湯 徐,錢玲玲,王如興,李肖蓉
?
大電導(dǎo)鈣離子激活鉀通道在心血管疾病中的研究進(jìn)展
湯 徐,錢玲玲,王如興,李肖蓉*
(南京醫(yī)科大學(xué)附屬無(wú)錫市人民醫(yī)院心內(nèi)科,無(wú)錫 214023)
冠狀動(dòng)脈平滑肌細(xì)胞膜上存在許多大電導(dǎo)鈣離子激活鉀(BKCa)通道,在維持細(xì)胞正常生理活動(dòng)中起重要作用。研究發(fā)現(xiàn)當(dāng)細(xì)胞膜去極化或/(和)細(xì)胞內(nèi)鈣離子增加時(shí),BKCa通道激活,開放增加,鉀離子外流,細(xì)胞膜超極化,血管舒張。而在高血壓、糖尿病、缺氧、心力衰竭和老化等許多病理情況下,BKCa通道功能發(fā)生改變,從而影響對(duì)血管功能的調(diào)節(jié)。本文主要綜述近年來(lái)BK通道在心血管疾病中的研究進(jìn)展。
大電導(dǎo)鈣激活鉀通道;心血管疾??;高血壓;糖尿??;心力衰竭;衰老
正常血管壁上通常有3種類型鈣離子激活鉀通道,分別為大電導(dǎo)鈣離子激活鉀(BKCa)通道、中電導(dǎo)鈣離子激活鉀(IKCa)通道和小電導(dǎo)鈣離子激活鉀(SKCa)通道,其中BKCa通道主要表達(dá)于血管平滑肌細(xì)胞上,而IKCa和SKCa通道則主要表達(dá)于血管內(nèi)皮細(xì)胞上。血管平滑肌細(xì)胞上的BKCa通道對(duì)維持血管張力、調(diào)節(jié)血管功能起重要作用。近年來(lái),通過采用膜片鉗和分子生物學(xué)等實(shí)驗(yàn)技術(shù)對(duì)BKCa通道結(jié)構(gòu)、功能及表達(dá)進(jìn)行了深入研究,發(fā)現(xiàn)許多心血管疾病的發(fā)生和發(fā)展與BKCa通道的改變密切相關(guān),主要表現(xiàn)為BKCa通道表達(dá)改變,從而導(dǎo)致血管調(diào)節(jié)功能障礙。本文主要對(duì)血管平滑肌細(xì)胞上BKCa通道的基本特性以及心血管疾病時(shí)BKCa通道的變化進(jìn)行綜述。
BKCa通道廣泛分布于血管平滑肌細(xì)胞上,我們前期研究表明,BKCa通道約占整個(gè)血管平滑肌鉀離子通道的65%,對(duì)調(diào)節(jié)血管張力起重要作用;BKCa通道電導(dǎo)為200~300pS,其大電導(dǎo)特性對(duì)調(diào)節(jié)細(xì)胞膜靜息細(xì)胞也起重要作用[1]。BKCa通道由4個(gè)α亞單位和4個(gè)β亞單位組成,每個(gè)α亞單位結(jié)合一個(gè)起調(diào)節(jié)作用的輔助β亞單位形成通道的四聚體結(jié)構(gòu),從而增加了通道的鈣離子敏感性和電壓依賴性。α亞單位由KCNMA1基因編碼,包括與細(xì)胞外氨基端相連的7個(gè)跨膜片段(S0~S6),以及位于細(xì)胞內(nèi)與羧基端相連的4個(gè)疏水性片段(S7~S10)。S5及S6結(jié)構(gòu)域和位于其之間的P環(huán)共同構(gòu)成鉀離子選擇性過濾器,S2及S3結(jié)構(gòu)域中的酸性位點(diǎn)與S4結(jié)構(gòu)域中的堿性位點(diǎn)共同構(gòu)成電壓感受器,細(xì)胞內(nèi)羧基末端結(jié)構(gòu)上存在兩種鉀離子電導(dǎo)調(diào)控元件(regulatory element of K+conductance,RCK)結(jié)構(gòu)域,RCK結(jié)構(gòu)域與同在羧基端的鈣離子球共同調(diào)節(jié)通道鈣離子依從性,是鈣離子敏感區(qū)域[2]。4個(gè)α亞單位的8個(gè)RCK結(jié)構(gòu)域構(gòu)成通道的門控環(huán)[3]。β亞單位是含β1~β4 4種亞型的兩次跨膜蛋白(two transmembrane domains,TM),分別為跨膜蛋白1(TM1)和跨膜蛋白2(TM2),胞外有近120個(gè)氨基酸殘基組成的肽鏈將兩者鏈接,其氨基端和羧基端均在細(xì)胞內(nèi)。Liu等[4]研究發(fā)現(xiàn),TM1鄰近S1和S2,TM2位于S0旁而鄰近α亞單位。β亞單位的多態(tài)性是構(gòu)成BKCa通道多樣性的基礎(chǔ)。在血管平滑肌細(xì)胞上主要為β1亞單位,由KCNMB1基因編碼,β1亞單位可增加BKCa通道對(duì)鈣離子敏感性[5]。
