• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and corrosion behavior of Mg-Zn-Y-Al alloys with long-period stacking ordered structures

    2014-04-21 02:16:55JinshnZhngZilongZhoChunxingXu
    Journal of Magnesium and Alloys 2014年1期

    ,Jinshn Zhng,,Zilong Zho,Chunxing Xu

    aCollege of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    bWeichai Power Co.,LTD.,Weifang 261001,China

    cTaiyuan Iron&Steel(Group)Co.,LTD.,Taiyuan 030003,China

    Microstructure and corrosion behavior of Mg-Zn-Y-Al alloys with long-period stacking ordered structures

    Dan Wanga,Jinshan Zhanga,*,Jidong Xub,Zilong Zhaoc,Weili Chenga,Chunxiang Xua

    aCollege of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    bWeichai Power Co.,LTD.,Weifang 261001,China

    cTaiyuan Iron&Steel(Group)Co.,LTD.,Taiyuan 030003,China

    Mg97-xZn1Y2Alxalloys with long-period stacking ordered(LPSO)structures were prepared by conventional casting method.The optical microscopy(OM),X-ray diffraction(XRD)and the scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy (EDS)were used to analyze the microstructure of the alloys with different compositions.Immersion test and electrochemical measurement were used to evaluate the corrosion behavior of the alloys at room temperature,and the corrosive medium is 3.5%NaCl aqueous solution.The results showed that,with the increasing aluminum(Al)addition,except α-Mg and LPSO phases,new phases also emerged on the grain boundaries.At the same time,the zigzag part of LPSO phases disappeared,and the boundaries between LPSO phases and α-Mg became smooth.Furthermore, the addition of Al to Mg-Zn-Y alloys could hinder the activity of cathodic hydrogen evolution reaction and improve the uniformity and compactness of the protective surface f i lm,thus,enhanced the corrosion resistance of Mg-Zn-Y alloys.

    Magnesium alloy;Rare earth element;SEM;XRD;Weight loss;Polarization

    1.Introduction

    Magnesium(Mg)alloys have become one of the potential engineer materials for automobile and aeronautical industries because of its high strength weight ratio and low density[1,2]. In order to obtain excellent properties and wide applications, many researchers have paid great attention to explore effective strengthening phases in Mg alloys[3,4].During the last decades,the Mg-Zn-RE Mg alloy consists of α-Mg and longperiod stacking ordered(LPSO,X phase)phases have been developed,alloys with this structure own unique microstructure and excellent mechanical properties[5,6].The application of rapidsolidif i cation/powermetallurgyprocessingtoMg97Zn1Y2alloy which can form LPSO phases in the alloy results in excellent yield strength(610 MPa)and elongation(5%), respectively[7,8].The most important is that this long-period stacking ordered structure can also be obtained in conventional copper mold casting[9].Furthermore,it is suggested that,LPSO phases also emerge in Mg-RE-X(X=Ag,Cu, Ni)alloys[10-13].However,the corrosion behavior of LPSO-containing alloys and the effect of fourth element addition on corrosion behavior of Mg-Zn-RE alloys have not been investigated.

    Al is one of the common elements in Mg alloys,in general, the addition of Al can improve the stability of protective f i lmformed on the corroded Mg alloy surface,which in turn enhanced corrosion resistance[14,15].Recent years,Yamasaki has investigated the corrosion behavior of LPSO Mg-Zn-Y alloys containing Al,which was fabricated by rapid solidif ication/power metallurgy processing[16].The result showed that,due to the existence of Al which can modify the composition and structure of surface f i lms,corrosion resistance of Mg-Zn-Y-Al alloys was increased with the increase of Al. However,the investigation of Al-containing Mg-Zn-Y LPSO phasealloyswerepreparedbyconventionalcastingmethodwas not reported,therefore,the investigation of effect of Al addition on microstructure and corrosion behavior of Mg-Zn-Y alloy provide a reference for the application of Mg-Zn-Y LPSO phase alloy.

    2.Experimental

    The alloys used for this investigation were prepared by well type crucible resistance furnace from high purity Mg(99.9%), Y(99.9%),Zn(99.9%)and Al(99.9%)in a shielding gas CH2FCF3+N2atmosphere at 1033 K.In order to reduce the inf l uence of impurity on the corrosion property,the melted alloy was ref i ned at the last step of the melting process.Then it was cast into a preheated iron mold.The chemical compositions of Mg-Zn-Y-Al alloys are listed as follows in Table 1. The prepared Mg97-xZn1Y2Alxingots were cut into cylindershaped specimens of φ30 mm × 3 mm.Specimens for immersion and polarization curve tests were ground to a 2000 grit SiC paper,and subsequently rinsed with absolute alcohol in an ultrasonic bath and dried in warm air.Specimens for metallographic observation were further ground to 3000 grit SiC paper,and then etched by 3%nital.

