• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Queue Length Distribution for Geo/G/1 Queue with θ-Entering Discipline During Multiple Adaptive Vacations

    2020-01-10 05:49:12WEIYingyuan魏瑛源TANGYinghui唐應(yīng)輝YUMiaomiao余玅妙
    應(yīng)用數(shù)學(xué) 2020年1期

    WEI Yingyuan(魏瑛源),TANG Yinghui (唐應(yīng)輝),YU Miaomiao(余玅妙)

    (1.School of Mathematics & Statistics,Hexi University,Zhangye 734000,China;2.School of Mathematics & Software Science,Sichuan Normal University,Chengdu 610066,China; 3.Sichuan University of Science & Engineering,Zigong 643000,China)

    Abstract: This paper considers a discrete time Geo/G/1 queue with multiple adaptive vacations where the customers who arrive during server vacations enter the system with probability θ (0 < θ ≤1).Using renewal process theory and total probability decomposition technique,from the beginning of arbitrary initial state,the z-transform recursive expressions of the transient queue length distribution at time epoch n+ are obtained.Based on the transient analysis,the explicit recursive formulae of the steady state queue length distribution at time epochs n?,n and n+ are derived,respectively.Furthermore,the results obtained in this paper indicate that the equilibrium queue length distribution no longer follows the stochastic decomposition structure.Finally,numerical results are offered to discuss the sensitivity of the steady state queue length distribution towards system parameters,and illustrate the significant application value of the recursive formulae for the steady state queue length distribution in the system capacity optimum design.

    Key words: Discrete time Geo/G/1 queue; Multiple adaptive vacation; θ-entering discipline; Queue length distribution; Total probability decomposition technique; System capacity optimum design

    1.Introduction

    During the past decade,discrete time queues with vacations have been widely used in the performance analysis of communication systems.[1?3]

    In the classical queueing systems with vacations the authors often assume that the customer input rate is fixed.However,the truth was quite different.TANG and MAO[4]introduced a kind ofp-entering discipline:The arriving customers directly enter the system when they find the server does not take vacations.While,they enter the system with probabilityp(0< p≤1)when the server take vacations.LUO and TANG[5]studied the M/G/1 queue withp-entering discipline during single server vacations.Subsequently,this research was extended to the MX/G/1 queue withp-entering discipline during adaptive multistage vacations by LUO and YU[6].Recently,LIU and TANG[7]analyzedM/G/1 repairable queue system withp-entering discipline during multiple server vacations,TANG et al.[8]investigated M/G/1 repairable queue withp-entering discipline during second type failure times.

    In this paper we consider the discrete time Geo/G/1 queue withθ-entering discipline during multiple adaptive vacations,in which the customer input rate depend on the server status (being in vacations or not).This model is very useful since it takes the behavior of arriving customers into consideration.The customer’s attitude to join the queue can be different according to whether the server is immediately available or not.For example,the entering rate may be higher when the server is busy than when the server is in vacations since the arriving customer expects he would be served very soon.

    The remaining of this paper is structured as follows.Section 2 presents a description of the model and some notations used in this paper.In Section 3,we study the transient probability distribution of the queue length at time epochn+during server busy period.In Section 4,we study the transient probability distribution of the queue size at time epochn+.We study the steady state probability distribution of the queue length at time epochsn+,n?andnin Section 5 and Section 6,respectively.In Section 7,Several special cases are given.Finally,we give some numerical results in the form of tables and graphs in Section 8.

    2.Model Description

    We deal with a discrete time Geo/G/1 queueing withθ-entering discipline during multiple adaptive vacations.In this study,we consider the late arrival system with delayed access(LAS-DA)[3],that is,a potential arrival occurs only within(n?,n),n=0,1,2,···,a potential service and departure takes place in (n,n+),n=1,2,···.Furthermore,we assume that there is no customer arrival in (0?,0)and no departure in (0,0+).

    The inter-arrival times{τk,k=1,2,···} are independent and identically distributed (i.i.d.)random variables with geometrical distributionP{τk=j}=p(1?p)j?1,j=1,2,··· ,0

    There is only one service station in the system and the customers are served one by one according to the first-come-first-served (FCFS)discipline.The service times,denoted by{χk,k=1,2,···} are i.i.d.discrete time random variables with the probability mass function (p.m.f.)P{χk=j}=gj,j=1,2,···,and the probability generating function(p.g.f.)G(z)=The mean service time isμ(1 ≤μ<∞).

    The server takes multiple adaptive vacations (MAV)[2]when the system becomes empty.LetHbe the times of vacation.The p.m.f.and the p.g.f.ofHisP{H=j}=hj,j=1,2,···andH(z)=,respectively.Vacations,denoted byV,are i.i.d.discrete time random variables with the p.m.f.P{V=j}=vj,j=1,2,···and the p.g.f.ofVisand have finite meanE[V].

