姚 瑤,丁從珠,葛衛(wèi)紅
(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院1.藥學(xué)部;2.老年科,江蘇南京 210008)
類風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis,RA)為慢性炎癥性自身免疫性疾病,全球發(fā)病率為0.5% ~1.0%,我國(guó)發(fā)病率約為0.4%。炎癥和骨破壞為RA的兩大主要病理表現(xiàn)。目前RA治療多采用緩解病情抗風(fēng)濕藥(disease-modifying anti-rheumatic drugs,DMARDs),激素類以及近年來的生物制劑類等,這些藥物大多數(shù)通過調(diào)節(jié)免疫因子的分泌來緩解炎癥引起的骨破壞[1]。
二磷酸鹽(bisphosphonates)作為治療骨質(zhì)疏松的有效藥物,在長(zhǎng)期的應(yīng)用中,學(xué)者們發(fā)現(xiàn)它在治療類風(fēng)濕性關(guān)節(jié)炎導(dǎo)致的骨質(zhì)疏松時(shí),對(duì)類風(fēng)濕性關(guān)節(jié)炎同樣有效[2]。2010美國(guó)風(fēng)濕病學(xué)會(huì)(American college of rheumatology,ACR)指南指出絕經(jīng)后婦女或≥50歲的男性預(yù)期應(yīng)用強(qiáng)的松劑量每日≥7.5 mg,用藥3月推薦加用二磷酸鹽,防治骨質(zhì)疏松的發(fā)生[3]。然而二磷酸鹽對(duì)類風(fēng)濕性關(guān)節(jié)炎調(diào)節(jié)機(jī)制尚不清楚,限制其在RA中更廣泛的應(yīng)用,本文就二磷酸鹽對(duì)破骨細(xì)胞、軟骨細(xì)胞和炎癥的作用作綜述。
RA致殘的主要原因是關(guān)節(jié)軟骨及骨的破壞,在炎癥通路的啟動(dòng)、活化和最終導(dǎo)致骨關(guān)節(jié)破壞過程中,破骨細(xì)胞起著重要作用。巨噬細(xì)胞集落刺激因子(macrophage colony stimulatory factor,M-CSF),白介素-1(interleukin-1,IL-1)和腫瘤壞死因 α(tumor necrosis factor,TNF-α)參與破骨細(xì)胞的分化和活性調(diào)節(jié),其中,IL-1誘導(dǎo)的 TNFα水平與RA骨破壞的發(fā)生發(fā)展密切相關(guān)[4]。Polzer K研究表明,IL-1介導(dǎo)TNF-α調(diào)節(jié)的骨質(zhì)流失[5],而骨質(zhì)流失與破骨細(xì)胞的活化和吸收能力相關(guān)[6]。近期研究表明IL-17也是促進(jìn)破骨細(xì)胞分化的重要細(xì)胞因子[7]。在炎性因子的介導(dǎo)下,大量核因子κB受體活化因子配體(Receptor Activator for Nuclear Factorκ B Ligand,RANKL)與細(xì)胞膜上核因子κ B受體活化因子(Receptor Activator for Nuclear Factor-κ B,RANK)受體競(jìng)爭(zhēng)性地結(jié)合,引起下游腫瘤壞死因子受體相關(guān)因子6(TNF receptor-associated factor 6,TRAF6)、核因子 κB(nuclear factor κB,NF-κB)和活化T細(xì)胞核因子(nuclear factor of activated T cells,NFAT)的激活,從而誘導(dǎo)破骨細(xì)胞的分化[8]。
二磷酸鹽的主要作用靶點(diǎn)是破骨細(xì)胞,通過抑制破骨細(xì)胞的活性來完成抗骨吸收作用。Rogers等[9]發(fā)現(xiàn)二磷酸鹽能吸附在礦物質(zhì)結(jié)合位點(diǎn)上,直接干擾破骨細(xì)胞的附著,導(dǎo)致破骨細(xì)胞的超微結(jié)構(gòu)發(fā)生變化,從而抑制其骨吸收活性。Ohe等[10]和Tsubaki等[11]發(fā)現(xiàn)二磷酸鹽還可通過間接途徑抑制破骨細(xì)胞的活性,研究表明二磷酸鹽可抑制成骨細(xì)胞及骨髓基質(zhì)細(xì)胞分泌M-CSF和RANKL,而刺激骨保護(hù)素 (osteoprotegerin,OPG)的分泌。其中MCSF和RANKL/RANK/OPG信號(hào)通路是破骨細(xì)胞分化過程及發(fā)揮骨吸收活性的主要影響因子。因此,二磷酸鹽可抑制M-CSF和RANKL的表達(dá),促進(jìn)OPG的分泌,使RANKL/OPG比值降低,可以明顯抑制破骨細(xì)胞的骨吸收。