與其他鉀離子通道不同,BKCa通道激活受細(xì)胞跨膜電位和/(或)細(xì)胞內(nèi)鈣離子濃度的影響。當(dāng)細(xì)胞膜發(fā)生除極化或細(xì)胞內(nèi)鈣離子濃度增加時(shí),BKCa通道開放增加。細(xì)胞內(nèi)鈣離子濃度增加包括肌漿網(wǎng)中鈣離子的釋放,即“鈣火花”[6],鈣火花可以是自發(fā)的,也可以由激動(dòng)劑誘發(fā)后釋放;此外,細(xì)胞外鈣離子通過L型電壓門控鈣通道(Cav1.2)內(nèi)流也可使細(xì)胞內(nèi)鈣離子濃度增加[7],從而激活BKCa通道。鎂離子還可以通過與金屬離子結(jié)合位點(diǎn)相結(jié)合介導(dǎo)BKCa通道的激活,但該過程是電壓依賴性激活,與鈣離子濃度依賴的通道激活不同[8,9]。Yang等[10]發(fā)現(xiàn)鎂離子通過作用于電壓感受域與RCK1結(jié)構(gòu)域間的接口部位激活BKCa通道。鎂離子可通過增加BKCa通道平均開放時(shí)間、降低BKCa通道平均關(guān)閉時(shí)間及通道平均開放數(shù)量而增加BKCa通道的開放概率[11]。BKCa通道的調(diào)控除受上述主要因素影響外,還受氫離子、血紅素、一氧化碳、活性氧、脂類及其代謝產(chǎn)物等一些內(nèi)源性信號(hào)分子的影響。
BKCa通道以其高密度表達(dá)、大電導(dǎo)和多重門控機(jī)制等特性,對(duì)平滑肌細(xì)胞、心肌細(xì)胞、神經(jīng)細(xì)胞和骨骼肌細(xì)胞等多種細(xì)胞的功能起重要調(diào)節(jié)作用。在心血管系統(tǒng)中,BKCa通道通過調(diào)節(jié)興奮-收縮耦聯(lián)機(jī)制在維持血管張力方面起重要作用[12]。在血管平滑肌細(xì)胞上,BKCa通道位于細(xì)胞內(nèi)質(zhì)網(wǎng)鄰近蘭尼堿受體之處,鈣離子通過L-型鈣通道內(nèi)流,使細(xì)胞內(nèi)鈣離子濃度增加[13],BKCa通道激活,開放增加,血管舒張,血壓下降、心肌供血增加以及組織器官血流灌注增加。而當(dāng)BKCa通道阻滯后,血管平滑肌細(xì)胞的膜電位去極化,血管收縮。因此,BKCa通道在維持平滑肌細(xì)胞膜電位和調(diào)節(jié)血管張力中起重要作用,可能是心血管疾病治療的潛在靶點(diǎn)。
心血管疾病在我國(guó)是首位死亡原因,而高血壓、糖尿病、高脂血癥、肥胖和老化等是心血管疾病的重要危險(xiǎn)因素,研究表明這些危險(xiǎn)因素可導(dǎo)致BKCa通道功能受損,從而促進(jìn)和加重心血管疾病的發(fā)生。
高血壓是心血管疾病最重要危險(xiǎn)因素之一,嚴(yán)重危害人類健康,但高血壓的發(fā)病機(jī)制至今尚未完全清楚。由于高血壓的發(fā)生與血管張力增加有關(guān),而BKCa通道激活時(shí)血管舒張,BKCa通道失活或減少時(shí)血管收縮,故高血壓的發(fā)生和發(fā)展可能與BKCa通道功能異常有關(guān)。在對(duì)不同高血壓動(dòng)物模型BKCa通道表達(dá)和功能研究中發(fā)現(xiàn)高血壓血管平滑肌細(xì)胞中,BKCa通道功能及表達(dá)異常[14,15]。血管平滑肌細(xì)胞BKCa通道α亞單位和β1亞單位對(duì)血壓的影響一直是研究熱點(diǎn)。首先是α亞單位對(duì)高血壓的影響,在基因敲除研究中,缺乏α亞單位小鼠的冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道電流明顯減少,細(xì)胞膜除極化,血壓升高[16]。此外,一些高血壓模型也提示BKCa通道α亞單位表達(dá)減少引起B(yǎng)KCa通道功能受損[17,18]。