    The arriving customers enter directly the system when server does not take vacations.However,the customers who arrive during server vacations enter the system with probabilityθ(0<θ1).

    We assume that the arrival process,service process,service vacation and random variableHare independent of each other.It is also supposed that the server will stay idle and wait for the first arrival if there is no customer at initial timen+=0+.If there arei(i1)customers in the queue at initial time epoch 0+,the service begins at once.After the first busy period,the server begins to take vacations.

    In this paper,letN(n?),N(n),N(n+)denote the number of customers in the system at time epochsn?,n,n+,letρ=pμdenote the traffic intensity of the system; letVkbe thekth vacation,whereVk,k=1,2,··· ,Hare independent mutually and satisfy the same distribution asV,V =V1+V2+···+VH;=1?p.

    3.Transient Queue Length Distribution at Epoch n+ During Server Busy Period

    For mathematical clarity,we note that the“server busy period”is from the instant when the server begins to serve the waiting customers until the system becomes idle again.Letbrepresent the length of the server busy period beginning with only one customer.We have the following lemma which is also given by Bruneel and Kim[1].

    Lemma 3.1Let t henB(z)is subject to the equationB(z)=G(z?pz(1?B(z))),and mean value ofbis given by

    ProofLetχ1denote the service time of the first customer served in the server busy periodb,andγthe number of customers arriving duringχ1.Then

    We consider the customers who arrive in the system duringχ1as primary customers,and the other customers who arrive after the primary customers as secondary customers.Furthermore,letA1,A2,··· ,Aγdenote the primary customers.Since the order of service for arriving customers is irrelevant to the length of server busy period,we introduce the following service order:primary customers are served in the order ofA1,A2,··· ,Aγ.After serving each primary customer,however,the server will serves every secondary customers until there are no secondary customers at present.So the server busy periodbis expressed by

    whereDk(k=1,2,··· ,γ)denotes the time interval from the time epoch when the server begins to serve thekth primary customer until the next time epoch when the service of the(k+1)th primary customer begins.It also means that there are no secondary customers present in the system when thekth primary customer has departed.Hence,eachDk(k=1,2,··· ,γ)can be considered as a new sever busy period begins with one customer when the service timeχ1ends.Therefore,Dk(k=1,2,··· ,γ)are independent random variables from each other with the same distribution asb.LetD1+D2+···+Dγ=0 only ifγ=0.Since the point when the server busy period ends is a renewal point,we have

    Taking the p.g.f.on both sides of Equations (3.1)yieldsB(z),andE(b)can be derived by

    Letbdenote the server busy period initiated withicustomers.Due to the Markovian property of geometric distribution,bcan be expressed asb=b1+b2+···+bi,i=1,2,··· ,whereb1,b2,··· ,biare independent of each other,and have the same distribution function asb,so that

    The intervals of customers who arrive and enter the system during server vacations,denote byIk,k=1,2,···are i.i.d.random variable with p.m.f.P{Ik=j}=θp(1?θp)j?1,j=1,2,··· .

    The “System idle period” is from the instant when the system becomes empty until a new customer arrives and enters the system.Letdenote thekth “system idle time”,k=1,2,···.Based on the assumptions given above,we have

    WhenN(0+)=0,

    WhenN(0+)=i(i≥1),

    In the remaining part of this section,we will give the joint distribution of the queue length at epochn+during server busy period beginning with only one customer.LetQj(n+)=P{b>n+,N(n+)=j},j=1,2,···represent the probability that the queueing length equals tojat epochn+during server busy periodb,where the instantn+=0+is the beginning of the busy periodb,and the boundary condition isQ1(0+)=1,Qj(0+)=0,j=2,3,···.With the similar argument in [9-10],we have the following lemma.

    Lemma 3.2If|z|<1,lettingpresent thez-transform ofQj(n+),we have

    ProofEmploying renewal process theory and total probability decomposition,we obtainQ1(n+)=P{χ1>n+,N(n+)=1}+P{χ1n+<χ1+D1+D2+···+Dγ,N(n+)=1}=P{χ1>n+,no customer arrive in(0,n+]}+

    whereDk(k=1,2,··· ,γ)are given in the proof of Lemma 3.1.It is important to note that eachDk(k=1,2,··· ,i)follows the same probability properties asb.Hence,

    Forj=2,3,···,we have

    If time point(n?k)+locates inDmandN((n?k)+)=j,according to the service order that mentioned in the proof of Lemma 3.1,there arei?mprimary customers waiting for service.That implies,at epoch (n?k)+,the number of secondary customers present in the system is equal toj?(i?m).Hence,

    Substituting (3.6)into (3.5),we have

    Taking the p.g.f.on both sides of the Equations (3.4)and (3.7),and interchanging order of summation yield the conclusion given by Lemma 3.2.