    The immersion test was carried out at room temperature in 3.5%NaCl solution for 40 h.Prior to immersion test,the every surface of specimens was ground with 2000 grit paper,ultrasonically cleaned in acetone and dried with warm air.At the end of the test,they were immersed into 200 g/L CrO3+10 g/ L AgNO3boiling solution to remove the corrosion products attached on the specimen surface,then washed with distilled water and dried with hot air.The weighted mass changes of these specimens were measured on a one over ten-thousand analytical balance,and mass changes per unit of surface area were calculated to evaluate the corrosion resistance.

    The polarization curves were measured using Land CS350 electrochemical system in 3.5%NaCl aqueous solution at room temperature.A classical three-electrode cell was used with a platinum as counter electrode,a saturated calomel electrode as reference electrode and the samples sealed by resin with an exposed area of 1 cm2as working electrodes. The working surfaces of the working electrodes for the test were ground using 2000 grit SiC paper and cleaned in acetone before exposed to the solution.After open-circuit potentials (OCP)was measured in 3.5%NaCl aqueous solution for 300 s at room temperature,polarization curves test was conducted at a scan rate of 2 mV/s.

    The surface morphologies were observed with JSU-6700F scanning electron microscope (SEM)to determine thedistribution and morphology of the phases on the surfaces of Mg-Zn-Y-Alalloys.The chemicalcompositionsof different phases in Mg-Zn-Y-Al alloys were analyzed by an energy dispersive spectroscopy(EDS).Phase constitution analyses were performed with a Y-2000 X-ray diffractometer, using monochromatic Cu-Kα radiation.

    Table 1The chemical compositions of experimental alloys(wt.%).

    3.Results and discussion

    3.1.Microstructure

    The microstructures of the Mg-Zn-Y-Al alloys are shown in Fig.1.Combining with XRD study(as seen in Fig.2),Mg96.9Zn1Y2Al0.1and Mg96.8Zn1Y2Al0.2alloys have similarmicrostructures compared with Mg96.7Zn1Y2Al0.3alloy,therefore,the SEM images of alloys Mg96.7Zn1Y2Al0.3, Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1were selected to show the microstructure of Mg-Zn-Y-Al alloys.It can be seen in Fig.1b,besides α-Mg phase and X phase,a small amount of strip-shaped phases can be observed in Mg96.7Zn1Y2Al0.3alloy,and these strip-shaped phases primarily precipitated on the grain boundaries.When continued to increase the content of Al,the amount of strip-shaped phases increased,as shown in Fig.1c,and had a trend to get together.Then,the amount of these clustered strip-shaped phases increased in the Mg96Zn1Y2Al1alloy,as shown in Fig.1d.Moreover,the morphology of X phase in the alloys changed with the increase of Al,the characteristic of the X phase from zigzag to smooth. It suggested that the formation of X phase based on atom diffusion[17]and the addition of Al could promote the diffusion of Zn and Y into grain boundary which was important for formation of X phase,but Al,simultaneously, consumed the Zn and Y by formed strip-shaped phases,thus, X phase became smooth and f i ne when increased the addition of Al.Fig.1e and f shows the TEM image and SAED patterns of the X phase.In the SAED patterns,the spots were arranged in positions that divided the height between the incident beam and the(0002)Mg6-fold.Based on the XRD peaks in Fig.2 and SAED patterns in Fig.1f,the X phase was determined as Mg12ZnY,and had 18R LPSO structure which had been investigated by the previous study[18].The composition of the strip-shaped phase was determined as Mg4Y2ZnAl3by EDS(Fig.3).And the new peaks compared to the Mg97Zn1Y2alloy in XRD patterns also proved the existence of the new phases which were named as Mg4Y2ZnAl3in this paper.

    Fig.1.SEM images of microstructure of(a)Mg97Zn1Y2,(b)Mg96.7Zn1Y2Al0.3,(c)Mg96.5Zn1Y2Al0.5,(d)Mg96Zn1Y2Al1and TEM image of X phase and corresponding SAED patterns of(e)X phase,(f)the SAED patterns of X phase.

    Fig.2.XRD analysis of Mg-Y-Zn-Al alloys.

    The EDS spectra of α-Mg phase and X phase in the Mg-Zn-Y-Al alloys were shown in Tables 2 and 3, respectively.The distribution of Al in α-Mg and X phase was determined.When the content of Al was 0.3%,trace Al was detected in α-Mg,while no Al was found in the X-phase. However,when the content of Al is 0.5%,Al was found in the X-phase.Similarly,trace element of Al was also found in both α-Mg phase and X phase in alloy Mg96Zn1Y2Al1.In a word, the content of Al in α-Mg and X phase increased with the increase of Al in Mg-Zn-Y-Al alloys.It can be seen that the Al element can dissolve into X phase and α-Mg to some extent [19],and from the view of corrosion,the Al dissolved in the α-Mg phase can enhance the corrosion resistance by improving the stability and compactness of surface layer.From the view of microstructure,the Al dissolved in the X phase may block the diffusion of Zn and Y which participate in the formation of the X phase,thus,weaken the characteristic of the X phase which had a obvious zigzag morphology.

    In addition,there were trace zinc(Zn)and yttrium(Y)in α-Mg as can be seen from Table 2.It is well known that the rare earth Y can also improve the compactness of the corroded f i lm,and therefore,the corrosion resistance of Mg-Zn-Y-Al alloys was enhanced[20].

