• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of heat treatment on the microstructures and mechanical properties of the sand-cast Mg-2.7Nd-0.6Zn-0.5Zr alloy

    2014-04-21 02:16:39
    Journal of Magnesium and Alloys 2014年1期

    The Group of Magnesium and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Effect of heat treatment on the microstructures and mechanical properties of the sand-cast Mg-2.7Nd-0.6Zn-0.5Zr alloy

    D.Wu,Y.Q.Ma,R.S.Chen*,W.Ke

    The Group of Magnesium and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    The tensile testing bars of the Mg-2.7Nd-0.6Zn-0.5Zr(wt.%)alloy were prepared by sand casting.The effect of solution temperature and aging time on the microstructures and mechanical properties were investigated.The as-cast alloy was composed of α magnesium matrix and Mg12Nd eutectic compounds.After solution treatment at 500°C for 18 h,the volume fraction of eutectic compounds decreased from ~7.8%to~2.3%,and some small Zr-containing particles were observed to precipitate at grain interiors.As the solution temperature increased to 525°C for 14 h,most of the eutectic compounds dissolved into the matrix.Peak-aged at 200°C for 12 h,f i ne β′′particles was the dominant strengthening phase.The yield strength,ultimate tensile strength and elongation in the peak-aged condition were 191 MPa,258 MPa and 4.2%, respectively.Moreover,the Mg-2.7Nd-0.6Zn-0.5Zr alloys under different heat treatment conditions exhibited different tensile fracture modes. Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Magnesium alloy;Sand-cast;Heat treatment;Microstructure;Mechanical properties

    1.Introduction

    Low density,high specif i c strength and stiffness make Mg alloys very attractive as structural materials in applications of aircraft,space ship and ground transport,where weight saving is of great importance[1,2].Among them,Mg alloys containing rare earth elements(RE)have received considerable interest in recent years due to their potential for achieving higher strength and better creep resistance at elevated temperatures[3,4].Nd is one of the light rare earth element with maximum solubility in solid Mg of 3.6 wt.%at eutectic temperature 545°C and thus offers potential for age-hardening [5].Moreover,trace addition of Zn to Mg-Nd alloy would further increase its peak-aged hardness[6,7].

    In fact,the Mg-Nd-Zn alloy is a traditionally cast Mg alloy with high strength and heat resistance.It was developed much earlier than WE54 and WE43.Especially,in China,the Mg-Nd-Zn Mg alloy has been widely used in aeronautics, such as engine box and wing rib of airplane,and is termed as ZM6[8].It should be noted that most of the parts are produced by sand mold casting.However,up to now,very few researches were focused on the sand mold casting with a low cooling rate of Mg-Nd-Zn alloy.In this paper,Mg-2.7Nd-0.6Zn-0.5Zr (wt.%)alloy Mg alloy were synthesized by sand mold casting. The effect of solution temperature and aging time on the microstructures and mechanical properties were investigated.

    2.Experimental procedures

    The Mg alloys denoted as NZ31 were examined in the presentstudy,and itschemicalcomposition wasMg-2.7Nd-0.6Zn-0.5Zr(wt.%).It was prepared with pure Mg(99.95 wt.%),Zn(99.9 wt.%),Nd(99.5 wt.%)and Mg-30Zr(wt.%)by melting under protection with an antioxidizing f l ux.Tensile testing bars with a gauge dimension of 72 mm in length and 12 mm in diameter were prepared by pouring the melt into a sand mold.Then,they were solution treated at 500°C for 18 h or at 525°C for 14 h,and were correspondingly termed as T41 and T42.The aging treatment was subsequently performed at 200°C for various periods of time.

    Fig.1.(a)The optical microstructure,(b)SEM images and(c)TEM micrograph of the as-cast NZ31 alloy.

    Fig.2.Thermal analysis results and the XRD pattern of the as-cast NZ31 alloy.

    For microstructure observations,samples were cut from the gauge part of the sand-cast tensile testing bars with the observing plane perpendicular to the tensile direction and etched in a solution of 5 vol.%HNO3in ethanol after mechanical polishing to reveal grain boundaries.The grain sizes (L)were determined by analyzing the optical micrographs with a line-intercept method(d=1.74L).The phases were analyzed by an X-ray diffraction(XRD)(Rigaku D/max 2400 X-ray diffractometer)with Cu Kα radiation,a scanning electron microscope(SEM,Philips XL30 ESEM-FEG/EDAX), and a transmission electron microscope(TEM,JEM-2100F) operating at 200 kV.Thin foil specimens for TEM were prepared by punching 3 mm diameter discs,followed by dimple grinding and Ar+ion milling in a precision ion polishing system(PIPS,Gatan)operating at 4.5 kVaccelerating voltage and ~8°incident angle.

