• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite

    2014-04-21 02:16:37
    Journal of Magnesium and Alloys 2014年1期

    Department of Mechanical Engineering,National University of Singapore(NUS),9 Engineering Drive 1,Singapore 117 576,Singapore Available online 16 April 2014

    Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite

    S.Sankaranarayanan*,S.Jayalakshmi,M.Gupta

    Department of Mechanical Engineering,National University of Singapore(NUS),9 Engineering Drive 1,Singapore 117 576,Singapore Available online 16 April 2014

    In this study,the effects of hybridizing micron-sized titanium particles with nano-sized boron carbide particles on the microstructural and mechanical properties of Mg-Ti composite were investigated.Microstructural characterization revealed grain ref i nement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-B4C particulates.Electron back scattered diffraction(EBSD)analyses of the Mg-(Ti+B4C)BMhybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction,when compared to Mg-Ti.The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(Ti+B4C)BMhybrid composite.The superior properties of the Mg-(Ti+B4C)BMhybrid composite when compared to Mg-Ti can be attributed to the presence of nano-reinforcement,the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles achieved by nano-B4C addition.

    Composite materials;Electron microscopy(SEM);Electron diffraction(electron back scattered diffraction);Mechanical properties

    1.Introduction

    Magnesium is ~35%lighter than aluminium and it exhibits properties that are comparable to that of Al.For this reason,the research and development of magnesium(Mg)-based materials are currently gaining momentum to make them the best possible replacement to Aluminium(Al)for eff i cient weight savings.In addition to weight saving capabilities,the advantages of Mg as engineering material also include excellent machinability,damping capacity and castability[1,2].However,the poor mechanical characteristics of Mg such as low strength and ductility restrict its utilization in critical engineering applications.To overcome these limitations,hard ceramic reinforcement such as SiC,Al2O3are often added to Mg which results in extreme brittleness[1,2].In this context,available literature highlights the ef fi ciency of nanoscale particulate reinforcement in simultaneously improving the strength and ductility of Mg materials[1].Similar results were also observed for Mg composite prepared with insoluble metallic reinforcement addition[1].Further,the positive infl uence of addition of hybrid reinforcement on the mechanical properties of the Mg-composite has been recently identi fi ed [3].

    In our recent work on the in fl uence of hybrid particulate reinforcement addition(micron-sized metallic Ti+nano-sized ceramic Al2O3)on the mechanical response of Mg[3],we identi fi ed that the method of hybrid reinforcement addition played a major role in determining the mechanical response of the Mg-composite(in addition to the properties of the individual reinforcement and the strengthening mechanisms).When the hybrid reinforcement addition to Mg was carried out after pre-processing of the reinforcement by ball milling (rather than direct addition of the reinforcement to Mg),better ductility along with strength retention was achieved[3].

    In the present work,micron-sized Ti particulates are hybridized with nano-sized B4C particulates by ball milling,and the hybrid(Ti+B4C)BMmixture was used as reinforcement in pure Mg.The primary aim of this work is to study the effect of hybrid reinforcement addition on the properties of Mg-MMCs.The microstructural evolution of as-extruded Mg-composite containing(Ti+B4C)BMmixture have been studied in detail in comparison to Mg-Ti using electron back scattered diffraction(EBSD)analysis.The results of mechanical properties characterization are correlated with the microstructural observations to understand the mechanical behaviour of developed Mg materials.

    2.Materials and methods

    2.1.Materials

    Mg turnings of>99.9%purity supplied by ACROS Organics,New Jersey,USA were used as the matrix material. Elemental titanium(Ti)particulates of size<140 μm(98% purity)from Merck and nano-sized boron carbide(B4C)particulates of particle size ~50 nm supplied by Nabond,China were used as particulate reinforcement.The concentration of Ti and B4C are 5.6 wt.%and 2.5 wt.%respectively.

    2.2.Hybrid reinforcement preparation

    A Retsch PM-400 mechanical alloying machine was used to ball-mill the hybrid(metal-ceramic)particulate mixture(Ti and B4C),herein referred to as(Ti+B4C)BM.Prior to ball milling,the elemental particulates were blended for 1 h(with 0.3 wt.%stearic acid as process control agent)so as to ensure the uniform mixing of powder particulates.After blending, hardened stainless steel balls of diameter 15 mm were added and the blended mixture was ball-milled for 2 h at 200 rpm, with a ball-to-powder ration of 20:1.Ball-milling was carried out to reduce the size of powder particulates and to allow it to hybridize with each other[3,4].