    4.Transient Queue Length Probability Distribution at Epoch n+

    LetPij(n+)=P{N(n+)=j|N(0+)=i} be the conditional probability of there beingjcustomers at epochn+with initial stateN(0+)=i,andbe thez-transform ofPij(n+),i,j=0,1,2,···.Using the total probability decomposition andz-transform,we derive thez-transform expressions(z)of the transient queue length distribution.

    Theorem 4.1If|z|<1,then(z)and(z)are given by

    ProofLetsk=Vm,k=1,2,··· ,ands0=0.The system is empty at time epochn+if and only if the system is in “system idle period”.Thus,the conditional probabilityP00(n+)indicates that there is no customer in the queue at epochn+under initial stateN(0+)=0.Using the renewal process theory and total probability decomposition technique,we have

    By the same probabilistic argument as the analysis ofP00(n+),forN(0+)=i,i=1,2,···,we can get

    Taking thez-transform on both sides of the equations (4.3)and (4.4),respectively,we have

    From equations (4.5)and (4.6),the relationship betweenandis given by

    Substituting (4.7)into (4.5),we have

    Note that

    Substituting (4.9)into (4.8)gives (4.1),and furthermore,we can get (4.2)by inserting (4.1)into (4.7).

    Theorem 4.2If|z|<1,then(z)and(z)are given by

    where(z)is determined by Lemma 3.2,?is given by Theorem 4.1,and

    ProofForj=1,2,···,statingN(n+)=jindicates that epochn+locates in server busy period or server vacation withjcustomers waiting for service.So

    ForN(0+)=i,i=1,2,···,similarly,we have

    Taking thez-transform on both sides of the equations (4.12)and (4.13),respectively,we have

    With (4.14)and (4.15),we obtain the relationship between(z)and(z)as follows

    Substituting (4.16)into (4.14),we obtain

    Interchanging order of summation,we have

    Moreover,it can be easily obtained that

    Substituting (4.18)and (4.19)into equation (4.17)yield (4.10),then,we can get (4.11)by using (4.10)and (4.16).

    5.Steady State Queue Length Probability Distribution at Epoch n+

    Based on the transient distribution of the queue length at epochn+obtained in Theorems 4.1 and 4.2,we will investigate the steady state queue length distribution at epochn+.

    Theorem 5.1Let

    1)Ifρ<1,=0,j=0,1,2,···;

    where

    E[V]is the mean value of a vacation; for

    ProofUsing total probability decomposition and noting 0≤P{N(0+)=i}Pij(n+)<1,we get

    Employing Lemmas 3.1 and 3.2,Theorems 4.1 and 4.2,and applying L’Hospital’s rule,Theorem 5.1 can be obtained.In fact,L’Hospital’s rule used in the calculation ofbased on limitation theory ofz-transform[11]leads toE[b]in the denominator.Because the condition ofρ <1 given in Lemma 3.1 ensures the existence ofE[b]andρ≥1 results inE[b]=∞,which brings to=0,j=0,1,2,···,the equilibrium queue length distribution does not exist ifρ≥1 holds on.

    Corollary 5.1Lettingrepresent the p.g.f.of the steady state queue length distribution{p+j ,j=0,1,2,···} at epochn+,forρ<1,we have

    ProofCarrying out direct calculations onwe get

    Noting that

    we have

    Substituting (5.5)and (5.6)into (5.4)yields (5.3)after some algebraic simplifications.

    Remark 5.1The conclusion given by Corollary 5.1 shows thatπ+θ(z)can not be decomposed byπ+(z)·Φ+(z)under the assumption ofθ-entering discipline during multiple adaptive vacations,that is,πθ+(z)=π+(z)·Φ+(z),wheredenotes the p.g.f.of equilibrium queue length distribution of classical the discrete-time Geo/G/1 queue,Φ+(z)denotes the p.g.f.of the additional queue length caused byθ-entering discipline during multiple adaptive vacations,and it contains noG(1?p+pz).It implies that the equilibrium queue length discussed in this paper no longer follows the stochastic decomposition structure under the assumption ofθ-entering discipline during multiple adaptive vacations.

    Corollary 5.2LettingE[L+]denote the mean steady state queue length at epochn+,forρ<1,we get

    ProofWe can easily obtain (5.7)by using

    6.Steady State Queue Length Probability Distribution at Time Epochsn?and n

    In order to obtain the queue length distributions at time epochsn?andn,we define some additional notations.LetPij(n?)=P{N(n?)=j|N(0?)=i},Pij(n)=P{N(n)=j|N(0)=i} denote the transient probability.are equilibrium probability,LetE[L]denote the mean steady state queue length at epochn.Furthermore we suppose there is no customer arrival in the beginning time interval (0?,0)and no departure in (0,0+).It meansP{N(0?)=i}=P{N(0)=i}=P{N(0+)=i}.Therefor,fori≥0,j≥0,n≥1,we have

    Taking limit asn→∞on the equation(6.1)and using Theorem 5.1,we get the following theorem.