    Samples for thermal analysis were cut from the as-cast ingots and machined into cylinders of 35 mm in diameter and 50 mm in length.The samples were remelted in a steel crucible in an electrical resistance furnace.Then one shielded K-type thermocouples was immersed from the top of the crucible that was insulated from the top and the bottom,and was placed at the center of the crucible.After holding 10 min at 720°C,the crucible together with the thermocouples were removed from the furnace and allowed cooling in air with a cooling rate of about 1 K/s.The temperature changes were continuously recorded during the solidif i cation process by using a highspeed data acquisition system linked to the computer.

    Fig.3.Microstructures of the NZ31 alloy solutionized at 525°C for 14 h:(a,b,c)or at 500°C for 18 h.

    Vickers hardness testing was performed using 500 g load and a holding time of 10 s.Not fewer than 10 measurements were taken in each alloy.Tensile tests were performed,with an initial strain rate of 2.5 × 10-4s-1during elastic deformation and of 2 × 10-3s-1during plastic deformation,at room temperature.Three specimens were used for same test conditions to ensure the reproducibility of data.

    3.Results and discussion

    3.1.The as-cast NZ31 alloy

    Typical microstructures of the sand-cast NZ31 alloy in ascast condition are depicted in Fig.1.As we can see in Fig.1a,the sand-cast NZ31 alloy has equiaxed grain structures with an average grain size of ~75 μm.The grain size is~20 μm coarser than that casted by metal mold[6],due to the low cooling rate during the solidif i cation process.A large amount of network eutectic compounds forms at the grain boundaries(Fig.1b),and some f i ne spicule and rod-shaped phases are also observable mainly around the α-Mg grain boundaries(Fig.1c).

    Fig.2a shows the thermal analysis results for the NZ31 alloy in the as-cast condition.The f i rst derivative of the cooling curve(dTc/dt)is determined to enhance slope changes that are related to the solidif i cation reactions for the different phases,and to facilitate the determination of the critical solidif i cation characteristics of the alloys.Two well-def i ned peaks are observed at 644°C and 527°C,which correspond to the primary Mg phase formation reaction and the nonequilibrium eutectic reaction,respectively.According to the XRD analysis(Fig.2b),except the α-Mg matrix,only Mg12Nd compounds can be detected.Therefore,the coarse network phases and the spicule and rod-shaped phases around the α-Mg grain boundaries are both belong to the Mg12Nd compounds with a different morphology[9].The low cooling rate doesn’t signif i cantly change the type and the distribution of the second phases of the as-cast NZ31 alloy,and generally only leads to a low content of solute atoms in Mg Matrix[10].

    3.2.The effect of heat treatment on the microstructure

    Fig.3 shows the optical and SEM microstructures of the NZ31 alloy after the solution treatment.The volume fraction of the eutectic phase and the grain size of the NZ31 alloy in as-cast and solutionized condition are summarized in Table 1. Two solution temperatures,525°C and 500°C,are used.For the samples solutionized at 525°C for 14 h(in T41 condition), the average grain size grows up to ~84 μm after the solution treatment,as shown in Fig.3a,and almost all the Mg12Nd phase have dissolved into the matrix.Although there indeed exist a few of residual ones,especially in triple junctions at grain boundary(Fig.3b),their volume fraction is only 0.7%. Detailed investigation reveals that three kinds of precipitates with different shapes:block-like,short rod-like,long rod-like, newly formed and gathered at grain interior(Fig.3c).As previously reported[11,12],the block-like particle is identif i edas ZrH2phase,and the other two are Zn2Zr3phase with three distinguishably different orientation relationships with the α-Mg matrix.

    Table 1The phase volume fraction and grain size of the NZ31 alloy in different conditions:as-cast(F);solution treated(T41 and T42).

    Fig.4.Hardness evolution of the solutionized NZ31 alloy as a function of aging time during isothermal aging at 200°C.

    For the parts with complex or thin-walled structure,high temperature may result in distortion during the solution treatment.So,wetrytolowerthesolutiontemperatureto500°C.As depicted in Fig.3d,although we have extend the solution time to 18 h,there still exist lots of network eutectic compounds left at grain boundary.The volume fraction of the Mg12Nd compound is only reduced from 7.8%in as-cast condition to 2.3% in T42 condition.Some small Zr-containing particles are also observed at grain interiors.