    2.3.Melting and casting

    Mgmaterialsusedinthisstudyweresynthesizedthroughthe liquid metallurgy route based disintegrated melt deposition technique[3,4].Mg turnings together with either individual Ti particulates or the hybrid(Ti+B4C)BMmixture were heated in a graphite crucible to 800°C in an electrical resistance furnace under inert argon gas protective atmosphere.In order to facilitate the uniform distribution of reinforcement particulates in Mg,the superheated molten slurry was stirred at 465 rpm using a twin blade(pitch 45°)mild steel impeller(coated with Zirtex 25)for 5 min.The composite melt was then bottom poured into the steel mould after disintegration by two jets of argon gas oriented normal to the melt stream.Following deposition,aningot of 40 mm diameter was obtained.The obtained ingots were then machined to 36 mm diameter and soaked at 400°C for 60 min.Hot extrusion was then carried out using a 150 T hydraulic press at 350°C with an extrusion ratio of 20.25:1 to obtain rods of 8 mm in diameter.

    Fig.1.Microstructure of(a)as-received Ti,(b)and(c)ball milled(Ti+B4C)BMpowder[4].

    2.4.Microstructural characterization

    The presence and distribution of second phases in Mg matrix of developed Mg-MMCs were studied using a Hitachi S-4300 f i eld emission scanning electron microscope(FESEM) and a Jeol JXA-8530F Electron Probe Micro analyser (EPMA).An ESEM Quanta 200,FEI Field Emission Gun Scanning Electron Microscope(FEG-SEM)equipped with electron back scattered diffraction(EBSD)detector,was used to study the microstructural evolution of Mg-matrix postextrusion.The grain characteristics of Mg-matrix were studied in terms of grain size and its distribution.The results of microstructural evolution studies based on EBSD scan were obtained in the form of inverse pole f i gure(IPF)maps, misorientation distribution(MD),kernel average misorientation distribution(KAM)and grain orientation spread(GOS) map.The EBSD scans were recorded on the surface parallel to the extrusion direction(ED).TSL software was used for the OIM data acquisition and analyses[5].

    Fig.2.Microstructure of(a)Mg-Ti and(b)Mg-(Ti+B4C)BMcomposite.

    2.5.Mechanical characterization

    The tensile and compressive properties of developed Mg-MMcs in accordance with ASTM test methods E8/E8M-08 and E9-09 respectively were determined using a fully automated servo-hydraulic mechanicaltesting machine, Model-MTS 810[3,4].For each composition,a minimum of 6 tests were conducted to obtain repeatable values.The fractured samples were then analysed using a Hitachi S-4300 FESEM.

    3.Results and discussion

    3.1.Microstructure

    Micrographs showing the microstructural characteristics of the as-received Ti and the ball milled(Ti+B4C)BMpowder particles are shown in Fig.1(a)-(c)[4].It indicates that the large sized(as-received)Ti particulates were f l attened;their sharp edges were rounded off and broken down during the ball milling process,which can be attributed to the repeated loading,f l attening and breakdown of powder particulates during ball milling process[6].Fig.1(c)also indicates that the nano-B4C particles are adhered to the micron-sized Tiparticles.

    The distribution of reinforcement/second phases in Mgmatrix of Mg-Ti and Mg-(Ti+B4C)BMare shown in Fig.2(a)and(b).It indicates fairly uniform distribution of Ti particles with less agglomeration in Mg matrix.Further,the interfacial characteristics of Mg-(Ti+B4C)BMcomposite studied using electron probe microscopic analysis is shown in Fig.3[4].It shows increased concentration of B and C around the Ti particles which indicates the combined presence of Ti(B,C)phases on the Ti particle and at the Mg/Ti interface.