    3.2.Corrosion resistance of Mg-Zn-Y-Al alloys

    3.2.1.Immersion test

    Fig.3.EDS spectra of(a)and(b)Mg96.7Zn1Y2Al0.3,(c)and(d)Mg96.5Zn1Y2Al0.5,(e)and(f)Mg96Zn1Y2Al1.

    Theaveragecorrosionrateofalloys derivedfromimmersion test in 3.5%NaCl solution for 40 h at room temperature are shown in Fig.4.The alloy with 1%Al showed the lowest weight loss rate(4.3 mg/cm2day),indicating the best corrosion resistance.But viewed as a whole,Fig.4 shows that the corrosion rate curve had a larger slopewhen the content of Al is lower than 0.3%,comparing to that with higher addition of Al. It implied that 0.3%Al addition was helpful to decrease the corrosion rate to a great extent.And the corrosion rate value of Mg96.7Zn1Y2Al0.3alloy(5.14 mg/cm2day),fell by half compared to the Al-free Mg alloy(10.15 mg/cm2day).In the study of Al-containing Mg alloys corrosion[21,22],Al element had two inf l uences on the corrosion of Mg alloys:on the one hand,it can promote the precipitation of β phase,acting as cathode inthe corrosionmicro-galvanic,whichcanincreasethe corrosion rate and forming continuous,f i ne and uniform netlike phase,which hinder the propagation of the corrosion.On the other hand,the Al dissolved in the α-Mg phase can improve the stability of surface f i lm,therefore,protectingMg alloy from corrosion.The EDS spectra of α-Mg in Mg-Zn-Y-Al alloys indicated that,no Al exist in α-Mg of Mg96.9Zn1Y2Al0.1and Mg96.8Zn1Y2Al0.2alloy,but the corrosion resistance of the two alloys was still enhanced,the reason might be that the content of Al was too small to detect.Furthermore,the percentage of Al dissolved in α-Mg increased with the increase of Al content inMg-Zn-Y alloys,and it could be seen that the percentage of Al in α-Mg of Mg96Zn1Y2Al1alloy reached 0.43%(as seen in Table 2),and this high solid solubility of Al in α-Mg was good for the formation of compact f i lm.It couldbe concluded that,in this study,the stability of corroded f i lm formed on the Alcontaining alloy surface corresponded to the enhancement of corrosion resistance.Theweight loss rate of the Mg96Zn1Y2Al1alloy,having the most content of Al element,is slightly lower than that of Mg96.5Zn1Y2Al0.5alloy,and this result may be due to the coarsening of the grain size of Mg96Zn1Y2Al1alloy and the increase of segregation of Al.3.2.2.Electrochemical measurements

    Table 2Elements content in the α-Mg of alloys(wt.%).

    Table 3Elements content in the X-phase of alloys(wt.%).

    Fig.4.Corrosion rates of Mg-Zn-Y-Al alloys after immersion in 3.5%NaCl solution at room temperature for 40 h.

    Fig.5.The polarization curves for Mg-Zn-Y-Al alloys in 3.5%NaCl solution at room temperature.

    Fig.5 shows the polarization curves of Mg97Zn1Y2, Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1alloys in 3.5%NaCl solution.The Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1alloys exhibited lower cathodic current densities than Mg97Zn1Y2alloy,and it is well known that the cathodic current densities was followed by the evolution of hydrogen on the specimen surface,thus,it can be deduced that the addition of Al in the Mg-Zn-Y alloy promoted the formation of complete surface f i lm,and hindered the hydrogen evolution reaction on the Alcontaining Mg alloy surfaces,which in turn decreased the cathodic current densities.In the anodic polarization area,the current density of the Mg97Zn1Y2alloy increased sharply.On the other hand,the Al-containing Mg alloys exhibited a passive region.This result was due to the appearance of passivity in the corrosion processing.Table 4 shows the corrosion potential(Ecorr)and corrosion current density(Icorr).The order ofEcorris Mg97Zn1Y2>Mg96.5Zn1Y2Al0.5>Mg96Zn1Y2Al1. The corrosion potential of Al-free Mg alloys is much noble than that of Al-containing Mg alloy.This reveals that the element Al decreased the cathodic activity,thus reduced the potential difference between α-Mg and X phase,which have been reported by Michiaki Yamasaki[16].The order ofIcorris Mg97Zn1Y2>Mg96.5Zn1Y2Al0.5>Mg96Zn1Y2Al1.This can be concluded that the corrosion resistance of Mg96Zn1Y2Al1alloy is higher than Mg97Zn1Y2alloy or Mg96.5Zn1Y2Al0.5alloy.Therefore,the addition of Al can increase the corrosion resistance of the Mg97Zn1Y2alloy with LPSO phase.