    Fig.4 shows two hardness curves of the NZ31 alloy during isothermal aging at 200°C,corresponding to the two kinds of solution treatment(T41:525°C 14 h and T42:500°C 18 h).It can be seen that the samples in the two conditions both exhibit an obvious age-hardening behavior.The hardness starts to increase rapidly after an incubation period of about 0.5-1 h. For the sample in T41 condition,the peak hardness(HV 82) attains at about 12 h.Further aging leads to a little drop in hardness and then shows a wide hardness plateau from 18 h to 48 h with a Vickers hardness of about HV 78,followed by a rapid decline.For the sample in T42 condition,it only takes about 4-8 h to reach a peak hardness plateau,yet the peak hardness(HV 73)is much lower than that of the sample in T41 condition.Since the lower solution temperature lefts a lots of eutectic Mg12Nd compound at grain boundary,resulting in a low content of solute atoms in the Mg matrix of sample in T42 condition.So,during isothermal aging at 200°C,in peakaging condition,the precipitate density of sample in T42 condition should be lower than that of sample in T41 condition,corresponding to a lower peak hardness.

    Fig.5.TEM image and corresponding diffraction pattern showing precipitates,of the NZ31 alloy solutionized at 525°C for 14 h and subsequently aged at 200°C for(a)3 h,(b)6 h,(c)12 h and(d)48 h,along[110]αzone axis.

    Fig.6.Engineering stress-strain curves of the NZ31 alloy at room temperature in different conditions:(a)as-cast(F);solution treated(T41 and T42);and (b)aged(T61,T62,T63,T64).

    The samples,of the NZ31 alloy solutionized at 525°C for 12 h and subsequently aged at 200°C for various periods of time,were selected for microstructure investigation.The optical microstructure of aged samples is similar to that of solutionized one and the grain size does not change during aging. Fig.5 shows the TEM bright f i eld image and corresponding selected area electron diffraction(SAED)pattern with the incident electron beam approximately parallel to[110]α.For the sample in T61 condition(200°C 3 h),it can be observed in Fig.5a that the microstructure contained a uniform distribution of very f i ne precipitates in the Mg matrix.The f i ne precipitates lay on{100}αand extend along[0001]direction. As the aging time extend to 6 h(T62 condition in Fig.5b),the size of the f i ne prismatic precipitates changes little,while the density obviously increases.Thus,the hardness goes with a sharply increase from HV 57 in T41 condition to HV 76.After aged at 200°C for 12 h,the sample in T63 condition gets a peak hardness.Compared with those in under-aged condition, the precipitates in peak-aged condition grow up and have an average size of about 30-50 nm in length along[0001]αdirection and 2-5 nm in thickness.The morphology,size and orientation investigation indicates that most of the precipitates here should be the β′′phase,consistent with those reported in Mg-Nd alloy without or with trace addition of Zn[7,13]. Continuously aged to 48 h,the sample transits to over-aged condition.The β′′precipitates become larger in size,while still keep a high density.So,the hardness of the sample in T64 condition also maintains in a high level,only ~HV 10 less than that in peak-aged condition.

    3.3.The effect of heat treatment on the mechanical properties

    Fig.6 shows the typical engineering stress-engineering strain curves of the sand-cast NZ31 alloy in differentconditions.The average values for TYS,UTS and elongationto-failure are summarized in Table 2.Compared to the as-cast alloy,solution treatment,whether at 525°C or at 500°C,may result in a great enhancement in elongation and ultimate tensile strength(UTS).But the yield strength(YS)drops a little. Solution treatment may result in lots of the eutectic phase dissolving into the Mg matrix.The increased content of solute atoms indeed benef i ts its YS[14].However,after solution treatment,the grain size also increases,as indicated above. According to the Hall-Petch relationship,the YS should decrease[15].In solution treated alloy,besides pure Mg,only solid solution strengthening and grain boundary strengthening contribute to the strength.Here,the later one obviously mainly operates in the sand-cast NZ31 alloy in solutionized condition.

    Table 2Mechanical properties of the NZ31 alloy at room temperature in different conditions:as-cast(F);solution treated(T41 and T42);aged(T61,T62,T63, T64).