    The EBSD generated micrographs showing the matrix grain characteristics of Mg-Ti and Mg-(Ti+B4C)BMare shown in Fig.4.It shows unimodal grain size distribution in the extruded Mg-MMCs and signif i cant grain ref i nement in Mg-(Ti+B4C)BMwhen compared to Mg-Ti.Further,the matrix grain characteristics(misorientation distribution,grain boundary character distribution and grain orientation spread) of developed Mg-(Ti+B4C)BMcomposite are studied in detail in comparison to Mg-Ti to identify the inf l uence of hybridizing micro-Ti with nano-B4C on the microstructural evolution.The distribution of misorientation angles(which represents the change in orientation of the specif i c crystal axis (reference)to the orientation of neighbour crystal axis due to deformation,extrusion[5])in Mg-Ti and its hybrid composite is shown in Fig.5(a).In Mg-Ti,a diffused population of(15-180°)high angle grain boundaries(HAGBs)with small peak at ~30°and large peak at ~90°is observed. While,in Mg-(Ti+B4C)BMcomposite,an increased intensity in 30°and decreased intensity in 90°is observed.The peak at ~30°generally attributes to either recrystallization or{10-11}-{10-12}double twinning(38 ± 5°<11-20>) and the peak at ~90°is due to{10-12}tensile twin boundaries(86 ± 5°<11-20>)[5,7].This indicates an increase in recrystallization and decrease in tensile twin fraction due to nano-B4C addition.This can further be verif i ed from the Kernel Average Misorientation(KAM)criterion which shows the distribution of local misorientation within a grain due to the strain imparted in the material during extrusion[7].In the present case,it can be clearly observed that the KAM number fraction increases and its peak value shifts towards left with the addition of nano-B4C particles which conf i rms the presence of more recrystallized grains Mg-(Ti+B4C)BMcomposite in comparison to Mg-Ti,thus corroborating with the misorientation distribution(Fig.5(b)).

    Fig.3.Compositional distribution in Mg-(Ti+B4C)BMhybrid composite around Mg/Ti interface[4].

    Fig.4.EBSD generated inverse pole f i gure maps of(i)Mg-Ti and(ii)Mg-(Ti+B4C)BMcomposite.

    Fig.5.(a)Misorientation angle and(b)kernel average misorientation distribution prof i les of Mg-Ti and Mg-(Ti+B4C)BM.

    Further,the EBSD micrographs of Mg-Ti and Mg-(Ti+B4C)BMcomposite were partitioned based on the grain orientation spread(GOS)criterion which separates the DRX grains from the deformed grains as shown in Fig.6(a).In the GOS maps,a high average GOS value correspond to higher geometrically necessary dislocation(GND)content and more deformation in the sample(deformed microstructure); while low GOS value indicates lower dislocation content due to recrystallization(recrystallized microstructure).Here,the recrystallized grains with orientation spread less than the average orientation spread are shown in blue colour.Similarly, the deformed grains with orientation spread greater than the average orientation spread of the total microstructure are shown in red colour indicating the area of larger lattice distortion accompanied by the high dislocation density[7].In both the cases,the combined presence of near equi-axed recrystallized grains and elongated grains(deformed grains) can be seen in the(extrusion)microstructures(Fig.6).However,relatively more localized recrystallized grains are observed in Mg-(Ti+B4C)BMcomposite in comparison to Mg-Ti.This conf i rms the enhanced recrystallization effects due to nano-B4C hybridized micro-Ti addition in Mg-(Ti+B4C)BMcomposite.

    3.2.Mechanical properties

    The results of mechanical properties measurements conducted on the samples of Mg-Ti and Mg-(Ti+B4C)BMare listed in Table 1.It indicates superior strength properties of Mg-(Ti+B4C)BMcomposite in comparison to Mg-Ti.The f l ow curves as shown in Fig.7(a)and(b)under tensile and compressive loading clearly indicates the strengthening effects arisen from hybrid(Ti+B4C)BMreinforcement addition when compared to individual Ti addition.The improved strengths of Mg-(Ti+B4C)BMcomposite can primarily be ascribed to the presence and relatively uniform distribution ofhybrid (Ti+B4C)BMreinforcement/second phases and the combined presence of Ti(B,C)intermetallic phases at the Mg/Ti interface(Fig.3)[8,9].The improvement in strength properties of Mg-(Ti+B4C)BMcomposite can also be attributed to coupled effects of(a)effective load transfer from matrix to second phases due to the presence of f i ne hybrid reinforcement/intermetallic phases,(b)signif i cant grain ref i nement due to enhanced matrix recrystallization and(c)mismatch in elastic and thermal expansion coeff i cients between matrix andreinforcement (αMg- 28.4 × 10-6°C-1, αTi-9.17 × 10-6°C-1, αB4C-5 × 10-6°C-1)[2,5].Further,it can be seen from Table 1 that when compared to Mg-Ti,the strength improvement in Mg-(Ti+B4C)BMcomposite under both tension and compressive loading occurred without compromising ductility.While the presence of nano-B4C reinforcement in Mg-(Ti+B4C)BMcomposite is expected to improve the strength at the expense of ductility,no signif i cant adverse effect on ductility was observed under both tension and compression loading.This could be attributed to the absence/relatively lower volume fraction of Mg based brittle secondary phases[1,8,9].