    Theorem 6.1Forρ<1,we have

    wherep+j(j=0,1,2,···)is determined by Theorem 5.1,πθ+(z)is given by Corollary 5.1.

    The results in Theorem 6.1 indicate that the equilibrium queue length distribution at time epochn+is the same as the one at time epochn?.

    We proceed to find the recursive solution for the queue length at time epochn.Since the customers arrive in the system according to Bernoulli process,and the departure occurs only in interval (n,n+),we obtain the relations betweenandpjunder the stability conditionρ<1 as follows:

    We can obtain from the above relational expressions the following theorem by direct calculation.

    Theorem 6.2Forρ<1,we have

    where=0,1,2,···are determined by Theorem 5.1.

    Remark 6.1From Theorems 5.1,6.1 and 6.2,we can obtain the following relationship

    The relationship indicates the important difference between the discrete-time queueing system and the continuous-time queueing system.

    7.Several Special Cases

    Some models are special cases of the model discussed in this paper.

    Corollary 7.1TakeP{H=∞}=1.ThenH(z)=0,therefore the model reduces to the discrete time Geo/G/1 queue with multiple vacations andθ-entering discipline during server vacations.

    Corollary 7.2TakeP{H=1}=1.ThenH(z)=z,so the model discussed in this paper becomes the discrete time Geo/G/1 queue with single vacation andθ-entering discipline during server vacation.

    Corollary 7.3SetP{H=∞}=1,θ=1.Then the model discussed in this paper becomes the discrete time Geo/G/1 queue with multiple vacations.

    Corollary 7.4SetP{H=1}=1,θ=1.Then our model becomes the discrete time Geo/G/1 queue with single vacation.

    8.Numerical Examples and Discussion

    To demonstrate the applicability of the formulae provided by Theorem 5.1 and Corollary 5.2,we present some numerical examples in the form of tables and graphs.Here we first investigate the effect of different vacation time and parameterθon the steady state queue length distribution.Then,we illustrate the effect of variantHon the idle probabilityp+0and the stationary mean queue length.Finally,under a special case,we investigate the system capacity optimization design.

    In Tab.8.1,we present the steady state queue length distribution and the average queue length.Here we consider that service timeχ,vacation timeVandHfollow geometric distribution with parametersqandh,respectively.Furthermore,we selectp=0.1,μ=2,h=0.2.Four cases (q=0.02,θ=0.5;q=0.02,θ=0.75;q=0.05,θ=0.5;q=0.05,θ=0.75)are considered to illustrate the effect of variant vacation time and parameterθon the steady state queue length distribution.Tab.8.1 shows that the steady state queue size distributionis very close to 0 whenjexceeds some value.

    Remark 8.1The notation used in the tables and graphs are the same as those defined earlier in this paper.

    Tab.8.1 Steady state queue length distribution for vacation time and parameter θ

    In Figs.8.1 and 8.2,we illustrate the effect of variant H.Hereχfollows geometric distribution with meanμ=2,andVfollows geometric distribution with parametersq=0.05.We takeθ=0.75.In Fig.8.1,system idle probabilityp+0is plotted versus arrival ratep.We have presented four curves corresponding to constantH=1,2,5,∞,respectively.In Fig.8.2,mean queue lengthE[L+]is plotted versusp.As we expected,the graphs show that asHincreasesp+0decreases andE[L+]increases.The figures are useful for optimization; for example,they show that the results forH=5 and∞are very close.

    Fig.8.1 The idle probability vs. p

    Fig.8.2 The mean queue length vs. p

    Fig.8.3 The idle probability vs. θ

    Fig.8.4 The mean queue length vs. θ

    Figs.8.3 and 8.4 illustrate the effect of variantθandV.Hereχfollows geometric distribution with meanμ=2,VandHfollow geometric distribution with parametersqandh=0.2,respectively.We takep=0.1.In Fig.8.3p+0is plotted versusθ.Three curves are presented corresponding toq=0.01,0.02 and 0.05,respectively.It is clear thatp+0increases as the parameterθdecreases.Fig.8.3 illustrates thatp+0is larger for shorter vacation time.The same discussing holds for Fig.8.4,which illustrates the behavior ofE[L+]as function ofθ.

    In practice,the congestion of facilities is a key factor to be considered in decision-making,since it has serious negative implications in both the manufacturing and the service sectors.The immediate consequence of congestion is that it leads to an increase in operating costs;further,the degradation in the quality of service results in customer dissatisfaction and eventual loss of market share.In most of the cases,queueing managers often use the stationary mean queue length to calculate the buffer capacity,so as to reduce the blocking probability of the system.However,through the following numerical example,we can see that employing the stationary mean queue length to estimate the buffer capacity may be not very suitable.