    Further aging leads to a signif i cant improvement in UTS and TYS.After aged at 200°C for 3 h,the NZ31 alloy in T61 condition exhibits the high strength,and the UTS and YS are 227 and 179 MPa,respectively.Unfortunately,the elongationto-failure is greatly decreased from 9.5%in solution treated condition to 3.2%.It is worth noting that the NZ31 alloy in T62 condition(200°C 6 h)gets the highest YS,which is inconsistent with the results of aging hardening curves.In peak-aged condition(T63),the YS falls by 5 MPa,in comparison with that in T62 condition,while the UTS reaches to the highest one(258 MPa).As the aging time increases from 14 h to 48 h,there seems no signif i cant change for the mechanical properties of the sand-cast NZ31 alloy.In general, the hardness of Mg alloy corresponds to its YS during the aging process[16].Throughout the aging process of the sandcast NZ31 alloy,from 3 h to 48 h at 200°C,the variation in the strength is obviously weaker than that in hardness.This should be connected to the tensile bars tested with casting surface.By a short aging process(~3 h),the casting surface may quickly get a high strength and dominate the mechanical properties of the tensile testing bars up to an over-aged condition(~48 h).The detailed relationship between the casting surface and the mechanical properties need to be studied further.

    Fig.7.Typical fractography and SEM images of a longitudinal section of the fracture surface of the NZ31 alloy in different conditions:(a,b)as-cast(F);(c,d) solution treated(T41);and(e,f)peak-aged(T63).

    The secondary electron(SE)SEM micrographs of the fracture surfaces perpendicular or parallel to the tensile axis of the sand-cast NZ31 alloy in different conditions are illustrated in Fig.7.In as-cast alloy,damage is produced by the fragmentation of the Mg12Nd eutectic compounds,with the cracks being preferentially perpendicular to the stress axis.The fracture surfaces consist of cleavage planes,which is in accordance with its limited elongation of 2.8%.The fracture model of as-cast NZ31 alloy is quasi-cleavage.When the alloy is subjected to solution treatment at 525°C,the fracture surfaces are mainly composed of ductile trans-granular cleavage planes of coarse dimples(river pattern)and tear ridges (Fig.7c),which is in accordance with its high elongation of 9.5%.The fracture mode is trans-granular cleavage.As already mentioned,some residual eutectic compounds can be observed on the fracture surface of the solutionized samples. The micro-cracks may f i rst initiate around the residual eutectic compounds,and then propagate trans-granularly, remaining a lot of cleavage planes.Moreover,some cracks residing inside the grains are also found.Followed by being peak-aged at 200°C,the grain interior is strengthened by β′′coherent phase and the fracture surfaces are characterized by cleavage planes and grain boundaries.It is a mixed pattern of trans-granular and intergranular fracture.The secondary cracks are also present both in the residual eutectics and at grain interiors.

    4.Summary

    The sand-cast NZ31 alloy in as-cast condition contains Mg matrix and Mg12Nd eutectic compounds.Solution treatment may result in the dissolution of the Mg12Nd phase into the Mg Matrix,and a higher YS and elongation.The fall of solution temperature from 525°C to 500°C means more eutectic phase left in the matrix,while there seems no inf l uence to mechanical properties.Peak-aged at 200°C for 12 h,f i ne prismatic β′′phases precipitate and strengthen the alloy.In this condition,the alloy has highest UTS of 258 MPa.Throughout the aging process of the sand-cast NZ31 alloy,from 6 h to 48 h at 200°C,the YS of the NZ31 alloy all keeps in a high level (no less than 190 MPa),on account of the tensile bars tested with casting surface.The NZ31 alloy in different conditions shows different fracture behaviors:in as-cast alloy,cracks form by the fracture of eutectics along the grain boundaries and propagate trans-granularly;after solution treatment and peak-aged at 200°C,the alloy exhibits a trans-granular cleavage fracture.

    Acknowledgments

    This work was funded by the National Basic Research Program of China(973 Program)through project No. 2013CB632202,and National Natural Science Foundation of China(NSFC)through projects No.51105350 and No. 51301173,respectively.

    [1]B.L.Mordike,T.Ebert,Mater.Sci.Eng.A 302(2001)37.

    [2]H.E.Friedrich,B.L.Mordike,Magnesium Technology,Springer-Verlag, Berlin Heidelberg,2006.

    [3]J.F.Nie,B.C.Muddle,Acta Mater.48(2000)1691.

    [4]X.Li,W.Qi,K.Zheng,N.Zhou,J.Magnesium Alloys 1(2013)54.

    [5]B.J.Lv,J.Peng,Y.Peng,A.T.Tang,J.Magnesium Alloys 1(2013)94.

    [6]P.H.Fu,L.M.Peng,H.Y.Jiang,J.W.Chang,C.Q.Zhai,Mater.Sci.Eng. A 486(2008)183.