    Fig.6.Grain orientation spread maps of(i)Mg-Ti and(ii)Mg-(Ti+B4C)BMcomposite.

    Table 1Mechanical properties of developed Mg-MMCs under tension and compressive loading.

    Fig.7.Flow stress curves of developed Mg-MMCs under(a)tensile and(b) compressive loading.

    The fractographic evidences of Mg-Ti and Mg-(Ti+B4C)BMcomposites tested under tensile loading are shown in Figs.8 and 9.It indicates mixed mode fracture with prominent ductile features showing evidence of plastic deformation in contrast to the typical cleavage type brittle fracture as reported generally in the case of pure Mg[3]. Fig.8(a)shows prominent Ti particle debonding in Mg-Ti alongside ductile features,which can be attributed to the lack of chemical bonding at the Mg/Ti interface[10].However,in Mg-(Ti+B4C)BMcomposite,prominent particle crack extending from Mg-matrix was observed without any crackingat the matrix-reinforcement interface.This indicates that the second phase particles had actively involved as a load-bearing member in Mg-(Ti+B4C)BMcomposite due to good interfacial bonding between the Mg-matrix and Ti-reinforcement. This behaviour is unlike those seen in ceramic reinforcement,wherein matrix cracking,interfacecracking and debonding are prominent fracture features[11].

    Fig.8.Tensile fractographs showing(a)Ti-particle debonding in Mg-Ti and (b)matrix crack extending into the Ti particle in Mg-(Ti+B4C)BMcomposite.

    Fig.9.Shear bands observed in the compression failed(a)Mg-Ti and(b) Mg-(Ti+B4C)BMcomposite samples.

    In the compression test fractured samples,the fracture was observed to be initiated near the specimen ends and it was seen at ~45°angle with respect to the compression test axis at the maximum stress.It indicates that the overall failure mechanism in both Mg-Ti and its hybrid composite remain unchanged under compression loading.Further,the fractographic evidencesofMg-Tiand itshybrid compositeunder compressive loading conditions reveal the presence of shear bands as shown in Fig.9.It attributes to the heterogeneous deformation and the work hardening behaviour as the work hardening rate is faster in the case of samples failed by shear bands[12,13].

    4.Conclusions

    Mg hybrid nanocomposite containing micron-sized Ti, hybridized with nanosized-B4C was successfully synthesized and the effects of hybridizing micro-Ti with nano-B4C particulates on the microstructural and mechanical properties of Mg-Ti composite were studied.Based on the structureproperty correlation,the following conclusions are drawn.

    1.Compared to Mg-Ti,nano-B4C hybridized Mg-Ti composite exhibit enhanced localized recrystallization and ref i ned microstructure.

    2.Based on EBSD analyses,the Mg-(Ti+B4C)BMhybrid composite,show more recrystallized grains and less tensile twins compared to Mg-Ti.

    3.Mg-(Ti+B4C)BMhybrid composite exhibit the best combination of properties with enhanced strength and improved/retained ductility undertensile loads and compressive loads.

    4.The strength properties improvement in Mg-(Ti+B4C)BMhybrid composite can be attributed to the presence of nano-reinforcement,the uniform distribution of the hybridized particles and better interfacial bonding between the matrix and the reinforcement particles achieved by nano-B4C addition.

    Acknowledgements

    One of the authors,S.Sankaranarayanan gratefully acknowledges National University of Singapore for providing a Research Scholarship to support his pursuit of graduate studies.The authors also thank Professor Satyam Suwas and Mr.Rama Krushna Sabat,Department of Materials Engineering,Indian Institute of Science,Bangalore for their help during the course of investigation.

    [1]M.Gupta,Sharon Nai,Magnesium,Magnesium Alloys and Magnesium Composite,John Wiley,2011.

    [2]S.F.Hassan,M.Gupta,J.Alloys Compd.457(2008)244.

    [3]S.Sankaranarayanan,S.Jayalakshmi,M.Gupta,J.Alloys Compd.509 (2011)7229.

    [4]S.Sankaranarayanan,R.K.Sabat,S.Jayalakshmi,S.Suwas,M.Gupta, Mater.Chem.Phys.(2014)1178.

    [5]Somjeet Biswas,Satyam Suwas,R.Sikand,Anil K.Gupta,Mater.Sci. Eng.A 528(2011)3722.

    [6]C.Suryanarayana,Mechanical Alloying and Milling,CRC Press,New York,2004.

    [7]Somjeet Biswas,Dong-Ik Kim,Satyam Suwas,Mater.Sci.Eng.A 550 (2012)19.

