesium can be a proper choice as an implant due to its biodegradable and non-toxic characteristics and also good physical and mechanical properties similar to bones [5,6].Magnesium is the eleventh element in the body in case of mass abundance.Magnesium ions are vital in all live cells of the body and about half of these ions are inside bones[7].A considerable amount of magnesium enters the body daily which is benef i cial for strength and growth of bones.However, the most important problem of magnesium is its fast corrosion rate in body which reduces its physical and mechanical properties.In aqueous environments,magnesium decomposes into crystalline f i lm of magnesium hydroxide and hydrogen gas.It is also possible that magnesium particles separate from the material body due to stress corrosion cracking,which isalso called the chunk effect[2,8].Magnesium surface modif i cation is an effective method to improve corrosion resistance of the implants.Laser Surface melting,by ref i ning β-phase in Mg-alloys and increasing aluminum density can increase corrosion resistance of magnesium alloy[9].In addition by aging at high temperature,the heat treatment can modify magnesium surface and decrease corrosion rate[10].Conversion coating,electroplating and anodizing are the most common surface treatment methods.However,when the coating is needed to be used in a bio-environments,some considerations should be adopted.The coating should be thick, strong and non-toxic.Anodizing is an electrolyte oxidation process in which,the metal acts as the anode and its surface is transformed into a thick,stable oxide layer which can enhance corrosion properties.Anodizing can increase the f i lm thickness,strength,and corrosion resistance and wear resistance making a better substrate for cohesion of the primers comparing to naked metal[2].The behavior of magnesium anodizing is highly dependent on the applied voltage,substrate,current density and electrolyte[11].The aim of the present investigation is evaluating the effect of silicate ion concentration on the Micro Arc Oxidation(MAO)process, microstructure,electrolyte conductivity and corrosion properties of MAO coating in SBF.The constituents of the constant current density anodizing electrolyte were sodium hydroxide (NaOH),borax(Na2B4O7)and various concentration of sodium silicate(Na2SiO3).Polarization and impedance electrochemical methods indicated that anodizing can improve corrosion resistance of AZ31 alloy.SEM,EDS and XRD analysis showed that the formed layer on the surface was rough and porous,containing mostly magnesium,oxygen and silicon in form of MgO and Mg2SiO4.

    2.Experimental

    Rectangular specimens with the dimension of 20 × 15 × 5 mm3were cut from an ingot of AZ31 magnesium alloy. Chemical composition of the ingot is shown in Table 1.Prior to MAO process,the specimens were polished by SiC papers up to mesh 3000,cleaned and degreased ultrasonically in acetone for 5 min,rinsed with distilled water and dried in air at room temperature.

    The MAO electrolyte was an aqueous solution of 500 mL of 1 M NaOH+30 g/L Na2B4O7+(X)g/L Na2SiO3(X=15 g/L,30 g/L and 60 g/L).The AZ31 specimen connected to an aluminum rod acted as the anode and a sheet of stainless steel which was shaped into a circular cylinder, formed the cathode.The MAO process was carried out by high voltage DC power supply(VOKAM 400 V,100 mA)at constant current density of 10 mA cm-2for 30 min.During the process,the electrolyte was agitated by magnetic stirrer.Thetemperature of the system was f i xed at 25 ± 2°C.The conductivity of electrolyte was measured using a digital conductivity meter(EDT,ModelRE387).In addition,during each MAO process,variations of supplied voltage vs.time was recorded using a digital multimeter.Then,the anodized specimens were washed with double distilled water and dried at room temperature.The thickness of anodized layer was measured using an eddy current based thickness gauge(Fisher, Dual scope Model MP40).

    Table 1The amount of element present in AZ31 magnesium alloy.

    Fig.1.The effect of silicate concentration on V-t curve during MAO treatment.