其次是β1亞單位對(duì)高血壓的影響,Pluger等[19,20]研究表明,去除小鼠β1亞單位后BKCa通道功能受損,通道開放減少,可能與BKCa通道對(duì)鈣離子敏感性降低有關(guān),從而導(dǎo)致小鼠血壓升高;Yang等[21]通過全細(xì)胞膜片鉗試驗(yàn)研究發(fā)現(xiàn)高血壓患者BKCa通道全細(xì)胞電流減少,其原因是由于β1亞單位表達(dá)下調(diào)。然而,近年也有研究發(fā)現(xiàn)敲除小鼠β1亞單位后,24h平均動(dòng)脈壓無(wú)明顯變化[22]。這些研究結(jié)果的不一致,說(shuō)明β1亞單位在高血壓發(fā)生中的作用還有待進(jìn)一步研究??傊芷交〖?xì)胞BKCa通道是血管張力的重要調(diào)節(jié)因素,BKCa通道亞單位表達(dá)異常,與高血壓的發(fā)生存在密切關(guān)系,隨著對(duì)BKCa通道的研究進(jìn)一步深入,為預(yù)防高血壓發(fā)病及高血壓藥物研制提供了新思路。
目前糖尿病的發(fā)病率越來(lái)越高,已成為嚴(yán)重危害人類健康的3大慢性疾病之一。糖尿病可并發(fā)心腦腎和外周血管等多種并發(fā)癥,其中以心血管并發(fā)癥最為嚴(yán)重,是糖尿病患者死亡的首要病因,但機(jī)制還不完全清楚,可能與離子通道功能異常有關(guān)。許多研究表明,糖尿病及代謝綜合征時(shí)冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道功能受損[23,24]。Lu等[23]研究發(fā)現(xiàn)糖尿病大鼠冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道鈣離子敏感性和電壓敏感性均降低,原因是BKCa通道β1亞單位表達(dá)減少。作者等[24]采用全細(xì)胞膜片鉗和分子生物學(xué)等實(shí)驗(yàn)技術(shù)研究糖尿病大鼠冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道的變化,結(jié)果表明糖尿病時(shí)冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道電流密度明顯下降、β1亞單位表達(dá)下調(diào)和細(xì)胞內(nèi)鈣離子濃度升高,這可能是糖尿病冠狀動(dòng)脈功能損傷的重要原因;而單通道膜片鉗實(shí)驗(yàn)技術(shù)研究表明,糖尿病大鼠冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道鈣離子敏感性降低,但仍有鈣離子濃度依賴特性[25]。除動(dòng)物實(shí)驗(yàn)外,長(zhǎng)期處于高血糖情況下培養(yǎng)的人冠狀動(dòng)脈平滑肌細(xì)胞β1亞單位下調(diào),而α亞單位無(wú)變化[26]。
不僅糖尿病對(duì)BKCa通道有影響,代謝綜合征對(duì)冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道也有影響,代謝綜合征時(shí)血管平滑肌細(xì)胞BKCa通道減少,血管舒張功能下降[27]。Jing等[28]研究表明,代謝綜合征使BKCa通道受損,比其他多種傳統(tǒng)心血管危險(xiǎn)因素對(duì)血管功能的影響更大。
總之,糖尿病、高血糖癥及代謝綜合征對(duì)心血管系統(tǒng)的影響可能是由于高血糖癥引起冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道功能障礙,BKCa通道電流下降,血管張力增加,從而引起各種心血管疾病[29]。