    Letp=0.1,q=0.05,μ=2,h=0.2,θ=1,by Corollary 5.2,we obtainE[L+]=2.0678.Furthermore,using the datums presented in Tab.8.2,Eqs.(8.1)and (8.2)give the probability that the number of customers in the system exceeds the mean queue length.From the calculation results,we can realize that the probability of more than 30.724% is too high,this also means that a considerable number of customers will be rejected by the system due to no waiting place available upon arrival.Therefore,using the mean queue length to design the system capacity is quite inaccurate.On the other hand,from Tab.8.2,we further observe that the probability that the number of customers in the system exceeds 20 is less than 0.01%.Thus,design a system with large capacity is also unnecessary.In practice,we may use the steady state queue length distribution and give some more reasonable system designs,so as to reduce the system operating costs.

    Tab.8.2 The steady state queue length distribution when p=0.1,q=0.05,μ=2,h=0.2,θ=1

    9.Conclusion

    Using a different method,we present a complete analysis of a discrete time Geo/G/1 queue withθ-entering discipline during multiple adaptive vacations for LAS-DA model.We have investigated various performance measures which include not only the transient queue size distribution at epochn+,but also the explicit recursive formulae of equilibrium queue size distributions at epochsn?,nandn+.The recursive formulae given by Theorems 5.1 can be used to calculate the accurate numerical value of queue length distribution{=0,1,2,···}.It is very important to the application of discrete time queue.In addition,from Theorems 6.1 and 6.2,we have the important relations among equilibrium queue length distribution at different epochsn?,nandn+.Moreover,from Remark 5.1 we know that the property about stochastic decomposition of queue length no longer comes into existence in Geo/G/1 withθ-entering discipline during multiple adaptive vacations.Finally,some numerical results are given to illustrate the effect of variant parameters on equilibrium queue length distribution,and the significant application value of stationary queue size{=0,1,2,···} in designing system capacity is also analyzed.