    [8]G.E.Dieter,Mechanical Metallurgy,McGraw-Hill,USA,1986.

    [9]D.J.Lloyd,Int.Mater.Rev.39(1994)1.

    [10]S.Sankaranarayanan,S.Jayalakshmi,M.Gupta,Mater.Sci.Eng.A 530 (2011)149.

    [11]N.Chawla,K.K.Chawla,Metal Matrix Composite,Springer,New York, 2006.

    [12]J.Liu,Scr.Metall.23(1989)1811.

    [13]Z.Ling,L.Luo,B.Dodd,J.Phys.IV 4(1994)453.

    *Corresponding author.Tel.:+65 93510324.

    E-mail address:seetharaman.s@nus.edu.sg(S.Sankaranarayanan).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.jma.2014.03.001.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    在线播放国产精品三级| 内射极品少妇av片p| 精品国内亚洲2022精品成人| 丁香六月欧美| 99久久99久久久精品蜜桃| 国产在视频线在精品| 亚洲av不卡在线观看| bbb黄色大片| 亚洲精品国产精品久久久不卡| 无遮挡黄片免费观看| 亚洲精品在线观看二区| 少妇人妻一区二区三区视频| 精品人妻偷拍中文字幕| 一进一出抽搐gif免费好疼| 国产爱豆传媒在线观看| 男人舔奶头视频| 日韩精品青青久久久久久| 精品久久久久久,| 热99在线观看视频| 岛国视频午夜一区免费看| 久久这里只有精品中国| 欧美bdsm另类| 日本与韩国留学比较| av天堂在线播放| 欧美黑人巨大hd| 国产精品影院久久| 亚洲成人久久性| 久久精品国产亚洲av涩爱 | 超碰av人人做人人爽久久 | 制服人妻中文乱码| 精品一区二区三区av网在线观看| 美女高潮的动态| 亚洲av不卡在线观看| av黄色大香蕉| 观看免费一级毛片| 中文资源天堂在线| 99精品在免费线老司机午夜| 脱女人内裤的视频| 美女被艹到高潮喷水动态| 老司机午夜福利在线观看视频| 久久久久国内视频| 亚洲欧美激情综合另类| 国产在视频线在精品| 欧美高清成人免费视频www| 国产精品1区2区在线观看.| 免费无遮挡裸体视频| 国产伦一二天堂av在线观看| 免费看光身美女| 国产毛片a区久久久久| 1000部很黄的大片| 五月伊人婷婷丁香| 99在线人妻在线中文字幕| 欧美黑人巨大hd| 欧美日韩一级在线毛片| 日本在线视频免费播放| 好看av亚洲va欧美ⅴa在| 中文亚洲av片在线观看爽| 男女午夜视频在线观看| 国产精品一区二区三区四区久久| 琪琪午夜伦伦电影理论片6080| 观看美女的网站| tocl精华| 中国美女看黄片| 亚洲av免费高清在线观看| 老司机午夜十八禁免费视频| 在线免费观看不下载黄p国产 | 精品福利观看| av福利片在线观看| 国产99白浆流出| 少妇人妻一区二区三区视频| 人人妻人人澡欧美一区二区| 日韩成人在线观看一区二区三区| 丰满人妻一区二区三区视频av | 亚洲精品456在线播放app | av天堂在线播放| 亚洲专区国产一区二区| 欧美三级亚洲精品| 久久欧美精品欧美久久欧美| 一a级毛片在线观看| 久久99热这里只有精品18| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久久毛片| 欧美日韩精品网址| 国内精品美女久久久久久| 日韩精品青青久久久久久| 欧美激情久久久久久爽电影| 成人国产综合亚洲| 麻豆成人av在线观看| 亚洲中文字幕日韩| 日本免费一区二区三区高清不卡| 国产野战对白在线观看| 男人舔奶头视频| 少妇人妻一区二区三区视频| 精品人妻1区二区| av国产免费在线观看| 国产精品久久久久久精品电影| 午夜两性在线视频| 精品电影一区二区在线| 婷婷亚洲欧美| 窝窝影院91人妻| 波多野结衣巨乳人妻| 在线观看舔阴道视频| 老司机深夜福利视频在线观看| 欧美+日韩+精品| 婷婷亚洲欧美| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 亚洲成av人片免费观看| 夜夜躁狠狠躁天天躁| 不卡一级毛片| 久久久久久大精品| aaaaa片日本免费| 一本综合久久免费| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 成年女人看的毛片在线观看| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 午夜免费观看网址| 国产亚洲精品久久久com| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 