    Electrochemical measurements(Potentiodynamic polarization&Electrochemical impedance spectroscopy(EIS))were carried out to study the corrosion behavior of anodized specimens and uncoated specimen in simulated body f l uid(SBF)at 37°C ± 1.The composition and method of preparation of SBF is reported in Ref.[12].A three-electrode cell was used for electrochemical measurements:a platinum sheet as a counter electrode,the anodized/uncoated specimens as the working electrode and a saturated calomel electrode(SCE)as a reference electrode.The exposed area of working electrode with the SBF solution was 1 cm2.

    Prior to each measurements the samples were kept in solution for 30 min to establish the open circuit potential(OCP). The potentiodynamic polarization measurements were carried out at a scan rate of 1 mV s-1from-0.2 V to 0.8 V(vs.OCP). The EIS measurements were carried out in a scan range of 100 kHz up to 10 mHz with a sinusoidal amplitude voltage of 10 mV.

    3.Results and discussion

    3.1.The silicate concentration effect on MAO process

    Fig.1 shows the diagrams of supplied voltage vs.time during the MAO process for different concentration ofNa2SiO3.The increase in silicate concentration shifts the breakdown voltage to higher values which may enhance the properties of MAO coating[13].On the other hand,the increase in silicate concentration decreases the conductivity of electrolyte which reduces the intensity of discharge channels (Table 2).This leads to decrease in the amount of localized melting and solidif i cation cycles and consequently diminishesthe quality of MAO coating.Therefore,there is an optimum concentration of silicate for MAO process.

    Table 2Electrical conductivity of electrolyte in various silicate concentration.

    Table 3Atomic and weight percentage of element in MAO coating.

    Fig.2.SEM micrograph and EDS analysis of MAO coating in various silicate concentration a)15 b)30 and c)60 g/L.

    Fig.3.Thickness of MAO coating in various silicate concentration.

    3.2.The silicate concentration effect on morphology and thickness of coating

    The result of EDS analysis of anodized coatings at different concentration of silicate ion is shown in Table 3.It was found that by increasing the silicate concentration from 15 g/L to 60 g/L,the ratio of oxygen to magnesium increases from 2.3 to 4.1 as well as increasing the weight percentage of silicon(Si) in chemical composition of anodized layer.These results indicate that the increase in silicate concentration of electrolyte bath decreases the ratio of wt.%of MgO to wt.%of Mg2SiO4in the resultant coating(Fig.2)leading to the formation of more uniform and denser MAO coating[14].This is due to the benef i cial effect of silicate on the uniformity of emitted sparks[15].As mentioned above,increasing the concentration of silicate reduces the conductivity of the electrolyte and therefore repression of ion exchange.Thus, discharge channels occur more severely promoting the formation of large pores that is detrimental to the properties of the coating as shown in Fig.2.It is also shown in Fig.3 that upon increasing the concentration of silicate,the thickness of the MAO coating increases and reaches to a maximum value of 32 μm in the present study.

    Fig.4.XRD diffraction pattern of MAO coating.

    Fig.5.Potentiodynamic polarization curves of MAO coating in at different silicate concentration in SBF(Temp.37°C,pH 7.4).

    3.3.Phase composition of MAO coating

    The XRD pattern of MAO coating is shown in Fig.4.It is obvious that the MAO coating is mainly composed of the biocompatible Mg2SiO4(Forsterite).In addition,oxide of magnesium(MgO)is the second phase detected in the MAO coating.The appearance of strong magnesium peaks in the pattern suggests the relatively thin and porous nature of the MAO coating that the X-ray could penetrate into the substrate.

    3.4.Electrochemical measurements

    3.4.1.Potentiodynamic polarization

    Fig.5 shows the polarization plots of MAO coatings produced in electrolytes with different silicate concentrations.As can be seen in Table 4,raising of silicate concentration in MAO process to 30 g/L has led to improvement of corrosion resistance of the coating due to accelerated coating growth as a result of incorporation of Si into the coating structure and formation of complex Mg-Si-O phases.A similar phenomenon has been reported by A.L.Yerokhin et al.[11].But as mentioned before increasing the silicate concentration morethan 30 g/L can have improper effect on MAO coating. Consequently,the silicate concentration of MAO electrolyte plays a major role in characterization of the f i nal coating and can lead to the formation of a two-phase structure in which the weight percentage of each phase is strongly dependent on silicate concentration.