    亚洲aⅴ乱码一区二区在线播放| 女人十人毛片免费观看3o分钟| 少妇丰满av| 欧美最新免费一区二区三区| 欧美一级a爱片免费观看看| 麻豆成人午夜福利视频| 综合色丁香网| 精品久久久久久电影网| 亚洲国产高清在线一区二区三| 国产在线男女| 久久久久久久大尺度免费视频| 亚洲高清免费不卡视频| 五月玫瑰六月丁香| 亚洲欧美精品专区久久| 成人亚洲欧美一区二区av| 可以在线观看毛片的网站| 超碰97精品在线观看| 精品久久久久久久末码| 国产av不卡久久| 国产爱豆传媒在线观看| 九草在线视频观看| 欧美一级a爱片免费观看看| 干丝袜人妻中文字幕| 黄色怎么调成土黄色| 成人国产av品久久久| 看十八女毛片水多多多| 亚洲在线观看片| 免费看日本二区| 丰满少妇做爰视频| 久久久久久久午夜电影| 精品久久久久久久久亚洲| 寂寞人妻少妇视频99o| 久久精品国产亚洲av涩爱| 久久精品国产亚洲av天美| 99热全是精品| 日本一二三区视频观看| 国产综合精华液| 国产成年人精品一区二区| 久久国产乱子免费精品| 成年女人看的毛片在线观看| 久久精品国产亚洲av涩爱| 日韩视频在线欧美| 女的被弄到高潮叫床怎么办| 久久久色成人| 嫩草影院新地址| 大片电影免费在线观看免费| 看非洲黑人一级黄片| 亚洲激情五月婷婷啪啪| 老司机影院毛片| 中国美白少妇内射xxxbb| 国产 一区 欧美 日韩| 成人二区视频| 在线 av 中文字幕| 女人十人毛片免费观看3o分钟| 啦啦啦在线观看免费高清www| 久久国产乱子免费精品| 国产成人91sexporn| 亚洲av中文av极速乱| 在线观看av片永久免费下载| 在线观看一区二区三区| 我的老师免费观看完整版| 精品国产一区二区三区久久久樱花 | 成人亚洲欧美一区二区av| 国产伦精品一区二区三区四那| 国产高潮美女av| 国产 一区 欧美 日韩| 干丝袜人妻中文字幕| 国产在视频线精品| 激情五月婷婷亚洲| 精品久久久久久久久亚洲| 国内精品美女久久久久久| h日本视频在线播放| 在线播放无遮挡| 国产色婷婷99| 97在线人人人人妻| 超碰97精品在线观看| 国产 精品1| 亚洲国产最新在线播放| 亚洲精品久久午夜乱码| 搡老乐熟女国产| 久久久国产一区二区| 精品一区二区免费观看| 国产精品无大码| 国产永久视频网站| 插逼视频在线观看| 伊人久久精品亚洲午夜| 成人午夜精彩视频在线观看| 涩涩av久久男人的天堂| 欧美成人精品欧美一级黄| 水蜜桃什么品种好| 插阴视频在线观看视频| 国产av国产精品国产| 精品一区在线观看国产| 成人国产麻豆网| 只有这里有精品99| 免费观看在线日韩| 精品国产一区二区三区久久久樱花 | 日日撸夜夜添| 哪个播放器可以免费观看大片| 日韩人妻高清精品专区| 国产精品久久久久久久电影| 国产精品一区二区在线观看99| 中国美白少妇内射xxxbb| 亚洲av中文字字幕乱码综合| 欧美一级a爱片免费观看看| 精品亚洲乱码少妇综合久久| 干丝袜人妻中文字幕| 在线 av 中文字幕| 国产精品三级大全| 日韩人妻高清精品专区| 你懂的网址亚洲精品在线观看| 白带黄色成豆腐渣| 午夜免费男女啪啪视频观看| 女的被弄到高潮叫床怎么办| 日韩一区二区三区影片| 国产人妻一区二区三区在| 日韩免费高清中文字幕av| 欧美zozozo另类| 久久人人爽av亚洲精品天堂 | 午夜激情久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 久久国产乱子免费精品| 亚洲精品亚洲一区二区| av网站免费在线观看视频| 1000部很黄的大片| 欧美xxⅹ黑人| 午夜福利在线观看免费完整高清在| 99精国产麻豆久久婷婷| 五月开心婷婷网| 亚洲性久久影院| 直男gayav资源| 成人亚洲精品av一区二区| 亚洲精品456在线播放app| 天堂俺去俺来也www色官网| 最近2019中文字幕mv第一页| 国产淫片久久久久久久久| 亚洲va在线va天堂va国产| 国产成人a∨麻豆精品| 久久久久久久精品精品| 亚洲av电影在线观看一区二区三区 | 亚洲av电影在线观看一区二区三区 | 国产综合精华液| 欧美国产精品一级二级三级 | 欧美一级a爱片免费观看看| tube8黄色片| 成人美女网站在线观看视频| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟人妻熟丝袜美| 久久精品久久久久久久性| 69人妻影院| 欧美国产精品一级二级三级 | 久久久国产一区二区| 亚洲精品日韩在线中文字幕| 久久久午夜欧美精品| 永久免费av网站大全| 1000部很黄的大片| 天天躁夜夜躁狠狠久久av| 亚洲精品自拍成人| 午夜福利在线在线| 午夜福利在线在线| 国产精品无大码| 国产一区二区在线观看日韩| 男女下面进入的视频免费午夜| 国内揄拍国产精品人妻在线| 久久久成人免费电影| 国产精品国产三级国产av玫瑰| av又黄又爽大尺度在线免费看| 高清av免费在线| 夫妻午夜视频| 一级二级三级毛片免费看| 嫩草影院新地址| 国产精品久久久久久av不卡| 亚洲高清免费不卡视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av成人精品| 五月天丁香电影| 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 一级av片app| 欧美高清性xxxxhd video| 涩涩av久久男人的天堂| 国产成人精品一,二区| 一级毛片aaaaaa免费看小| 青春草视频在线免费观看| 秋霞伦理黄片| 日韩一区二区视频免费看| 99热这里只有是精品50| 成人鲁丝片一二三区免费| 天堂俺去俺来也www色官网| 男男h啪啪无遮挡| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久av不卡| 亚洲国产精品成人综合色| 一级毛片久久久久久久久女| 最后的刺客免费高清国语| 极品教师在线视频| 内射极品少妇av片p| 国产日韩欧美亚洲二区| 欧美xxxx性猛交bbbb| 国产精品嫩草影院av在线观看| 国产精品久久久久久av不卡| 久久ye,这里只有精品| av国产精品久久久久影院| 97热精品久久久久久| 美女内射精品一级片tv| 久久久久九九精品影院| av在线播放精品| 偷拍熟女少妇极品色| 男女国产视频网站| 久久久久久久精品精品| 午夜亚洲福利在线播放| 超碰av人人做人人爽久久| 18禁在线播放成人免费| 