    3.2.3.Corrosion morphology

    The corrosion morphologies of Mg97Zn1Y2, Mg96.7Zn1Y2Al0.3,Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1specimensimmersedfor4hin3.5%NaClsolutionareshownin Fig.6.As can be seen from Fig.6,a lot of corrosion products observed from Fig.6a,corresponding to the occurrence of pittingcorrosion,andthequantityandsizeofcorrosionproducts in Mg97Zn1Y2alloy presented a much larger scale compared with Mg-Zn-Y-Al alloys.It indicated that the addition of Al could enhance corrosion resistance.The corrosion products of the four alloys appeared on the boundaries,and this illustratedthat LPSO phases and/or Mg4Y2ZnAl3phases might act as cathodes while α-Mg around these phases acted as anodes to cause pitting corrosion,which was the primary corrosion on the alloy surface[23].In Mg96Zn1Y2Al1alloy,those few corrosion products mainly distributed in the vicinity of clustered stripshaped phases instead of X phase.This might be attributed to theemergenceofclusteredstrip-shapedphaseswhichincreased cathode-to-anodearearatios.Inaddition,f i liformcorrosionwas alsoobservedonthesurfaceofMg96.7Zn1Y2Al0.3alloyafter4h immersion test.However,there was no obvious f i liform corrosion on the Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1specimen surfaces,except a small number of corrosion products.This can be explained that,as the content of Al was increased,the compactness of the protective surface f i lm was also increased, thus,protected the α-Mg under the f i lm from corrosion.

    Table 4The Ecorr and Icorr values of Mg97Zn1Y2, Mg96.5Zn1Y2Al0.5 and Mg96Zn1Y2Al1alloys.

    Fig.6.Corrosion morphologies of alloys in 3.5%NaCl solution after 4 h:(a)Mg97Zn1Y2,(b)Mg96.7Zn1Y2Al0.3,(c)Mg96.5Zn1Y2Al0.5,(d)Mg96Zn1Y2Al1.

    Fig.7 shows the morphologies of corrosion product of Mg97Zn1Y2and Mg96.7Zn1Y2Al0.3alloys immersed in 3.5% NaCl solution for 6 h.The corrosion occurred on the local surfaces of Mg97Zn1Y2and Mg96.7Zn1Y2Al0.3alloys,and its extending direction was from serious corrosion area to slight areaasindicated bythearrowsinFig.7.Thebrightareawas the serious corrosion area,and there was a boundary between seriousareaandslightareaofcorrosiononthespecimensurface. Itcanbefoundthattheprotectivef i lmdiscoveredonthesurface of Mg97Zn1Y2was loose.On the contrary,as shown in Fig.7b, the protective f i lm discovered on the Mg96.7Zn1Y2Al0.3alloy surface was uniform and compact,which can protect α-Mg underthesurfacelayerfromcorrosion.MichiakiYamasakietal. [16]reported that the f i lm on the rapidly solidif i ed(RS)ribbonconsolidated Mg97.25Zn0.75Y2alloy had a three-layered structurecontainingofaY-freeouterlayer,aY-containinginnerlayer and an underlying alloy layer,and the RS ribbon-consolidated Al-containing Mg96.75Zn0.75Y2Al0.5alloy was found to have a much thicker inner layer than the Mg97.25Zn0.75Y2alloy.As we all know,rare earth(RE)-containing f i lm had a better protective capability than ordinary hydroxide f i lm.From Table 2,the content of Y was increased with the addition of Al,therefore, the Al could promote Y dissolved into α-Mg.Therefore,theaddition of Al in Mg-Zn-Y alloys which were prepared by conventional casting method might also improve the growth of Y-containing layer,increasing the compactness of the surface fi lm,which in turn enhanced corrosion resistance.

    Fig.7.Morphologies for corrosion product of alloys after 6 h:(a)Mg97Zn1Y2,(b)Mg96.7Zn1Y2Al0.3.

    4.Conclusion

    (1).When the content of Al in the Mg97Zn1Y2alloy containing long period stacking ordered(LPSO,X phase) structure was 0.1%,0.2%,0.3%,0.5%and 1%,the stripshaped phases which were named as Mg4Y2ZnAl3phase in this paper precipitated on the grain boundaries of Mg96.7Zn1Y2Al0.3,Mg96.5Zn1Y2Al0.5and Mg96Zn1Y2Al1alloys.In the Mg96Zn1Y2Al1alloy,the interdigitation morphology of X phase disappeared and the boundary between X phase and α-Mg became smooth which was attributed to the addition of Al.

    (2).The appropriate addition of Al can improve corrosion resistance of Mg97Zn1Y2alloy containing the long period stacking ordered(LPSO)phases.The Al element dissolved into the α-Mg phase can increase the compactness of the surface f i lm,enhancing the corrosion resistance of the alloys.However,compared to the Mg96.5Zn1Y2Al0.5alloy,the enhancement of the corrosion resistance of Mg96Zn1Y2Al1alloy is not apparent which due to the discontinuous X phase and the increase of Al segregation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.50571073),the Ph.D.Programs Foundation ofMinistry ofEducation ofChina (No. 20111402110004)and the Natural Science Foundation of Shanxi Province,China(No.2009011028-3,2012011022-1).

    [1]A.A.Luo,Mater.Sci.Forum 4(2003)57.