午夜亚洲福利在线播放| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 岛国视频午夜一区免费看| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| av天堂在线播放| 日本a在线网址| 亚洲不卡免费看| 久久香蕉精品热| 天堂动漫精品| 两人在一起打扑克的视频| 无限看片的www在线观看| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区四那| 9191精品国产免费久久| 国产伦精品一区二区三区四那| 99久久精品一区二区三区| 在线观看免费视频日本深夜| www日本黄色视频网| 99热只有精品国产| 欧美黑人欧美精品刺激| 欧美日韩中文字幕国产精品一区二区三区| 亚洲第一电影网av| 亚洲一区高清亚洲精品| 婷婷丁香在线五月| 又爽又黄无遮挡网站| 最近最新中文字幕大全电影3| 国产视频一区二区在线看| 色吧在线观看| 99久久精品国产亚洲精品| 久久精品亚洲精品国产色婷小说| 午夜a级毛片| 日韩欧美精品免费久久 | 免费看光身美女| 国产免费av片在线观看野外av| 国产精品嫩草影院av在线观看 | 在线看三级毛片| 日韩国内少妇激情av| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看 | 欧美在线黄色| 欧美一区二区亚洲| 国内精品久久久久久久电影| 欧美丝袜亚洲另类 | 天堂av国产一区二区熟女人妻| 国产黄片美女视频| 色老头精品视频在线观看| 日本免费一区二区三区高清不卡| 色精品久久人妻99蜜桃| 欧美3d第一页| 国产伦一二天堂av在线观看| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 亚洲黑人精品在线| 成熟少妇高潮喷水视频| 身体一侧抽搐| 亚洲无线在线观看| 国产精品永久免费网站| 天堂网av新在线| 99视频精品全部免费 在线| 嫩草影视91久久| 欧美午夜高清在线| 午夜免费观看网址| 久久久久久大精品| 午夜免费激情av| 麻豆成人午夜福利视频| 欧美中文综合在线视频| 法律面前人人平等表现在哪些方面| 特大巨黑吊av在线直播| 久久中文看片网| 男女做爰动态图高潮gif福利片| 成年女人永久免费观看视频| 日韩欧美精品免费久久 | 国产69精品久久久久777片| 久久精品国产清高在天天线| 国产高清激情床上av| 19禁男女啪啪无遮挡网站| 国产主播在线观看一区二区| 久久久久久久久大av| 亚洲国产欧洲综合997久久,| 日韩欧美免费精品| 男人和女人高潮做爰伦理| svipshipincom国产片| 精品国内亚洲2022精品成人| 夜夜躁狠狠躁天天躁| 欧美国产日韩亚洲一区| 国产精品一区二区免费欧美| 国产v大片淫在线免费观看| 嫩草影院入口| 国产精品女同一区二区软件 | 老熟妇乱子伦视频在线观看| 国内精品久久久久精免费| 黄色丝袜av网址大全| 夜夜躁狠狠躁天天躁| 18+在线观看网站| 手机成人av网站| 色视频www国产| 中国美女看黄片| 桃色一区二区三区在线观看| 又爽又黄无遮挡网站| 亚洲在线观看片| 两人在一起打扑克的视频| 色视频www国产| 中文字幕久久专区| 亚洲在线自拍视频| 淫妇啪啪啪对白视频| 国内精品久久久久久久电影| 性欧美人与动物交配| 精品人妻一区二区三区麻豆 | 又黄又粗又硬又大视频| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av| 蜜桃久久精品国产亚洲av| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 非洲黑人性xxxx精品又粗又长| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 又紧又爽又黄一区二区| 在线天堂最新版资源| 一区二区三区高清视频在线| 伊人久久大香线蕉亚洲五| 欧美区成人在线视频| 色老头精品视频在线观看| 又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 亚洲精品成人久久久久久| 18禁国产床啪视频网站| 香蕉av资源在线| 九九热线精品视视频播放| 日韩欧美一区二区三区在线观看| 淫秽高清视频在线观看| 一区二区三区免费毛片| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区四那| 精品国内亚洲2022精品成人| 一级黄色大片毛片| 国产三级中文精品| 亚洲国产精品999在线| 久久中文看片网| 最近最新免费中文字幕在线| 色av中文字幕| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| 美女免费视频网站| 亚洲内射少妇av| 久久亚洲真实| 精品久久久久久成人av| 久久精品国产综合久久久| 1000部很黄的大片| 男人舔女人下体高潮全视频| a在线观看视频网站| 欧美中文综合在线视频| 亚洲无线观看免费| 