    Table 4Potentidynamic polarization data for specimen without and with coating in various silicate concentration.

    Based on prior observations,the corrosion process of MAO coatings can be divided to three stages[13]:

    1 Penetration of electrolyte via porosities of the oxide layer, reaching the interface between barrier layer and porous layer

    2 Transformation of MgO phase to a less dense Mg(OH)2phase

    3 Formation of micro cracks in barrier layer and initiation of corrosion of magnesium alloy substrate

    Fig.6.Nyquist and bode plot of MAO coating at different silicate concentration in SBF(temp.37,pH 7.4).

    Assuming the corrosion process of MAO coatings as above three stages,it can be anticipated that the corrosion resistance of MAO coatings strongly depend on porosity and the thickness of the coating,in a manner that the increase in the thickness of the coating and decrease in porosity leads to enhancement of corrosion resistance of MAO coating[13].

    3.4.2.Electrochemical impedance spectroscopy(EIS)

    The Nyquist plots and Bode plots of as-coated and bare specimens are presented in Fig.6.As can be seen in Fig.6,the Nyquist plots of as-coated and bare specimens are two-loop plots.The two-loop plots of as-coated specimens are indicative of presence of two-layer coating in which,the outer one is a porous layer and the inner one is a compact and uniform adjacent to the substrate surface[15].The two-loop plot of bare specimen may be illustrative of formation of calcium--phosphate precipitations on the surface of specimen during the test[16].EIS data analysis has been carried out by f i tting it to an equivalent electric circuit model shown in Fig.7 which has good compliance with the resulting data.Due to nonuniformity of surface and diffusion factors,the capacitor in the equivalent electric circuit can be replaced by a constant phase element(CPE)to improve simulation of the impedance. The admittance of CPE is presented in equation(1):

    Fig.7.Cross section SEM micrograph of coating and Electrochemical equivalent circuit used for curved f i tting.

    Table 5Electrochemical f i tting values for MAO coating and bare specimen from EIS technic.

    In equation(1),Ais a constant,jis imaginary unit (j2=-1),fis frequency of input AC signal andnis the power of the constant phase element(CPE).Ifn=0,the CPE is equivalent of resistance;ifn=1,the CPE is equivalent of capacitor and ifn=0.5,the CPE is equivalent of Warburg impedance.As can be seen in Fig.7,the equivalent electric circuit of MAO system consists of the following elements: solution resistance(Rs),resistance of porous outer layer(Rp), constant phase element of porous layer(CPEp),resistance of compact inner layer(Rf)and constant phase element of compact layer(CPEf)[15,17].The quantities of these parameters of equivalent circuit which are extracted from impedance data are presented in Table 5.As can be seen in Fig.6 and Table 5,with raising the silicate concentration up to 30 g/L,the resistance of the coating increases.Further increasing of the silicate in electrolyte,deteriorates corrosion resistance of the f i lm.

    4.Conclusion

    1.In MAO process,by increasing the silicate concentration of electrolyte,the breaking voltage of the coating increases from 100 V to 110 V.Further increasing of silicate concentration,raises the breaking voltage to 120 V.The increase in breaking voltage is advantageous for MAO process due to accumulation of the energy in the system and the increase in kinetic of coating formation.On the other hand,the increase of breaking voltage which exceeds a limiting point may impair the quality of MAO coating by resultant increase of discharging channels and increase in girth of pores.

    2.The XRD analysis showed that the MAO coating consists of two bio-ceramic phases;which are MgO and Mg2SiO4.