    [2]M.Bamberger,G.Dehm,Annu.Rev.Mater.Sci.38(2008)505.

    [3]B.L.Mordike,T.Ebert,Mater.Sci.Eng.,A 302(2001)37.

    [4]Z.Yang,J.P.Li,J.X.Zhang,G.W.Lorimer,J.Robson,Acta Metall.Sin. (Engl.Lett.)5(2008)313.

    [5]T.Itoi,T.Seimiya,Y.Kawamura,M.Hirohashi,Scr.Mater.51(2004) 107.

    [6]E.Abe,Y.Kawamura,K.Hayashi,A.Inoue,Acta Mater.50(2002) 3845.

    [7]A.Inoue,Y.Kawamura,K.Hayashi,A.Inoue,T.Masumoto,Mater. Trans.42(2001)1172.

    [8]A.Inoue,Y.Kawamura,M.Matsushita,K.Hayashi,J.Koike,J.Mater. Res.16(2001)1894.

    [9]Y.J.Wu,D.L.Lin,X.Q.Zeng,L.M.Peng,W.J.Ding,J.Mater.Sci.44 (2009)1607.

    [10]Francois O.Me′ar,Dmitri V.Louzguine-Luzgin,A.Inoue,J.Alloys Compd.496(2010)149.

    [11]K.Siarher,R.Lars,K.Bernd,Int.J.Hydrogen Energy 34(2009)7749.

    [12]X.H.Shao,Z.Q.Yang,J.H.You,K.Q.Qiu,X.L.Ma,J.Alloys Compd. 509(2001)7221.

    [13]M.Eddahbi,P.Perez,M.A.Monge,G.Garces,R.Pareja,P.Adeva,J. Alloys Compd.473(2009)79.

    [14]G.M.Abady,N.H.Hilal,M.El-Rabiee,W.A.Badawy,Electrochim.Acta 55(2010)6651.

    [15]M.Liu,P.J.Uggowitzer,A.V.Nagasekhar,P.Schmutz,M.Easton, G.L.Song,A.Atrens,Corros.Sci.51(2009)602.

    [16]M.Yamasaki,S.Izumi,Y.Kawamura,H.Habazaki,Appl.Surf.Sci.257 (2011)8258.

    [17]M.Matsuda,S.Ii,Y.Kawamura,Y.Ikuhara,M.Nishida,Mater.Sci. Eng.,A 386(2004)447.

    [18]J.S.Zhang,J.D.Xu,W.L.Cheng,C.J.Chen,J.J.Kang,J.Mater.Sci. Technol.28(2012)1157.

    [19]J.S.Zhang,C.G.Chen,Z.P Que,W.L.Cheng,J.D.Xu,J.J.Kang,Mater. Sci.Eng.,A 552(2012)416.

    [20]M.Liu,Patrik Schmutz,Peter J.Uggowitzer,G.L.Song,A.Atrens, Corros.Sci.52(2010)3687.

    [21]Y.L.Cheng,T.W.Qin,H.M.Wang,Z.Zhang,Trans.Nonferrous Met. Soc.China 19(2009)517.

    [22]M.C.Zhao,M.Liu,G.L.Song,A.Atrens,Corros.Sci.50(2008)1939.

    [23]Z.M.Shi,Jimmy Xueshan Jia,A.Atrens,Corros.Sci.60(2012)296.

    Received 15 November 2013;accepted 6 January 2014 Available online 13 March 2014

    *Corresponding author.Tel./fax:+86 351 601 8208.