二磷酸鹽在化學(xué)結(jié)構(gòu)上分為含氮與不含氮,兩者作用機(jī)制也不盡相同。含氮雙磷酸鹽的作用機(jī)制包括兩個(gè),一個(gè)是抑制其中最主要的是通過模擬焦磷酸尼法酯合酶的天然底物,抑制破骨細(xì)胞甲羥戊酸途徑中的關(guān)鍵酶焦磷酸法尼酯合酶的活性,使得法尼基焦磷酸(farnesyl pyrophosphate,F(xiàn)PP)無法形成,從而抑制下游的包括Rho、Ras、Rab在內(nèi)的蛋白合成[12]。最新研究表明,與破骨細(xì)胞凋亡相關(guān)的蛋白是Rab[13]。再次驗(yàn)證二磷酸鹽對(duì)破骨細(xì)胞的作用。另外,Ras和Rho也是該家族中重要的蛋白質(zhì),Ras參與了Raf-Mek-Erk這條調(diào)節(jié)通路的傳導(dǎo),Ras受上游信號(hào)的的激活后磷酸化下游蛋白而產(chǎn)生一系列的級(jí)聯(lián)反應(yīng),Raf被Ras激活后激活下游的Mek,進(jìn)而激活Erk,活化的Erk進(jìn)入細(xì)胞核,磷酸化特定基因上的特定位點(diǎn),調(diào)控轉(zhuǎn)錄。這一途徑調(diào)節(jié)炎癥反應(yīng)方面起著重要的作用[14]。而Rho調(diào)節(jié)細(xì)胞遷移和吞噬過程中的肌動(dòng)蛋白,并且參與細(xì)胞外的信號(hào)通路。Rho不僅與腫瘤的生長(zhǎng)和遷移有關(guān),而且與炎癥有關(guān),它能夠促進(jìn)巨噬細(xì)胞和淋巴細(xì)胞向組織的遷移,應(yīng)答炎癥刺激,促進(jìn)活性氧自由基(Reactive Oxygen Species,ROS)的產(chǎn)生、細(xì)胞吞噬、NF-κB的信號(hào)通路和細(xì)胞因子的產(chǎn)生等[15]。
由此可見,羥甲戊酸途徑的抑制是藥物發(fā)揮抗炎作用的核心,推測(cè)其他抑制羥甲戊酸途徑的藥物也能發(fā)揮抗炎作用。苯甲酸鈉通過調(diào)節(jié)羥甲戊酸途徑和Ras系統(tǒng),抑制小膠質(zhì)細(xì)胞的炎癥應(yīng)答,在此過程中羥甲基戊二酸單酰輔酶(HMG-CoA)、FPP水平下降,導(dǎo)致NF-κB抑制,同時(shí)Ras法尼基蛋白轉(zhuǎn)移酶的抑制也能降低誘導(dǎo)型一氧化氮合酶(Inducible Nitric Oxide Synthase,iNOS)的表達(dá)[16]。他汀類藥物通過抑制羥甲戊酸途徑,發(fā)揮抑制膽固醇合成的作用,HMG-CoA還原酶抑制劑降低下游的FPP水平,從而減少膽固醇的合成。臨床研究證實(shí)他汀類藥物能夠有效地縮小高脂血癥患者頸動(dòng)脈斑塊面積,降低炎性因子 IL-6、TNF-α 水平[17-18]。同時(shí),Silveira AA表明辛伐他汀可以通過調(diào)節(jié)Rho激酶活性直接發(fā)揮抗炎作用[19]。繼往的研究中二磷酸鹽的抗炎活性也得到了證實(shí),Kamel A.A檢測(cè)了11個(gè)含氮雙磷酸鹽的抗炎活性,結(jié)果顯示所有的實(shí)驗(yàn)藥物均能很好地緩解炎癥,因此具有抑制多發(fā)性關(guān)節(jié)炎的作用[20]。
軟骨破壞也是RA的重要病理改變之一,隨著RA滑膜成纖維細(xì)胞的活化,侵入軟骨細(xì)胞,介導(dǎo)軟骨破壞,不僅導(dǎo)致關(guān)節(jié)間隙狹窄,功能受限,還進(jìn)一步促進(jìn)軟骨下骨破壞,主要是通過分泌大量的降解酶來實(shí)現(xiàn),其中最重要的是基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMPs)。組織基質(zhì)金屬蛋白酶抑制劑(tissue inhibitor of matrix metalloproteinase,TIMPs)是MMPs的拮抗劑,TIMPs/MMPs比例失調(diào)在軟骨降解過程中起關(guān)鍵作用。研究表明,阿倫磷酸鈉能夠通過上調(diào)二型膠原表達(dá),抑制IL-1β誘導(dǎo)的軟骨細(xì)胞MMP13的分泌,從而保護(hù)軟骨細(xì)胞功能[21]。
綜上所述,二磷酸鹽對(duì)抑制破骨細(xì)胞活性、炎癥反應(yīng)和保護(hù)軟骨細(xì)胞都有一定的作用,為臨床治療類風(fēng)濕性關(guān)節(jié)炎提供理論依據(jù)。鑒于目前臨床僅將二磷酸鈉類藥物與其他藥物合用治療類風(fēng)濕性關(guān)節(jié)炎,且上述大多結(jié)論都來自體外實(shí)驗(yàn),缺乏足夠的實(shí)踐依據(jù)。因此,二磷酸鹽類在類風(fēng)濕性關(guān)節(jié)炎的治療中廣泛應(yīng)用還需要進(jìn)一步深入的研究。
[1] Schmitz S,Adams R,Walsh CD,et al.A mixed treatment comparison of the efficacy of anti-TNF agents in rheumatoid arthritis for methotrexate non-responders demonstrates differences between treatments:a Bayesian approach [J].Ann Rheum Dis,2012,71:225-230.