    3.The most corrosion resistant coating was achieved in the electrolyte containing 30 g/Lof Na2SiO3.The corrosion current density of the Mg alloy was decreased from 214 μA cm-2(thedensity ofbare specimen)to 2.73 μA cm-2which demonstrates the ability of MAO coating to improve the corrosion resistance of the surface of biodegradable magnesium alloy.

    [1]S.K.Tiwari,T.Mishra,M.K.Gunjan,A.S.Bhattacharyya,T.B.Singh, R..Singh,Surf.Coatings Technol.201(2007)7582-7588.

    [2]D.Xue,Y.Yun,M.J.Schulz,V..Shanov,Mater.Sci.Eng.C 31(2011) 215-223.

    [3]M.E.Ferreira,M.d.L..Pereira,F.G.e.Costa,J.P..Sousa,G..Simo?es de Carvalho,Trace Elem.Med.Biolo.17(1)(2003)45-49.

    [4]N.Kumar,R.S.Langer,A.J..Domb,Polyanhydrides:an overview,Adv. Drug.Deliv.Rev.54(2002)889-910.

    [5]F.Witte,J.Fischer,J.Nellesen,H.A.Crostack,V.Kaese,A.Pisch, F.Beckmann,H..Windhagen,Biomaterials 27(2006)1013-1018.

    [6]R.C.Zeng,W.Dietzel,F.Witte,N.Hort,C..Blawert,Adv.Eng.Mater. 10(8)(2008)B3-B14.

    [7]F.Witte,N.Hort,C.Vogt,S.Cohen,K.U.Kainer,R.Willumeit,F.. Feyerabend,Curr.Opin.Solid State Mater.Sci.12(2008)63-72.

    [8]Y.Yun,Z.Dong,N.Lee,Y.Liu,D.Xue,X.Guo,J.Kuhlmann, A.Doepke,H.B.Halsall,W.Heineman,S.Sundaramurthy,M.J.Schulz, Z.Yin,V.Shanov,D.Hurd,P.Nagy,W.Li,C..Fox,Mater.Today 12 (2009)22-32.

    [9]Y.C.Guan,W.Zhou,H.Y..Zheng,Appl.Electrochem.39(2009) 1457-1464.

    [10]W.Zhou,T.Shen,N.N.Aung,Corros.Sci.52(2010)1035-1041.

    [11]A.L.Yerokhin,X.Nie,A.Leyland,A.Matthews,S.J..Dowey,Surf. Coatings Technol.122(1999)73-93.

    [12]T.Kokubo,H.Takadama,Biomaterials 27(2006)2907-2915.

    [13]S.Zhang,F.Wang,R.Zhang,M.Li,F.Zhao,C.Zhou,C..Hu,Transaction Nonferrous Metals Soc.China”17(2007)785-788.

    [14]Q.Wen,F.H.Cao,Y.Y.Shi,Z.Zhang,J.Q..Zhang,Mater.Corros.59 (2008)819-824.

    [15]P.B.Srinivasan,J.Liang,C.Blawert,M.Stormer,W..Dietzel,Appl. Surf.Sci.255(2009)4212-4218.

    [16]XinYunchang,Degradation mechanism and surface modif i cation of biomedical magnesium alloy[Doctor of Philosophy thesis],Department of Physics and Materials Science,Aug 2009,pp.49-50.

    [17]L.J.Zhang,J.J.Fan,Z.Zhang,F.H.Cao,J.Q.Zhang,C.N.Cao,Electrochem.Acta 52(2007)5325-5333.