    E-mail address:jinshansx@tom.com(J.Zhang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.01.008.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    露出奶头的视频| 国产精品三级大全| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片午夜丰满| 啪啪无遮挡十八禁网站| 精品久久久久久久久av| 午夜福利高清视频| 国产精品99久久久久久久久| 窝窝影院91人妻| 免费一级毛片在线播放高清视频| 国产人妻一区二区三区在| 久久精品久久久久久噜噜老黄 | 亚洲人与动物交配视频| 嫩草影院精品99| 美女免费视频网站| 成人国产一区最新在线观看| 亚洲av中文字字幕乱码综合| 一本精品99久久精品77| 99热这里只有是精品在线观看| 日本免费a在线| 久久久久久大精品| 哪里可以看免费的av片| 久久精品国产自在天天线| .国产精品久久| 国产 一区 欧美 日韩| 在线看三级毛片| 丰满人妻一区二区三区视频av| 99久久久亚洲精品蜜臀av| 亚洲第一区二区三区不卡| 中文资源天堂在线| 老司机深夜福利视频在线观看| 亚洲人成网站高清观看| 国产探花在线观看一区二区| 国产精品久久久久久久久免| 色视频www国产| 最近视频中文字幕2019在线8| 国产主播在线观看一区二区| 人人妻,人人澡人人爽秒播| 黄色一级大片看看| 波多野结衣巨乳人妻| 女的被弄到高潮叫床怎么办 | 又爽又黄无遮挡网站| 嫁个100分男人电影在线观看| 国产精品自产拍在线观看55亚洲| 精品99又大又爽又粗少妇毛片 | 俄罗斯特黄特色一大片| 成人三级黄色视频| 亚洲精品亚洲一区二区| 麻豆久久精品国产亚洲av| 日本成人三级电影网站| 欧美不卡视频在线免费观看| 欧美绝顶高潮抽搐喷水| 欧美高清成人免费视频www| 免费人成在线观看视频色| av在线老鸭窝| 日韩欧美在线二视频| 99热这里只有精品一区| 亚洲精品乱码久久久v下载方式| 精品人妻一区二区三区麻豆 | 午夜福利成人在线免费观看| 国产av麻豆久久久久久久| 欧美日韩瑟瑟在线播放| 欧美又色又爽又黄视频| 久久久久久久久久黄片| 一夜夜www| 99精品久久久久人妻精品| 免费黄网站久久成人精品| 国产伦精品一区二区三区四那| 黄色日韩在线| 在线观看av片永久免费下载| 国产成年人精品一区二区| 成人特级av手机在线观看| 最近最新免费中文字幕在线| 亚洲av电影不卡..在线观看| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 欧美在线一区亚洲| 最近在线观看免费完整版| 97超视频在线观看视频| 欧美3d第一页| 国国产精品蜜臀av免费| 国产午夜精品久久久久久一区二区三区 | 黄色配什么色好看| 全区人妻精品视频| 他把我摸到了高潮在线观看| 亚洲av一区综合| 亚洲欧美激情综合另类| 成人欧美大片| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄 | 国产午夜精品论理片| 成人国产一区最新在线观看| 深爱激情五月婷婷| 日本黄色片子视频| 免费av观看视频| 国产爱豆传媒在线观看| or卡值多少钱| 亚洲成a人片在线一区二区| 精品久久久久久久人妻蜜臀av| 国产午夜福利久久久久久| 我的女老师完整版在线观看| 在现免费观看毛片| 国产激情偷乱视频一区二区| 97碰自拍视频| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 午夜免费男女啪啪视频观看 | 亚洲av日韩精品久久久久久密| 嫩草影院入口| 免费av毛片视频| 午夜福利在线在线| .国产精品久久| 亚洲中文字幕日韩| 欧美日本亚洲视频在线播放| 99热只有精品国产| 18禁在线播放成人免费| 97热精品久久久久久| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线| 国产精品伦人一区二区| 久久久精品大字幕| 内射极品少妇av片p| 白带黄色成豆腐渣| 欧美一区二区精品小视频在线| 波多野结衣高清无吗| 国产精品无大码| 久久精品久久久久久噜噜老黄 | 亚洲男人的天堂狠狠| av黄色大香蕉| 中文字幕免费在线视频6| 国产视频内射| 在线a可以看的网站| 亚洲aⅴ乱码一区二区在线播放| 日本五十路高清| 窝窝影院91人妻| 毛片一级片免费看久久久久 | 国产高清视频在线播放一区| 日日夜夜操网爽| 亚洲欧美日韩高清专用| 搡女人真爽免费视频火全软件 | 少妇被粗大猛烈的视频| 啪啪无遮挡十八禁网站| 久久人妻av系列| 日韩中文字幕欧美一区二区| 有码 亚洲区| 成人av在线播放网站| 国产精品电影一区二区三区| 日日啪夜夜撸| 岛国在线免费视频观看| 级片在线观看| 精品一区二区三区人妻视频| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 少妇的逼水好多| 亚洲精品亚洲一区二区| 一夜夜www| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 无遮挡黄片免费观看| 91麻豆精品激情在线观看国产| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 99久久精品热视频| 亚洲中文日韩欧美视频| 别揉我奶头~嗯~啊~动态视频| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 搡老妇女老女人老熟妇| 亚洲精品成人久久久久久| 免费在线观看日本一区| bbb黄色大片| 色综合婷婷激情| 最好的美女福利视频网| 国产精品久久久久久av不卡| 九色国产91popny在线| 国产精品亚洲一级av第二区| 国产成人福利小说| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 国产精品人妻久久久影院| 麻豆国产av国片精品| 99久久精品一区二区三区| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 日韩高清综合在线| 日韩中字成人| 天堂网av新在线| 女人十人毛片免费观看3o分钟| 亚洲av成人av| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看| 天堂动漫精品| 美女高潮的动态| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 久久午夜亚洲精品久久| 国产精品亚洲美女久久久| 日韩中字成人| 别揉我奶头~嗯~啊~动态视频| 日韩在线高清观看一区二区三区 | 