国产极品精品免费视频能看的| av国产免费在线观看| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 亚洲精品久久国产高清桃花| 国产v大片淫在线免费观看| 免费av观看视频| 欧美bdsm另类| 极品教师在线免费播放| 国产v大片淫在线免费观看| 免费av观看视频| 国产精品亚洲美女久久久| 国产午夜精品久久久久久一区二区三区 | 麻豆久久精品国产亚洲av| 男女午夜视频在线观看| 九色成人免费人妻av| 最后的刺客免费高清国语| 亚洲男人的天堂狠狠| 激情在线观看视频在线高清| 国产精品亚洲一级av第二区| 国产伦精品一区二区三区视频9 | 欧美最黄视频在线播放免费| 亚洲色图av天堂| 国产一区二区三区视频了| av欧美777| 美女黄网站色视频| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 久久国产精品人妻蜜桃| 国产精品1区2区在线观看.| 夜夜躁狠狠躁天天躁| 欧美日韩综合久久久久久 | 午夜精品一区二区三区免费看| 国产精品三级大全| 手机成人av网站| 精华霜和精华液先用哪个| 久久久久久久精品吃奶| 久久久久性生活片| 日日摸夜夜添夜夜添小说| 人人妻人人澡欧美一区二区| 俺也久久电影网| 精品99又大又爽又粗少妇毛片 | 男女那种视频在线观看| 香蕉av资源在线| 午夜福利欧美成人| 97超视频在线观看视频| 午夜免费成人在线视频| 国产精品一及| 有码 亚洲区| 国产成人aa在线观看| 国产激情欧美一区二区| 日韩欧美精品v在线| 18禁美女被吸乳视频| 久久人妻av系列| 99热精品在线国产| 免费人成视频x8x8入口观看| 日韩欧美精品免费久久 | 成人一区二区视频在线观看| 97超碰精品成人国产| 2021天堂中文幕一二区在线观| av在线播放精品| 极品少妇高潮喷水抽搐| 亚洲精品乱码久久久久久按摩| 国产综合精华液| 联通29元200g的流量卡| 久久国产乱子免费精品| 舔av片在线| 国产乱来视频区| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 26uuu在线亚洲综合色| 我的女老师完整版在线观看| 亚洲内射少妇av| 午夜福利视频精品| 久久精品久久久久久噜噜老黄| 街头女战士在线观看网站| 免费大片18禁| 国产精品久久久久久久久免| 啦啦啦中文免费视频观看日本| 极品教师在线视频| 国产一级毛片七仙女欲春2| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影| 久久99热6这里只有精品| 国产毛片a区久久久久| 美女国产视频在线观看| 一级毛片我不卡| 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 亚洲精品自拍成人| 精品久久国产蜜桃| 日本黄色片子视频| 在线观看av片永久免费下载| 亚洲国产精品sss在线观看| 国产av国产精品国产| 久久久久久久大尺度免费视频| 国产伦理片在线播放av一区| 国产乱人视频| 久久久久久久久大av| 亚洲欧美一区二区三区黑人 | 欧美丝袜亚洲另类| 成人二区视频| 久久久久久久久久久丰满| 夫妻性生交免费视频一级片| 久久这里只有精品中国| 亚洲综合精品二区| 精品久久久久久成人av| 久久亚洲国产成人精品v| 中文欧美无线码| 菩萨蛮人人尽说江南好唐韦庄| 国模一区二区三区四区视频| 一级a做视频免费观看| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频 | 国产白丝娇喘喷水9色精品| 亚洲欧洲日产国产| 欧美激情在线99| 插阴视频在线观看视频| 国产91av在线免费观看| 性色avwww在线观看| 2021少妇久久久久久久久久久| 色尼玛亚洲综合影院| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 毛片女人毛片| 观看免费一级毛片| 欧美+日韩+精品| 国产午夜精品久久久久久一区二区三区| 国产综合精华液| 中文在线观看免费www的网站| 永久网站在线| 噜噜噜噜噜久久久久久91| av在线天堂中文字幕| 亚洲国产精品国产精品| 亚洲精品视频女| 男女视频在线观看网站免费| 亚洲在久久综合| av免费观看日本| 精品久久久精品久久久| 亚洲不卡免费看| 久久草成人影院| 大陆偷拍与自拍| 亚洲自偷自拍三级| 韩国高清视频一区二区三区| 免费在线观看成人毛片| 国产亚洲精品久久久com| 观看免费一级毛片| 日韩精品有码人妻一区| 毛片一级片免费看久久久久| 好男人视频免费观看在线| 别揉我奶头 嗯啊视频| 亚洲人与动物交配视频| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 又爽又黄a免费视频| 高清在线视频一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 亚洲精品乱码久久久v下载方式| 秋霞在线观看毛片| 人体艺术视频欧美日本| 搡老乐熟女国产| 亚洲av成人精品一区久久| 亚洲第一区二区三区不卡| 