亚洲精品国产成人久久av| 精品久久国产蜜桃| 九色成人免费人妻av| 久久久国产一区二区| 又粗又硬又长又爽又黄的视频| 亚洲怡红院男人天堂| 精品国产乱码久久久久久小说| 2021天堂中文幕一二区在线观| 免费高清在线观看视频在线观看| 男的添女的下面高潮视频| 午夜福利在线观看免费完整高清在| 夫妻性生交免费视频一级片| 亚洲精品aⅴ在线观看| 国产精品无大码| 我的女老师完整版在线观看| 亚州av有码| 亚洲精品色激情综合| 精品午夜福利在线看| av又黄又爽大尺度在线免费看| 亚洲自偷自拍三级| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美 日韩 精品 国产| 在线观看人妻少妇| 观看免费一级毛片| 欧美高清成人免费视频www| 日韩成人伦理影院| 国产又色又爽无遮挡免| 波野结衣二区三区在线| 午夜福利高清视频| 国产高潮美女av| av国产免费在线观看| 少妇丰满av| 少妇人妻久久综合中文| 国产精品秋霞免费鲁丝片| 国产伦精品一区二区三区视频9| www.色视频.com| 亚洲av免费在线观看| 2018国产大陆天天弄谢| 欧美国产精品一级二级三级 | 亚洲三级黄色毛片| 男人添女人高潮全过程视频| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩东京热| 成人欧美大片| 一级爰片在线观看| 免费看光身美女| 国产高潮美女av| 日本午夜av视频| 欧美日韩在线观看h| eeuss影院久久| 少妇被粗大猛烈的视频| 久久人人爽人人爽人人片va| 亚洲av电影在线观看一区二区三区 | 亚洲国产欧美在线一区| 久久ye,这里只有精品| 黄色怎么调成土黄色| 亚洲高清免费不卡视频| 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| 国产探花极品一区二区| 国产精品.久久久| 黄色日韩在线| 亚洲av日韩在线播放| 日韩av在线免费看完整版不卡| 蜜臀久久99精品久久宅男| 欧美bdsm另类| 一本色道久久久久久精品综合| 精品一区二区免费观看| 国产精品人妻久久久影院| 丝袜美腿在线中文| 秋霞在线观看毛片| 尤物成人国产欧美一区二区三区| 成人欧美大片| 不卡视频在线观看欧美| 精品国产露脸久久av麻豆| 日韩欧美 国产精品| 成人黄色视频免费在线看| 99热网站在线观看| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 黄色视频在线播放观看不卡| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 国产成人精品一,二区| 久久亚洲国产成人精品v| 成人高潮视频无遮挡免费网站| 欧美三级亚洲精品| 国产成人精品久久久久久| 亚洲国产高清在线一区二区三| 国产黄色免费在线视频| 国产黄色免费在线视频| 亚洲国产欧美在线一区| 综合色丁香网| 欧美一区二区亚洲| 国产精品一区www在线观看| 国产v大片淫在线免费观看| 中文字幕亚洲精品专区| 国产成人精品一,二区| 日韩一区二区视频免费看| 亚洲av中文字字幕乱码综合| 人体艺术视频欧美日本| 美女主播在线视频| 少妇人妻久久综合中文| 精品久久国产蜜桃| av在线天堂中文字幕| 久久久久九九精品影院| 久久久久久久大尺度免费视频| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| 成人综合一区亚洲| 久久鲁丝午夜福利片| 永久网站在线| 欧美亚洲 丝袜 人妻 在线| 九色成人免费人妻av| 一级毛片我不卡| 嘟嘟电影网在线观看| 亚洲精品一区蜜桃| 91狼人影院| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级 | 亚洲不卡免费看| 国产午夜精品一二区理论片| 久久女婷五月综合色啪小说 | 国产一区二区三区综合在线观看 | 欧美三级亚洲精品| 亚洲av成人精品一二三区| 精品午夜福利在线看| 视频中文字幕在线观看| 男人和女人高潮做爰伦理| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 日韩av不卡免费在线播放| 久久久久久久久大av| 国产亚洲最大av| 午夜福利视频精品| 国产人妻一区二区三区在| 国产一级毛片在线| 大又大粗又爽又黄少妇毛片口| 97超碰精品成人国产| 三级经典国产精品| 交换朋友夫妻互换小说| 一区二区av电影网| 天天躁日日操中文字幕| 亚洲美女搞黄在线观看| h日本视频在线播放| 欧美bdsm另类| 国产黄a三级三级三级人| av国产精品久久久久影院| 18禁裸乳无遮挡免费网站照片| 午夜激情福利司机影院| 免费黄色在线免费观看| 免费看日本二区| 精品一区二区三卡| 亚洲国产高清在线一区二区三| 亚洲自拍偷在线| 日韩强制内射视频| av在线播放精品| 国产精品一区www在线观看| 别揉我奶头 嗯啊视频| 欧美潮喷喷水| av.在线天堂| 97超视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 亚洲国产色片| 中文字幕亚洲精品专区| 伊人久久精品亚洲午夜| 亚洲综合色惰| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 亚洲av中文字字幕乱码综合| 国产精品.久久久| freevideosex欧美| 中文精品一卡2卡3卡4更新| 男女边吃奶边做爰视频| 久久久精品欧美日韩精品| 2021少妇久久久久久久久久久| 男女那种视频在线观看| 久久久久久久久久人人人人人人| 黄片无遮挡物在线观看| 夫妻午夜视频| 亚洲aⅴ乱码一区二区在线播放| 性色avwww在线观看| 国产69精品久久久久777片| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| av免费观看日本| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 赤兔流量卡办理| 在线看a的网站| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区| 真实男女啪啪啪动态图| 久久久久久久久久久免费av| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 午夜视频国产福利| .