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 日日啪夜夜撸| 在线观看午夜福利视频| 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看| 精品乱码久久久久久99久播| 日本黄色视频三级网站网址| 日韩欧美精品v在线| 国产黄色小视频在线观看| 亚洲av不卡在线观看| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 一区福利在线观看| 波野结衣二区三区在线| 国产精品无大码| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 国产男人的电影天堂91| 久久草成人影院| 欧美+日韩+精品| 国产免费av片在线观看野外av| 午夜免费激情av| 99热精品在线国产| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 伦精品一区二区三区| 久久精品久久久久久噜噜老黄 | 成人国产综合亚洲| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av涩爱 | 乱人视频在线观看| 成年免费大片在线观看| 亚洲美女黄片视频| 欧美+日韩+精品| 99久国产av精品| 精华霜和精华液先用哪个| 久久久久国产精品人妻aⅴ院| 欧美极品一区二区三区四区| 精品久久久久久久末码| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区激情短视频| 亚洲国产精品sss在线观看| 在线观看舔阴道视频| 久久久久久大精品| 精品久久久久久成人av| 动漫黄色视频在线观看| 精品久久国产蜜桃| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 国产伦一二天堂av在线观看| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 欧美xxxx性猛交bbbb| av.在线天堂| 又爽又黄a免费视频| 欧美高清性xxxxhd video| 亚洲欧美精品综合久久99| 一个人看视频在线观看www免费| 国产精品一区二区三区四区免费观看 | 99在线人妻在线中文字幕| 国产av不卡久久| 可以在线观看的亚洲视频| 亚洲精华国产精华液的使用体验 | 日本成人三级电影网站| 色综合色国产| 国产高潮美女av| 亚州av有码| 久久6这里有精品| 久99久视频精品免费| 精品久久久久久久久久免费视频| 国产精品不卡视频一区二区| 国内精品美女久久久久久| 亚洲国产欧洲综合997久久,| 简卡轻食公司| 日日摸夜夜添夜夜添小说| 欧美日韩综合久久久久久 | 成人无遮挡网站| 日本在线视频免费播放| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 一个人观看的视频www高清免费观看| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| av国产免费在线观看| 一夜夜www| 国产av一区在线观看免费| 人妻制服诱惑在线中文字幕| 欧美+亚洲+日韩+国产| 国产av不卡久久| 国产亚洲精品久久久com| 国产在线男女| av在线蜜桃| 97超视频在线观看视频| 麻豆国产av国片精品| 欧美日韩国产亚洲二区| 国产精品综合久久久久久久免费| 午夜免费成人在线视频| 久久人人爽人人爽人人片va| 亚洲va在线va天堂va国产| 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 亚洲av成人av| 性欧美人与动物交配| 免费在线观看日本一区| 最新在线观看一区二区三区| 中文字幕熟女人妻在线| 欧美成人一区二区免费高清观看| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 欧美另类亚洲清纯唯美| 一本精品99久久精品77| 亚洲在线自拍视频| 免费一级毛片在线播放高清视频| netflix在线观看网站| 一个人看的www免费观看视频| 男人舔女人下体高潮全视频| 国产精品国产三级国产av玫瑰| 国产黄色小视频在线观看| 日本三级黄在线观看| 日本黄色视频三级网站网址| 嫁个100分男人电影在线观看| 亚洲国产精品合色在线| 午夜亚洲福利在线播放| 国产亚洲精品av在线| 国产成人福利小说| 可以在线观看毛片的网站| 久久99热这里只有精品18| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 久久久久性生活片| 久久精品人妻少妇| 热99re8久久精品国产| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 欧美成人性av电影在线观看| 不卡视频在线观看欧美| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 亚洲精华国产精华液的使用体验 | 1000部很黄的大片| 成人av在线播放网站| 色哟哟哟哟哟哟| 毛片女人毛片| 成人av一区二区三区在线看| 国产淫片久久久久久久久| 精品一区二区三区视频在线观看免费| 免费观看的影片在线观看| 免费av不卡在线播放| 免费搜索国产男女视频| 亚洲专区国产一区二区| 一本久久中文字幕| 日本黄大片高清| 一本一本综合久久| ponron亚洲| 午夜爱爱视频在线播放| 此物有八面人人有两片| 春色校园在线视频观看| 国产精品亚洲美女久久久| 免费在线观看成人毛片| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 久久久色成人| 欧美日本视频| 精华霜和精华液先用哪个| 男人和女人高潮做爰伦理| 在线国产一区二区在线| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 天堂av国产一区二区熟女人妻| 国产真实伦视频高清在线观看 | 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 啦啦啦韩国在线观看视频| 亚洲18禁久久av| av在线老鸭窝| 亚洲熟妇熟女久久| 国产大屁股一区二区在线视频| 亚洲 国产 在线| 欧美一区二区精品小视频在线| 成人三级黄色视频| 在线观看午夜福利视频| 免费av观看视频| 亚洲av.av天堂| 三级毛片av免费| 欧美日韩国产亚洲二区| 日日撸夜夜添| 国产淫片久久久久久久久| 搡老熟女国产l中国老女人| 久久久久久久久大av| 两人在一起打扑克的视频| 国产精品一区二区性色av| 中亚洲国语对白在线视频| 亚洲性久久影院| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 