    [7]R.Wilson,C.J.Bettles,B.C.Muddle,J.F.Nie,Mater.Sci.Forum 419-422(2003)267.

    [8]K.F.Wang,Z.J.Zhou,Y.C.Wang,G.F.Mi,Hot Working Technol.40 (2011)39.

    [9]J.F.Du,The Microstructure and the Study of Elevated Temperature Property of ZM6 Alloy,Master Degree,Harbin Institute of Technology, Harbin,2006.

    [10]S.Pang,G.H.Wu,W.C.Liu,M.Sun,Y.Zhang,Z.J.Liu,W.J.Ding, Mater.Sci.Eng.A 562(2013)152.

    [11]P.H.Fu,L.M.Peng,H.Y.Jiang,C.Q.Zhai,X.Gao,J.F.Nie,Mater.Sci. Forum 546-549(2007)97.

    [12]X.Gao,B.C.Muddle,J.F.Nie,Philos.Mag.Lett.89(2009)33.

    [13]L.Ma,R.K.Mishra,M.P.Balogh,L.M.Peng,A.A.Luo,A.K.Sachdev, W.J.Ding,Mater.Sci.Eng.A 543(2012)12.

    [14]Y.Gao,Q.D.Wang,J.H.Gu,Y.Zhao,Y.Tong,Mater.Sci.Eng.A 459 (2007)117.

    [15]Z.M.Li,A.A.Luo,Q.D.Wang,L.M.Peng,P.H.Fu,G.H.Wu,Mater. Sci.Eng.A 564(2013)450.

    [16]Q.M.Peng,H.W.Dong,Y.M.Wu,L.M.Wang,J.Alloys Compd.456 (2008)395.

    Received 13 November 2013;accepted 5 January 2014 Available online 17 March 2014

    *Corresponding author.