    Received 10 January 2014;revised 7 February 2014;accepted 8 February 2014 Available online 24 April 2014

    *Corresponding author.Tel.:+98 915 571 1726;fax:+98 21 6600 5717. E-mail address:bsalami@gmail.com(B.Salami).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.02.002.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    免费黄频网站在线观看国产| 啦啦啦啦在线视频资源| 亚洲美女搞黄在线观看| 精品人妻熟女毛片av久久网站| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 天天躁夜夜躁狠狠躁躁| 18禁国产床啪视频网站| 天天操日日干夜夜撸| 亚洲伊人久久精品综合| 中文字幕av电影在线播放| 国产 精品1| 亚洲精品一区蜜桃| 久久女婷五月综合色啪小说| 99香蕉大伊视频| 97在线视频观看| 国产在视频线精品| 日韩制服丝袜自拍偷拍| 精品酒店卫生间| 国产精品国产三级专区第一集| 爱豆传媒免费全集在线观看| av国产久精品久网站免费入址| 热re99久久精品国产66热6| 久久狼人影院| 中文天堂在线官网| 一边亲一边摸免费视频| 下体分泌物呈黄色| 国产精品麻豆人妻色哟哟久久| 国产精品.久久久| 欧美精品一区二区免费开放| 精品一区在线观看国产| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 一区二区三区精品91| 国产男女内射视频| 97人妻天天添夜夜摸| 国产亚洲精品第一综合不卡 | 亚洲av福利一区| 男男h啪啪无遮挡| 国产成人欧美| 日本黄色日本黄色录像| 26uuu在线亚洲综合色| 中国国产av一级| 国产精品一区www在线观看| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 校园人妻丝袜中文字幕| 丝袜在线中文字幕| 国产在线免费精品| 免费在线观看黄色视频的| 久久综合国产亚洲精品| 麻豆精品久久久久久蜜桃| 免费人成在线观看视频色| 国产有黄有色有爽视频| 久久久久视频综合| www日本在线高清视频| 极品少妇高潮喷水抽搐| 成人免费观看视频高清| 亚洲国产av影院在线观看| 国产av国产精品国产| 国产69精品久久久久777片| 亚洲精品久久成人aⅴ小说| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 又黄又粗又硬又大视频| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美在线一区| 国产精品一区www在线观看| 青春草视频在线免费观看| 国产精品久久久久久久电影| 一级毛片 在线播放| 99久久综合免费| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 亚洲精品色激情综合| 精品久久久精品久久久| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站| av免费在线看不卡| 亚洲av免费高清在线观看| 一个人免费看片子| 永久网站在线| 夫妻午夜视频| 韩国高清视频一区二区三区| 大香蕉久久网| 亚洲国产av影院在线观看| 校园人妻丝袜中文字幕| 少妇熟女欧美另类| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 97在线视频观看| 女性被躁到高潮视频| 亚洲美女搞黄在线观看| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 91久久精品国产一区二区三区| 欧美 亚洲 国产 日韩一| 国产在线一区二区三区精| 国产探花极品一区二区| av在线观看视频网站免费| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| 国产一级毛片在线| 亚洲在久久综合| 2022亚洲国产成人精品| 国产精品女同一区二区软件| 欧美成人午夜精品| 国产免费一区二区三区四区乱码| 18禁动态无遮挡网站| 精品亚洲乱码少妇综合久久| 国产av一区二区精品久久| 最近最新中文字幕大全免费视频 | 91精品国产国语对白视频| 性色av一级| 赤兔流量卡办理| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 亚洲美女黄色视频免费看| 国产精品一区二区在线不卡| 51国产日韩欧美| 久久狼人影院| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 欧美国产精品一级二级三级| 丝袜在线中文字幕| 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 97精品久久久久久久久久精品| 