中文字幕久久专区| 亚洲美女视频黄频| xxxwww97欧美| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 亚洲成av人片在线播放无| 在线免费观看的www视频| 国产v大片淫在线免费观看| 熟女电影av网| 国产私拍福利视频在线观看| 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 欧美高清性xxxxhd video| 精品久久久久久久久亚洲 | 又紧又爽又黄一区二区| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 老司机午夜福利在线观看视频| 国产白丝娇喘喷水9色精品| 床上黄色一级片| 直男gayav资源| 亚洲美女黄片视频| 免费在线观看成人毛片| 22中文网久久字幕| 免费观看的影片在线观看| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 亚洲精华国产精华液的使用体验 | 欧美不卡视频在线免费观看| 极品教师在线免费播放| 国产精品人妻久久久久久| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 一级黄片播放器| 12—13女人毛片做爰片一| 男插女下体视频免费在线播放| 国产黄片美女视频| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 日韩欧美精品v在线| 亚洲成a人片在线一区二区| 少妇被粗大猛烈的视频| av在线老鸭窝| 我要看日韩黄色一级片| h日本视频在线播放| 高清毛片免费观看视频网站| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 看免费成人av毛片| 俺也久久电影网| 亚洲 国产 在线| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影| 淫妇啪啪啪对白视频| 国产精品爽爽va在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲成人久久性| 国产69精品久久久久777片| 欧美bdsm另类| 亚洲人成网站高清观看| 91久久精品国产一区二区三区| 熟妇人妻久久中文字幕3abv| 午夜免费激情av| 亚洲精品亚洲一区二区| 99热这里只有精品一区| 精品午夜福利在线看| 中文资源天堂在线| 一边摸一边抽搐一进一小说| 一进一出抽搐gif免费好疼| 免费看av在线观看网站| 国产精品久久久久久精品电影| 国产色婷婷99| 国产伦人伦偷精品视频| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 久久这里只有精品中国| 99久久精品一区二区三区| 日本爱情动作片www.在线观看 | 精品午夜福利在线看| 中国美白少妇内射xxxbb| 日韩av在线大香蕉| 一区二区三区高清视频在线| 91麻豆av在线| 亚州av有码| 日日摸夜夜添夜夜添av毛片 | 国产女主播在线喷水免费视频网站 | 色精品久久人妻99蜜桃| 国产乱人视频| 老司机福利观看| 色吧在线观看| 中文资源天堂在线| 99riav亚洲国产免费| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区精品| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 一区二区三区四区激情视频 | 在线观看美女被高潮喷水网站| 搞女人的毛片| 久久精品影院6| 精品久久久久久成人av| 搡女人真爽免费视频火全软件 | 亚洲精品影视一区二区三区av| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕熟女人妻在线| 色综合婷婷激情| 91久久精品国产一区二区三区| 国产av麻豆久久久久久久| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 色哟哟·www| 成人高潮视频无遮挡免费网站| 禁无遮挡网站| 久久人人精品亚洲av| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 欧美日韩综合久久久久久 | 悠悠久久av| 成熟少妇高潮喷水视频| 久久精品影院6| 精品久久久久久久久久免费视频| 久久人人爽人人爽人人片va| 少妇的逼水好多| 观看美女的网站| 白带黄色成豆腐渣| 久久6这里有精品| 波野结衣二区三区在线| 日韩欧美精品免费久久| 中文亚洲av片在线观看爽| 一本一本综合久久| 97碰自拍视频| 男人狂女人下面高潮的视频| 搡女人真爽免费视频火全软件 | 99久久无色码亚洲精品果冻| h日本视频在线播放| 99久久无色码亚洲精品果冻| 欧美精品啪啪一区二区三区| 欧美黑人巨大hd| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 三级男女做爰猛烈吃奶摸视频| 欧美在线一区亚洲| 看免费成人av毛片| 日韩av在线大香蕉| 国产乱人伦免费视频| videossex国产| 国产视频一区二区在线看| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 久久久久九九精品影院| 亚洲av二区三区四区| 最后的刺客免费高清国语| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 亚洲av日韩精品久久久久久密| 小说图片视频综合网站| 免费在线观看成人毛片| 亚洲av免费在线观看| 欧美+日韩+精品| 国产淫片久久久久久久久| 搡女人真爽免费视频火全软件 | 一个人看的www免费观看视频| 一级黄片播放器| 亚洲av免费在线观看| 欧美日韩瑟瑟在线播放| 51国产日韩欧美| 精品一区二区免费观看| 亚洲,欧美,日韩| 久久久色成人| 国产主播在线观看一区二区| 少妇的逼水好多| 男插女下体视频免费在线播放| av国产免费在线观看| 国产在线男女| 久久久久九九精品影院| eeuss影院久久| 人人妻人人看人人澡| 久久久久国内视频| 搡老岳熟女国产| 国产在线男女| 禁无遮挡网站| avwww免费| 韩国av一区二区三区四区| 禁无遮挡网站| 日韩精品有码人妻一区| 中国美白少妇内射xxxbb| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区视频9| 人人妻人人看人人澡| 国内精品宾馆在线| www日本黄色视频网| 国产激情偷乱视频一区二区| 俺也久久电影网| 午夜福利欧美成人| 波多野结衣巨乳人妻| 给我免费播放毛片高清在线观看| www日本黄色视频网| 亚洲精华国产精华液的使用体验 | 一边摸一边抽搐一进一小说| 日本色播在线视频|