    E-mail address:rschen@imr.ac.cn(R.S.Chen).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.01.006.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    国产真人三级小视频在线观看| 国产又色又爽无遮挡免| 丰满饥渴人妻一区二区三| 精品福利观看| 一二三四在线观看免费中文在| 精品少妇一区二区三区视频日本电影| 国产精品国产三级国产专区5o| 丝袜美足系列| 美女福利国产在线| 午夜福利视频精品| 王馨瑶露胸无遮挡在线观看| 亚洲中文日韩欧美视频| 午夜福利视频精品| 精品久久久精品久久久| 中文字幕精品免费在线观看视频| 亚洲av成人一区二区三| 国产精品熟女久久久久浪| 在线 av 中文字幕| 欧美日韩av久久| 午夜两性在线视频| 久久久久久久大尺度免费视频| 国产淫语在线视频| 黄色视频不卡| 日本wwww免费看| 中文字幕最新亚洲高清| 天堂俺去俺来也www色官网| 国产真人三级小视频在线观看| 天天添夜夜摸| 老司机午夜十八禁免费视频| 人妻人人澡人人爽人人| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产精品久久久不卡| cao死你这个sao货| 男女高潮啪啪啪动态图| a 毛片基地| 欧美在线黄色| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费高清a一片| 韩国高清视频一区二区三区| 黄片小视频在线播放| 男女边摸边吃奶| 最新在线观看一区二区三区| 99九九在线精品视频| av线在线观看网站| 国产一区二区三区在线臀色熟女 | 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 亚洲国产看品久久| 亚洲七黄色美女视频| 成人国语在线视频| 色老头精品视频在线观看| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 免费av中文字幕在线| 亚洲自偷自拍图片 自拍| 99热全是精品| 五月天丁香电影| 国产精品一二三区在线看| av在线app专区| 日韩视频在线欧美| 美女高潮到喷水免费观看| 亚洲精品日韩在线中文字幕| 日韩人妻精品一区2区三区| 亚洲人成电影观看| 日韩一卡2卡3卡4卡2021年| 久久国产精品人妻蜜桃| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 女人高潮潮喷娇喘18禁视频| 日韩 欧美 亚洲 中文字幕| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜制服| 精品福利永久在线观看| 精品国产乱码久久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人手机| 又紧又爽又黄一区二区| 精品人妻一区二区三区麻豆| 久久av网站| 香蕉丝袜av| 91国产中文字幕| 91麻豆av在线| 日韩免费高清中文字幕av| 精品国产超薄肉色丝袜足j| 久久精品国产a三级三级三级| 久久久久久人人人人人| 热re99久久精品国产66热6| 久久久精品国产亚洲av高清涩受| 精品久久久久久电影网| 丰满人妻熟妇乱又伦精品不卡| 久久青草综合色| 老熟妇乱子伦视频在线观看 | 国产日韩欧美亚洲二区| 80岁老熟妇乱子伦牲交| 国产精品九九99| 亚洲国产欧美一区二区综合| 久久久久久亚洲精品国产蜜桃av| svipshipincom国产片| 色播在线永久视频| 免费少妇av软件| 国产一区二区三区在线臀色熟女 | 免费黄频网站在线观看国产| 叶爱在线成人免费视频播放| 成人三级做爰电影| 另类精品久久| 亚洲中文av在线| bbb黄色大片| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 欧美激情高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 侵犯人妻中文字幕一二三四区| 日韩电影二区| 18在线观看网站| 亚洲情色 制服丝袜| 婷婷成人精品国产| 肉色欧美久久久久久久蜜桃| 正在播放国产对白刺激| av线在线观看网站| 天天操日日干夜夜撸| 欧美少妇被猛烈插入视频| 男人爽女人下面视频在线观看| av欧美777| 又大又爽又粗| 丝袜美足系列| 久久毛片免费看一区二区三区| 中国美女看黄片| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 91国产中文字幕| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面 | 亚洲专区国产一区二区| 久久久国产精品麻豆| 精品国产一区二区久久| 国产精品久久久久成人av| 日韩视频在线欧美| tocl精华| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 国产免费视频播放在线视频| 国产精品麻豆人妻色哟哟久久| 欧美在线一区亚洲| 脱女人内裤的视频| 国产日韩欧美在线精品| 麻豆av在线久日| 久久综合国产亚洲精品| 男人舔女人的私密视频| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 天天添夜夜摸| 黄片播放在线免费| 国产精品麻豆人妻色哟哟久久| 亚洲黑人精品在线| 青青草视频在线视频观看| 亚洲国产欧美日韩在线播放| 久久99一区二区三区| 欧美精品av麻豆av| 婷婷成人精品国产| 美女大奶头黄色视频| 一级毛片电影观看| 午夜视频精品福利| 免费看十八禁软件| 午夜日韩欧美国产| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| av欧美777| 久9热在线精品视频| 丰满少妇做爰视频| 精品一品国产午夜福利视频| 成年人黄色毛片网站| 国产成人a∨麻豆精品| 国产成人系列免费观看| 一进一出抽搐动态| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | 日韩一卡2卡3卡4卡2021年| 成人av一区二区三区在线看 | 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 欧美成狂野欧美在线观看| 一区二区三区乱码不卡18| 日韩视频在线欧美| 在线观看免费午夜福利视频| 亚洲精品成人av观看孕妇| 男女床上黄色一级片免费看| 亚洲国产中文字幕在线视频| 日韩制服丝袜自拍偷拍| 又大又爽又粗| 老司机影院成人| 十八禁网站网址无遮挡| 一边摸一边抽搐一进一出视频| 国产精品久久久av美女十八| 国产色视频综合| 亚洲国产欧美网| 