免费看不卡的av| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 国产精品人妻久久久影院| 久久久久网色| 18+在线观看网站| 久久99精品国语久久久| 毛片一级片免费看久久久久| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| av一本久久久久| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 51国产日韩欧美| 亚洲成av片中文字幕在线观看 | 亚洲国产av影院在线观看| 我要看黄色一级片免费的| 国产又爽黄色视频| 制服诱惑二区| 热re99久久国产66热| tube8黄色片| 天天操日日干夜夜撸| 中国国产av一级| 国产欧美日韩一区二区三区在线| 国产av码专区亚洲av| 国产亚洲欧美精品永久| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| 精品一区在线观看国产| 女人被躁到高潮嗷嗷叫费观| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| 在线观看免费日韩欧美大片| 好男人视频免费观看在线| 巨乳人妻的诱惑在线观看| 亚洲精品乱码久久久久久按摩| 黄片播放在线免费| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 好男人视频免费观看在线| 亚洲国产看品久久| 美女主播在线视频| 精品久久久精品久久久| 在线精品无人区一区二区三| 久久久国产一区二区| 在线观看www视频免费| 女人久久www免费人成看片| 少妇的丰满在线观看| 久久精品夜色国产| 免费高清在线观看日韩| 国产精品免费大片| 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 人妻 亚洲 视频| 国产熟女午夜一区二区三区| 成年人午夜在线观看视频| 亚洲国产精品999| 成人国产麻豆网| 国产精品久久久久久精品电影小说| 日韩成人伦理影院| 久久久久视频综合| 中文字幕免费在线视频6| 国产成人精品久久久久久| av天堂久久9| 国产爽快片一区二区三区| 男女免费视频国产| 国产1区2区3区精品| 日韩视频在线欧美| 亚洲国产av新网站| 丰满饥渴人妻一区二区三| 大陆偷拍与自拍| √禁漫天堂资源中文www| 久久精品久久久久久久性| 精品国产露脸久久av麻豆| av一本久久久久| 韩国精品一区二区三区 | 热re99久久精品国产66热6| 精品国产一区二区三区久久久樱花| 欧美另类一区| 精品亚洲成国产av| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 99精国产麻豆久久婷婷| av国产精品久久久久影院| 一个人免费看片子| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 多毛熟女@视频| 99久久人妻综合| 一级片免费观看大全| 一二三四中文在线观看免费高清| 另类亚洲欧美激情| 精品午夜福利在线看| 韩国高清视频一区二区三区| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 国产欧美亚洲国产| 久久热在线av| 秋霞伦理黄片| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 国产女主播在线喷水免费视频网站| 亚洲,一卡二卡三卡| 日韩视频在线欧美| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 18在线观看网站| 久久午夜福利片| 蜜桃在线观看..| 久久久久久久久久人人人人人人| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜| 新久久久久国产一级毛片| 只有这里有精品99| 国产黄色视频一区二区在线观看| 国产精品久久久久久久电影| 大片免费播放器 马上看| 国产精品国产av在线观看| 99热网站在线观看| 国产69精品久久久久777片| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 九草在线视频观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品高潮呻吟av久久| 99香蕉大伊视频| 一二三四在线观看免费中文在 | 视频中文字幕在线观看| 少妇被粗大的猛进出69影院 | 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 99视频精品全部免费 在线| 国产成人av激情在线播放| 亚洲三级黄色毛片| 99久久中文字幕三级久久日本| 99热全是精品| 久久久久久久久久久久大奶| 老司机影院成人| 国产欧美亚洲国产| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 国产成人91sexporn| 在线观看www视频免费| 欧美精品一区二区大全| 亚洲四区av| 人人妻人人澡人人爽人人夜夜| 