夫妻午夜视频| 婷婷色综合www| av在线播放精品| 老师上课跳d突然被开到最大视频| 午夜福利高清视频| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 成人欧美大片| 国产毛片a区久久久久| 熟女电影av网| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| av免费观看日本| 亚洲av男天堂| 成人午夜高清在线视频| 青春草亚洲视频在线观看| 九九久久精品国产亚洲av麻豆| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 亚洲av免费在线观看| 亚洲精品成人av观看孕妇| 成人鲁丝片一二三区免费| 亚洲精品中文字幕在线视频 | 国产在视频线精品| 久久久久性生活片| 久久久久久久久久久免费av| 久久久久久久久久成人| 亚洲av一区综合| 日本免费a在线| 成人亚洲精品av一区二区| 欧美日韩综合久久久久久| 国产一区二区亚洲精品在线观看| 97在线视频观看| a级毛片免费高清观看在线播放| 亚洲国产精品成人久久小说| 亚洲最大成人中文| 亚洲av免费在线观看| 亚洲av一区综合| 麻豆av噜噜一区二区三区| 国产精品久久久久久久久免| 国产精品综合久久久久久久免费| 少妇猛男粗大的猛烈进出视频 | 中文字幕人妻熟人妻熟丝袜美| 高清视频免费观看一区二区 | av在线天堂中文字幕| 国产久久久一区二区三区| 久久精品久久精品一区二区三区| 午夜福利在线在线| 精品久久久久久久末码| 国产高清有码在线观看视频| 国产乱人偷精品视频| 日本黄大片高清| 亚洲欧洲国产日韩| 老司机影院成人| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 国产精品久久视频播放| 最近手机中文字幕大全| 中国美白少妇内射xxxbb| 国产精品一区二区在线观看99 | 精品国产露脸久久av麻豆 | 久久久久久久亚洲中文字幕| 晚上一个人看的免费电影| 老司机影院毛片| 国产在视频线精品| 亚洲欧美成人精品一区二区| 青春草亚洲视频在线观看| av线在线观看网站| www.av在线官网国产| 在线观看一区二区三区| eeuss影院久久| 啦啦啦中文免费视频观看日本| 亚洲久久久久久中文字幕| 亚洲欧美成人精品一区二区| 中文精品一卡2卡3卡4更新| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 69av精品久久久久久| 不卡视频在线观看欧美| 精品久久久久久电影网| 少妇人妻精品综合一区二区| 国内精品一区二区在线观看| 国产成年人精品一区二区| 久久久久精品性色| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| 人人妻人人澡人人爽人人夜夜 | 91精品伊人久久大香线蕉| 国产黄片视频在线免费观看| 国产亚洲精品久久久com| 久久久久久久久中文| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 国产伦在线观看视频一区| 七月丁香在线播放| 欧美激情在线99| 免费观看精品视频网站| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 日本熟妇午夜| 91在线精品国自产拍蜜月| 国产激情偷乱视频一区二区| 国产伦精品一区二区三区视频9| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| 国产黄色小视频在线观看| 夜夜爽夜夜爽视频| 国产一区亚洲一区在线观看| 亚洲精品国产av蜜桃| 欧美激情久久久久久爽电影| 日韩三级伦理在线观看| 日韩欧美三级三区| 午夜福利视频精品| 精品久久久久久久久久久久久| 中文天堂在线官网| 毛片一级片免费看久久久久| 亚洲一区高清亚洲精品| 国产毛片a区久久久久| 黄片无遮挡物在线观看| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 精品久久久久久电影网| a级毛色黄片| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 亚洲乱码一区二区免费版| 亚洲欧美一区二区三区国产| 亚洲色图av天堂| 国产视频首页在线观看| videos熟女内射| 九色成人免费人妻av| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 亚洲性久久影院| 麻豆国产97在线/欧美| 在线 av 中文字幕| 成人av在线播放网站| 日韩欧美国产在线观看| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 亚洲在线自拍视频| 精品人妻偷拍中文字幕| 99热网站在线观看| 亚洲久久久久久中文字幕| 麻豆成人av视频| 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 91久久精品电影网|