国产免费av片在线观看野外av| 两性夫妻黄色片| netflix在线观看网站| 亚洲第一av免费看| 国产国语露脸激情在线看| 岛国在线观看网站| 成人免费观看视频高清| 欧美另类一区| 丁香六月天网| 99精品久久久久人妻精品| 久久久久网色| 一本一本久久a久久精品综合妖精| 69精品国产乱码久久久| 亚洲午夜精品一区,二区,三区| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 两性午夜刺激爽爽歪歪视频在线观看 | 青春草亚洲视频在线观看| a 毛片基地| 性高湖久久久久久久久免费观看| 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 天天操日日干夜夜撸| 日日摸夜夜添夜夜添小说| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 国产成人av激情在线播放| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区黑人| 99九九在线精品视频| 亚洲,欧美精品.| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 国产黄频视频在线观看| 老司机深夜福利视频在线观看 | 大片免费播放器 马上看| 美女午夜性视频免费| 99热国产这里只有精品6| 两性午夜刺激爽爽歪歪视频在线观看 | 极品人妻少妇av视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲情色 制服丝袜| 天天影视国产精品| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 王馨瑶露胸无遮挡在线观看| 99精品欧美一区二区三区四区| 成人黄色视频免费在线看| 一本综合久久免费| 黄片小视频在线播放| 欧美一级毛片孕妇| 精品亚洲成a人片在线观看| 国产av又大| 岛国在线观看网站| 欧美激情高清一区二区三区| 亚洲av成人一区二区三| 亚洲中文av在线| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 99国产精品一区二区蜜桃av | 老司机福利观看| 嫩草影视91久久| 成人手机av| 五月天丁香电影| 亚洲精品粉嫩美女一区| 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 视频区图区小说| a 毛片基地| 国产av精品麻豆| 91老司机精品| 国产不卡av网站在线观看| 十分钟在线观看高清视频www| 亚洲精品在线美女| 午夜福利在线观看吧| netflix在线观看网站| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 性色av一级| 国产一区二区激情短视频 | 亚洲国产精品999| 国产区一区二久久| 韩国精品一区二区三区| 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 青青草视频在线视频观看| 新久久久久国产一级毛片| 亚洲五月婷婷丁香| 久热爱精品视频在线9| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 狂野欧美激情性bbbbbb| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面 | 视频区欧美日本亚洲| 黄色a级毛片大全视频| 热99久久久久精品小说推荐| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 午夜精品久久久久久毛片777| 五月天丁香电影| 成人免费观看视频高清| 脱女人内裤的视频| 亚洲精品美女久久av网站| 伦理电影免费视频| 久久久欧美国产精品| 精品欧美一区二区三区在线| 少妇精品久久久久久久| 两人在一起打扑克的视频| 自线自在国产av| 国产熟女午夜一区二区三区| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 无限看片的www在线观看| 天天添夜夜摸| 国产亚洲精品一区二区www | 亚洲成人国产一区在线观看| 亚洲av电影在线观看一区二区三区| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 在线亚洲精品国产二区图片欧美| 后天国语完整版免费观看| 亚洲精品第二区| 国产亚洲精品久久久久5区| 国产免费视频播放在线视频| 在线天堂中文资源库| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看| 亚洲情色 制服丝袜| 亚洲成人国产一区在线观看| 黄片播放在线免费| 99re6热这里在线精品视频| 国产激情久久老熟女| 欧美97在线视频| 日本wwww免费看| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 啦啦啦啦在线视频资源| 久9热在线精品视频| 亚洲精品国产区一区二| 如日韩欧美国产精品一区二区三区| 丝袜脚勾引网站| av在线播放精品| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 国产精品久久久av美女十八| 久久久国产一区二区| 妹子高潮喷水视频| 久久九九热精品免费| 久久人人爽人人片av| 国产精品 国内视频| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 国产1区2区3区精品| 十八禁网站网址无遮挡| 国产免费视频播放在线视频| 亚洲中文av在线| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三 | 国产高清视频在线播放一区 | 新久久久久国产一级毛片| 人人妻人人澡人人看| 午夜视频精品福利| 亚洲国产av影院在线观看| 亚洲精品国产av蜜桃| 国产欧美日韩一区二区精品| 成年av动漫网址| 热99re8久久精品国产| 老汉色∧v一级毛片| 中文欧美无线码| 午夜激情av网站| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| 深夜精品福利| 一区二区三区四区激情视频| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看| 正在播放国产对白刺激| 99国产精品免费福利视频| 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 精品国产乱子伦一区二区三区 | xxxhd国产人妻xxx| www.av在线官网国产| 亚洲 欧美一区二区三区| 五月开心婷婷网| 久久99热这里只频精品6学生| 亚洲第一青青草原| 