久久久久人妻精品一区果冻| 日韩一区二区视频免费看| 精品一区二区免费观看| 免费黄网站久久成人精品| 久久99精品国语久久久| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| av卡一久久| 亚洲性久久影院| 夫妻午夜视频| 日韩伦理黄色片| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| 亚洲精品av麻豆狂野| 久久婷婷青草| 亚洲av福利一区| 亚洲精品一区蜜桃| 久久这里只有精品19| 丝袜在线中文字幕| 男人操女人黄网站| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 男人爽女人下面视频在线观看| 九草在线视频观看| 亚洲,一卡二卡三卡| 免费在线观看完整版高清| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 日韩不卡一区二区三区视频在线| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看 | 免费黄色在线免费观看| 1024视频免费在线观看| 国产精品久久久久久精品电影小说| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 日韩熟女老妇一区二区性免费视频| 国产精品女同一区二区软件| 伦精品一区二区三区| 国产亚洲最大av| 夜夜爽夜夜爽视频| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 免费播放大片免费观看视频在线观看| 晚上一个人看的免费电影| 国产黄频视频在线观看| a级毛色黄片| 22中文网久久字幕| 少妇人妻精品综合一区二区| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 国产在线视频一区二区| 高清不卡的av网站| 色94色欧美一区二区| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 国产毛片在线视频| 日本爱情动作片www.在线观看| 人妻一区二区av| 制服人妻中文乱码| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 久久久欧美国产精品| 欧美另类一区| 国产精品不卡视频一区二区| 青青草视频在线视频观看| 另类亚洲欧美激情| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 天堂8中文在线网| 国产精品人妻久久久久久| 免费av中文字幕在线| 美女中出高潮动态图| 亚洲精品色激情综合| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 国产色婷婷99| 国产精品欧美亚洲77777| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 夜夜爽夜夜爽视频| 97在线视频观看| 国产av一区二区精品久久| 欧美国产精品一级二级三级| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 中国国产av一级| 亚洲,欧美精品.| 亚洲欧洲日产国产| 国产精品不卡视频一区二区| 午夜免费鲁丝| 久久久久久久久久久免费av| 人妻人人澡人人爽人人| 午夜福利在线观看免费完整高清在| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 老司机亚洲免费影院| 男女免费视频国产| 一二三四在线观看免费中文在 | 2021少妇久久久久久久久久久| 免费女性裸体啪啪无遮挡网站| 久久国内精品自在自线图片| 交换朋友夫妻互换小说| 少妇 在线观看| 国产精品国产三级专区第一集| 青春草国产在线视频| 免费高清在线观看视频在线观看| 激情视频va一区二区三区| 国产精品一国产av| 成年av动漫网址| 精品一区二区免费观看| 国产日韩欧美在线精品| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 天堂8中文在线网| 亚洲精品美女久久av网站| 国产1区2区3区精品| 亚洲av电影在线进入| 精品国产国语对白av| 人体艺术视频欧美日本| av女优亚洲男人天堂| 一级,二级,三级黄色视频| 久久人人爽人人片av| 两性夫妻黄色片 | 91午夜精品亚洲一区二区三区| 99热全是精品| 欧美日韩精品成人综合77777| 精品99又大又爽又粗少妇毛片| 亚洲国产av影院在线观看| 在线观看人妻少妇| 男女边吃奶边做爰视频| 欧美人与善性xxx| 高清不卡的av网站| 中文字幕另类日韩欧美亚洲嫩草| 一本大道久久a久久精品| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| 成人手机av| 久久久久久人人人人人| 精品国产乱码久久久久久小说| 99热全是精品| 日产精品乱码卡一卡2卡三| 美女视频免费永久观看网站| 亚洲国产精品专区欧美| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 