正常情況下,氧調(diào)控血管平滑肌細(xì)胞上BKCa通道的活動(dòng),缺氧時(shí)可引起冠狀動(dòng)脈BKCa通道功能改變,因此,BKCa通道可以作為檢測(cè)氧分壓變化的直接感受器[30]。BKCa通道對(duì)缺氧的應(yīng)答取決于血管缺氧的快慢以及血管床的性質(zhì)。培養(yǎng)的大鼠主動(dòng)脈經(jīng)長(zhǎng)時(shí)間缺氧處理后,平滑肌細(xì)胞BKCa通道β1亞單位的表達(dá)下降,通道活性減弱[31]。缺氧通常由缺血所致,冠狀動(dòng)脈缺血1h后,BKCa通道介導(dǎo)的血管舒張功能顯著降低[32]。缺氧引起冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道功能障礙的機(jī)制還不完全清楚,可能與缺氧的形式以及血管自身特性有關(guān),需要進(jìn)一步研究證實(shí)。但目前研究表明,缺氧可造成冠狀動(dòng)脈上平滑肌細(xì)胞BKCa通道表達(dá)下降,活性降低,導(dǎo)致冠狀動(dòng)脈舒張功能障礙,從而誘發(fā)心肌缺血,嚴(yán)重者甚至發(fā)生心肌梗死和猝死。
心力衰竭作為各種心臟病終末發(fā)展階段,其之所以成為本世紀(jì)最難以治療的心血管疾病之一,是由于心力衰竭的發(fā)生機(jī)制尚未完全清楚。研究發(fā)現(xiàn),心力衰竭的發(fā)生也與BKCa通道功能異常有關(guān),Wan等[33]對(duì)收縮性心力衰竭小鼠進(jìn)行研究,發(fā)現(xiàn)心力衰竭時(shí)腸系膜動(dòng)脈血管平滑肌細(xì)胞BKCa通道α及β1亞單位表達(dá)減少,血管平滑肌細(xì)胞膜電位在-20mV時(shí)除極化,且細(xì)胞內(nèi)的鈣離子濃度明顯升高,導(dǎo)致血管張力增加。且該研究還發(fā)現(xiàn),BKCa通道特異性阻滯劑誘導(dǎo)的肌源性張力在心力衰竭組減弱。這些研究結(jié)果說(shuō)明,心力衰竭時(shí),在小鼠的血管平滑肌細(xì)胞上,BKCa通道電流的下降可能與心力衰竭誘導(dǎo)的血管收縮有關(guān),故心力衰竭時(shí)血管平滑肌細(xì)胞內(nèi)電調(diào)控失常,尤其是BKCa通道電流下降,是調(diào)節(jié)收縮性心力衰竭時(shí)血壓誘導(dǎo)的阻力血管收縮的重要分子機(jī)制,這些研究結(jié)果可能為心力衰竭的預(yù)防和治療提供了新的研究方向。
血管老化(aging)與心血管疾病密切相關(guān),可導(dǎo)致血管結(jié)構(gòu)和功能的改變,包括血管僵硬、動(dòng)脈彈性擴(kuò)張及內(nèi)皮功能障礙等[34],因此血管老化是心血管疾病發(fā)生的獨(dú)立危險(xiǎn)因素。血管老化發(fā)生后,血管平滑肌細(xì)胞逐漸從中膜移行至內(nèi)膜沉積,血管舒張功能減退。除這些因素外,血管老化還影響B(tài)KCa通道的功能。研究表明,老年大鼠冠狀動(dòng)脈平滑肌細(xì)胞BKCa通道密度顯著減少,α和β亞基表達(dá)下降,且對(duì)BKCa通道特異性阻滯劑反應(yīng)減弱,從而誘導(dǎo)冠狀動(dòng)脈收縮[35,36]。在老年冠狀動(dòng)脈平滑肌細(xì)胞中也證實(shí)存在這一改變[37]。這些研究結(jié)果表明,隨著血管老化,BKCa通道功能逐漸產(chǎn)生障礙,表現(xiàn)為調(diào)節(jié)血管功能的作用減弱,導(dǎo)致血管痙攣、收縮,從而發(fā)生缺血性心腦血管疾病。有趣的是,運(yùn)動(dòng),尤其是有氧運(yùn)動(dòng),可以減慢老化引起的BKCa通道減少[38]。無(wú)論是低頻運(yùn)動(dòng)組還是高頻運(yùn)動(dòng)組,BKCa通道的電導(dǎo)均無(wú)變化,但有氧運(yùn)動(dòng)后BKCa通道的開放率顯著增加,且通道的開放時(shí)間延長(zhǎng),而關(guān)閉時(shí)間縮短[39]。提示在心血管疾病的預(yù)防和治療中,運(yùn)動(dòng)可以成為延緩血管老化的重要保護(hù)手段之一。
總之,近年來(lái),隨著對(duì)血管平滑肌細(xì)胞BKCa通道的結(jié)構(gòu)、調(diào)控和功能的深入研究,發(fā)現(xiàn)BKCa通道與許多心血管疾病,尤其是與高血壓、糖尿病、代謝綜合征、心力衰竭和血管老化等密切相關(guān)。在這些病理狀態(tài)下,BKCa通道的表達(dá)發(fā)生改變,通道開放減少,電流密度下降,從而導(dǎo)致血管收縮;而激活BKCa通道可擴(kuò)張血管、降低血壓和改善血液循環(huán)等。這些研究表明,BKCa通道可能是許多心血管疾病潛在的治療靶點(diǎn),從而對(duì)開拓心血管疾病的治療提供新思路。