脱女人内裤的视频| 老司机影院毛片| 在线观看免费高清a一片| 国产欧美日韩精品亚洲av| 精品国产乱子伦一区二区三区 | 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 2018国产大陆天天弄谢| 精品人妻1区二区| 首页视频小说图片口味搜索| h视频一区二区三区| 国产亚洲午夜精品一区二区久久| 久久精品aⅴ一区二区三区四区| 亚洲综合色网址| 成年动漫av网址| 正在播放国产对白刺激| 久久久水蜜桃国产精品网| 国精品久久久久久国模美| 国产三级黄色录像| 中文字幕精品免费在线观看视频| 国产福利在线免费观看视频| 麻豆乱淫一区二区| 国产欧美日韩一区二区精品| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 亚洲第一av免费看| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院| 看免费av毛片| 欧美日韩亚洲综合一区二区三区_| 一本综合久久免费| av超薄肉色丝袜交足视频| 亚洲五月色婷婷综合| 亚洲五月婷婷丁香| 欧美+亚洲+日韩+国产| 在线av久久热| 久久毛片免费看一区二区三区| svipshipincom国产片| 国产91精品成人一区二区三区 | 97人妻天天添夜夜摸| 这个男人来自地球电影免费观看| 黄网站色视频无遮挡免费观看| 青草久久国产| 亚洲精品一区蜜桃| 成年女人毛片免费观看观看9 | 亚洲午夜精品一区,二区,三区| 老鸭窝网址在线观看| 欧美成人午夜精品| 99香蕉大伊视频| 国产在线一区二区三区精| 最新在线观看一区二区三区| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| avwww免费| av片东京热男人的天堂| 国产xxxxx性猛交| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 啦啦啦视频在线资源免费观看| 亚洲人成77777在线视频| 中亚洲国语对白在线视频| 不卡av一区二区三区| 亚洲黑人精品在线| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 美女视频免费永久观看网站| 亚洲国产av影院在线观看| 啦啦啦免费观看视频1| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 啦啦啦中文免费视频观看日本| 色94色欧美一区二区| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 妹子高潮喷水视频| 一进一出抽搐动态| 精品视频人人做人人爽| 多毛熟女@视频| 亚洲精品美女久久av网站| 国产成+人综合+亚洲专区| 精品福利永久在线观看| 每晚都被弄得嗷嗷叫到高潮| 极品人妻少妇av视频| 在线观看免费视频网站a站| 精品第一国产精品| 色94色欧美一区二区| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 欧美日韩精品网址| 亚洲天堂av无毛| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 欧美午夜高清在线| 亚洲国产欧美网| 美女大奶头黄色视频| 国产成人欧美| 精品欧美一区二区三区在线| 国产精品二区激情视频| 精品久久久精品久久久| 电影成人av| 久久久久久久国产电影| 成年女人毛片免费观看观看9 | 精品国内亚洲2022精品成人 | 亚洲 国产 在线| 大片电影免费在线观看免费| 国产不卡av网站在线观看| 中文字幕高清在线视频| 在线看a的网站| 亚洲精品第二区| av福利片在线| 国产淫语在线视频| 黄色怎么调成土黄色| 黑丝袜美女国产一区| 又紧又爽又黄一区二区| 精品久久久久久电影网| 亚洲专区字幕在线| 电影成人av| 成人av一区二区三区在线看 | 1024香蕉在线观看| 在线观看免费高清a一片| 亚洲精品中文字幕一二三四区 | 在线精品无人区一区二区三| 一区二区三区乱码不卡18| a级毛片在线看网站| 国产高清视频在线播放一区 | 欧美激情 高清一区二区三区| 国产免费视频播放在线视频| 国产成人精品久久二区二区91| 国产亚洲av高清不卡| 国产成人av教育| 考比视频在线观看| 黄色怎么调成土黄色| 美女脱内裤让男人舔精品视频| 老熟妇乱子伦视频在线观看 | 国产亚洲av高清不卡| 亚洲伊人久久精品综合| 80岁老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 永久免费av网站大全| 999精品在线视频| 中文精品一卡2卡3卡4更新| kizo精华| 9191精品国产免费久久| 免费看十八禁软件| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| videosex国产| 水蜜桃什么品种好| 美女主播在线视频| 国产真人三级小视频在线观看| 欧美少妇被猛烈插入视频| 国产在线免费精品| 下体分泌物呈黄色| 免费在线观看黄色视频的| 精品人妻在线不人妻| 王馨瑶露胸无遮挡在线观看| 午夜福利在线观看吧| 女人高潮潮喷娇喘18禁视频| 黄片播放在线免费| 国产福利在线免费观看视频| 亚洲 国产 在线| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 国产av国产精品国产| 大型av网站在线播放| 久久久久久久大尺度免费视频| 亚洲综合色网址| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品精品| 精品免费久久久久久久清纯 | 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 日韩精品免费视频一区二区三区| 黄色a级毛片大全视频| 永久免费av网站大全| 中文字幕制服av| www.精华液| 亚洲性夜色夜夜综合| 不卡一级毛片| av网站在线播放免费| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区mp4| 人人妻人人澡人人看| 欧美老熟妇乱子伦牲交| 在线观看舔阴道视频| 久久性视频一级片| 国产淫语在线视频| 99国产精品99久久久久| 麻豆av在线久日| 一个人免费看片子| 国精品久久久久久国模美| 美女大奶头黄色视频| 国产亚洲精品第一综合不卡| 脱女人内裤的视频| 男女边摸边吃奶| 十八禁高潮呻吟视频| 精品少妇久久久久久888优播| 国产成人精品久久二区二区91| 国产欧美日韩一区二区三区在线| 国产成人啪精品午夜网站| 久久女婷五月综合色啪小说| 妹子高潮喷水视频| √禁漫天堂资源中文www| 日韩欧美免费精品| 狠狠精品人妻久久久久久综合| 美女扒开内裤让男人捅视频|