[2] Suresh E,Pazianas M,Abrahamsen B.Safety issues with bisphosphonate therapy for osteoporosis[J].Rheumatology(Oxford),2014,53(1):19-31.
[3] Jennifer MR,Rebecca G,Veena KR,et al.American College of Rheumatology 2010 Recommendations for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis[J].Arthritis Care & Research,2010,62:1515-1526.
[4] Zhao B,Grimes SN,Li S,et al.TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J[J].J Exp Med,2012,209:319-334.
[5] Braun T,Schett G.Pathways for bone loss in inflammatory disease[J].Curr Osteoporos Rep,2012,10(2):101-108.
[6] Schett G,Gravallese E.Bone erosion in rheumatoid arthritis:mechanisms,diagnosis and treatment[J].Nat Rev Rheumatol,2012,8:656-664.
[7] Komatsu N,Takayanagi H.Autoimmune arthritis:the interface between the immune system and joints[J].Adv Immunol,2012,115:45-71.
[8] Schett G,Gravallese E.Bone erosion in rheumatoid arthritis:mechanisms,diagnosis and treatment[J].Nat Rev Rheumatol,2012,8:656-664.
[9] Tsubaki M,Itoh T,Satou T,et al.Nitrogen-containing bisphosphonates induce apoptosis of hematopoietic tumor cells via inhibition of Ras signaling pathways and Bim-mediated activation of the intrinsic apoptotic pathway[J].Biochem Pharmacol,2013,85(2):163-172.
[10] Ohe JY,Kwon YD,Lee HW.Bisphosphonates modulate the expression of OPG and M-CSF in hMSC-derived osteoblasts[J].Clin O-ral Investig,2012,4:1153-1159.
[11] Tsbaki M,Satou T,Itoh T,et al.Bisphosphonate and statin induced enhancement of OPG expression and inhibition of CD9,M-CSF,and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2 [J].Mol Cell Endocrinol,2012,1(2):219-231.
[12] Rogers MJ,Crockett JC,Coxon FP,et al.Biochemical and molecular mechanisms of action of bisphosphonates[J].Bone,2011,49:34-41.
[13] Hirvonen MJ,Mulari MT,Büki KG J,et al.Rab13 is upregulated during osteoclast differentiation and associates with small vesicles revealing polarized distribution in resorbing cells[J].Histochem Cytochem,2012,60(7):537-549.
[14] Tsubaki M,Satou T,Itoh T,et al.Bisphosphonate-and statin-induced enhancement of OPG expression and inhibition of CD9,MCSF,and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2 [J].Mol Cell Endocrinol,2012,361(1/2):219-231.
[15] Tsai SH,Huang PH,Peng YJ,et al.Zoledronate attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of Rho/ROCK-dependent JNK and NF-κB pathway [J].Cardiovasc Res,2013,100(3):501-510.
[16] Zhang Y,Li X,Carpinteiro A,et al.Kinase suppressor of Ras-1 protects against pulmonary pseudomonas aeruginosa infections[J].Nat Med,2011,17(3):341-346.
[17]黃占強(qiáng),吳悅陶,楊 陽.他汀類藥物的多效性及對(duì)糖代謝的影響[J].安徽醫(yī)藥,2013,17(1):16-19.
[18]王喜福,葉 明,李遠(yuǎn)競(jìng),等.普羅布考聯(lián)合瑞舒伐他汀對(duì)高脂血癥患者頸動(dòng)脈斑塊及炎性因子的影響[J].安徽醫(yī)藥,2013,17(5):836-838.
[19] Silveira AA,Dominical VM,Lazarini M,et al.Simvastatin abrogates inflamed neutrophil adhesive properties,in association with the inhibition of Mac-1 integrin expression and modulation of Rho kinase activity[J].Inflamm Res,2013,62:127-132.
[20] Kamel AA,Geronikaki A,Abdou WM.Inhibitory effect of novel S,N-bisphosphonates on some carcinoma cell lines,osteoarthritis,and chronic inflammation[J].Eur J Med Chem,2012,51:239-249.
[21]王哲彥,王文雅,張 柳.阿侖膦酸鈉對(duì)IL-1β體外誘導(dǎo)培養(yǎng)的大鼠膝關(guān)節(jié)軟骨細(xì)胞影響的實(shí)驗(yàn)研究[J].中國(guó)修復(fù)重建外科雜志,2011,25(1):50-55.