国产精品久久| 国产免费一级a男人的天堂| av又黄又爽大尺度在线免费看| 国产美女午夜福利| 成人欧美大片| 亚洲成人精品中文字幕电影| 国产免费视频播放在线视频| 老师上课跳d突然被开到最大视频| 国产精品一区二区性色av| 2018国产大陆天天弄谢| 春色校园在线视频观看| av专区在线播放| 亚洲国产日韩一区二区| 精品人妻视频免费看| 亚洲精品国产色婷婷电影| 国产成人aa在线观看| 人妻 亚洲 视频| 国产永久视频网站| 欧美精品国产亚洲| 国产成人福利小说| 婷婷色av中文字幕| 人妻 亚洲 视频| 中文天堂在线官网| 美女国产视频在线观看| 国产成年人精品一区二区| 久久国内精品自在自线图片| 国产大屁股一区二区在线视频| 尾随美女入室| 免费看a级黄色片| 亚洲最大成人av| 精品人妻熟女av久视频| 免费黄频网站在线观看国产| 欧美日本视频| 免费观看av网站的网址| 国产精品国产三级国产av玫瑰| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 麻豆成人午夜福利视频| 毛片女人毛片| 日韩视频在线欧美| 免费av不卡在线播放| freevideosex欧美| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 春色校园在线视频观看| 99热这里只有是精品50| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜添av毛片| 91久久精品电影网| 亚洲av福利一区| 中文乱码字字幕精品一区二区三区| 精品久久久噜噜| 两个人的视频大全免费| 国产黄a三级三级三级人| 少妇熟女欧美另类| 国产精品国产av在线观看| 日韩制服骚丝袜av| 精品久久久精品久久久| 国产精品不卡视频一区二区| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 另类亚洲欧美激情| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 伦精品一区二区三区| 视频区图区小说| 99久久精品国产国产毛片| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄| 毛片女人毛片| 国产精品国产av在线观看| 亚洲天堂av无毛| 国产精品99久久99久久久不卡 | 亚洲国产欧美在线一区| 51国产日韩欧美| 人妻制服诱惑在线中文字幕| 国产成人福利小说| 嫩草影院新地址| 男男h啪啪无遮挡| 国产精品人妻久久久久久| 免费播放大片免费观看视频在线观看| 亚洲综合精品二区| a级一级毛片免费在线观看| 欧美精品一区二区大全| 国产精品精品国产色婷婷| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 欧美3d第一页| 一个人看视频在线观看www免费| 亚洲av成人精品一二三区| 久久久久性生活片| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 99热6这里只有精品| 少妇高潮的动态图| 听说在线观看完整版免费高清| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线 | 国产成人福利小说| 99热6这里只有精品| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 在线亚洲精品国产二区图片欧美 | 内地一区二区视频在线| 永久免费av网站大全| 久久久久久久精品精品| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 秋霞在线观看毛片| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 看黄色毛片网站| 最新中文字幕久久久久| 简卡轻食公司| 日本黄大片高清| 久久6这里有精品| tube8黄色片| www.色视频.com| 亚洲国产成人一精品久久久| 永久网站在线| 国产在视频线精品| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久国产乱子免费精品| 嫩草影院精品99| 97在线人人人人妻| 成人亚洲欧美一区二区av| 国产成人免费无遮挡视频| 搞女人的毛片| 黑人高潮一二区| 在线亚洲精品国产二区图片欧美 | 亚洲一区二区三区欧美精品 | 男女那种视频在线观看| 91aial.com中文字幕在线观看| 老司机影院成人| 久久久久久久久久成人| 噜噜噜噜噜久久久久久91| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 免费大片黄手机在线观看| 国产成人免费观看mmmm| 国产69精品久久久久777片| 成年女人看的毛片在线观看| 亚洲,一卡二卡三卡| 亚洲人成网站高清观看| 国产精品无大码| 丝袜脚勾引网站| 国产色婷婷99| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 午夜视频国产福利| 成人国产麻豆网| 精品人妻熟女av久视频| 女人久久www免费人成看片| 国产男女内射视频| 18禁动态无遮挡网站| 日本免费在线观看一区| 听说在线观看完整版免费高清| 天堂网av新在线| 街头女战士在线观看网站| 日本欧美国产在线视频| 免费大片黄手机在线观看| 日韩强制内射视频| 日本一本二区三区精品| 成人国产麻豆网| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 日韩强制内射视频| 国产日韩欧美亚洲二区| 少妇丰满av| 麻豆成人午夜福利视频| 五月开心婷婷网| 国产高清国产精品国产三级 | 国产精品一及| 免费黄色在线免费观看| 天堂中文最新版在线下载 | 欧美国产精品一级二级三级 | 亚洲av在线观看美女高潮| 国产有黄有色有爽视频| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 看十八女毛片水多多多| 丝袜美腿在线中文| 伦精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 91午夜精品亚洲一区二区三区| 精品人妻熟女av久视频| 亚洲成人av在线免费| 美女cb高潮喷水在线观看|