成人漫画全彩无遮挡| 岛国毛片在线播放| 99久久精品国产国产毛片| 母亲3免费完整高清在线观看 | 亚洲图色成人| 国产成人精品婷婷| 午夜福利,免费看| 国精品久久久久久国模美| 国产精品一区二区在线观看99| 久久国内精品自在自线图片| 丝袜人妻中文字幕| 18禁动态无遮挡网站| av免费在线看不卡| av视频免费观看在线观看| 观看美女的网站| 久久精品人人爽人人爽视色| 久久久久网色| 91aial.com中文字幕在线观看| 自线自在国产av| 一本—道久久a久久精品蜜桃钙片| 男人添女人高潮全过程视频| 久久久久人妻精品一区果冻| 久久久国产精品麻豆| 又黄又粗又硬又大视频| 丝袜人妻中文字幕| 日韩制服丝袜自拍偷拍| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 好男人视频免费观看在线| 午夜福利网站1000一区二区三区| 妹子高潮喷水视频| www.色视频.com| 久久狼人影院| 看免费av毛片| av.在线天堂| 欧美成人午夜精品| 亚洲国产av新网站| 一区二区日韩欧美中文字幕 | 精品一品国产午夜福利视频| 精品少妇久久久久久888优播| 最近中文字幕2019免费版| 黄色视频在线播放观看不卡| 婷婷色综合大香蕉| 亚洲第一av免费看| 人人澡人人妻人| videosex国产| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| 老女人水多毛片| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩成人在线一区二区| 99久久人妻综合| 午夜久久久在线观看| 在线精品无人区一区二区三| 一本大道久久a久久精品| 18在线观看网站| 丝瓜视频免费看黄片| 国产精品免费大片| 国产在线免费精品| 亚洲国产色片| 欧美日韩视频精品一区| 在线观看人妻少妇| 精品第一国产精品| 国产av码专区亚洲av| 亚洲精品成人av观看孕妇| 亚洲欧美成人综合另类久久久| 久久狼人影院| 国精品久久久久久国模美| 亚洲av日韩在线播放| 久久99热6这里只有精品| 美女国产视频在线观看| 国产不卡av网站在线观看| 男男h啪啪无遮挡| 母亲3免费完整高清在线观看 | 国产色爽女视频免费观看| 久久久久人妻精品一区果冻| 欧美日韩综合久久久久久| 久久精品夜色国产| 精品一区二区免费观看| 国产精品人妻久久久久久| 久久午夜福利片| 亚洲av中文av极速乱| 男人舔女人的私密视频| 国产国拍精品亚洲av在线观看| 亚洲精品美女久久av网站| 老司机影院成人| 欧美人与性动交α欧美精品济南到 | 久久99热6这里只有精品| av片东京热男人的天堂| 亚洲欧美成人精品一区二区| 美国免费a级毛片| 一区二区三区精品91| 在线观看人妻少妇| 国产综合精华液| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 日韩在线高清观看一区二区三区| 最后的刺客免费高清国语| 欧美日韩成人在线一区二区| 午夜福利视频在线观看免费| 天堂8中文在线网| 欧美xxⅹ黑人| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 亚洲av电影在线进入| 亚洲欧美日韩另类电影网站| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 美国免费a级毛片| 两性夫妻黄色片 | 日韩制服骚丝袜av| 国产精品不卡视频一区二区| 夜夜骑夜夜射夜夜干| 国产精品一国产av| 久久精品熟女亚洲av麻豆精品| av在线播放精品| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 两个人看的免费小视频| 日本黄大片高清| 丝袜在线中文字幕| 精品久久国产蜜桃| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 久久久久视频综合| 国产欧美亚洲国产| 一二三四在线观看免费中文在 | 国产精品久久久久久久久免| 免费久久久久久久精品成人欧美视频 | av免费观看日本| 久久精品熟女亚洲av麻豆精品| 男男h啪啪无遮挡| 免费高清在线观看视频在线观看| 欧美精品高潮呻吟av久久| 久久精品久久精品一区二区三区| 美女大奶头黄色视频| 高清在线视频一区二区三区| 亚洲情色 制服丝袜| 国产免费福利视频在线观看| 精品99又大又爽又粗少妇毛片| av一本久久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品456在线播放app| 精品久久国产蜜桃| 精品国产一区二区三区久久久樱花| 亚洲成人一二三区av| 国产精品免费大片| 欧美日韩综合久久久久久| 蜜桃国产av成人99| 国国产精品蜜臀av免费| 国产熟女欧美一区二区| 欧美成人精品欧美一级黄| 亚洲欧洲日产国产| 熟女电影av网| 18禁动态无遮挡网站| 久久ye,这里只有精品| 亚洲欧美一区二区三区黑人 | av有码第一页| 日韩一区二区三区影片| 啦啦啦在线观看免费高清www| 久久女婷五月综合色啪小说|