[1] Wang RX, Chai Q, Lu T,. Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity[J]. Cardiovasc Res, 2011, 90(2): 344?352.
[2] Pau VP, Smith FJ, Taylor AB,. Structure and function of multiple Ca2+-binding sites in K+channel regulator of K+conductance (RCK) domain[J]. Proc Natl Acad Sci USA, 2011, 108(43): 17684-17689.
[3] Yuan P, Leonetti MD, Pico AR,. Structure of the human BK channel Ca2+-activation apparatus at 3.0A resolution[J]. Science, 2010, 329(5988): 182?186.
[4] Liu G, Niu X, Wu RS,. Location of modulatory beta subunits in BK potassium channel[J]. J Gen Physiol, 2010, 135(5): 449?459.
[5] Dworetzky Sl, Boissard CG, Lum-Ragan JT,. Phenotypic alteration of a human BK(h Slo)channel by h Slobeta subunit coexpression: changes in blocker sensitivity, activation/relation and inactivation kinetics, and protein A modulation[J]. J Neurosci, 1996, 16(15): 4543?4550.
[6] Rusch NJ. BK channels in cardiovascular disease: a complex story of channel dysregulation[J]. Am J Physiol Heart Circ Physiol, 2009, 297(5): H1580?H1582.
[7] Guia A, Wan X, Courtemanche M,. Local Ca2+entry through L-type Ca2+channels activates Ca2+-dependent K+channels in rabbit coronary myocytes[J]. Circ Res, 1999, 84(9): 1032?1042.
[8] Hu L, Shi J, Ma Z,. Participation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK)K+channels[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10488?10493.
[9] Horrigan FT, Ma Z. Mg2+enhances voltage sensor/gate coupling in BK channels[J]. J Gen Physiol, 2008, 131(1): 13?32.
[10] Yang H, Zhang G, Shi J,. Subunit-specific effect of the voltage sensor domain on Ca2+sensitivity of BK channels[J]. Biophys J, 2008, 94(12): 4678?4687.
[11] Chen RS, Geng Y, Magleby KL. Mg2+binding to open and closed states can activate BK channels provided that the voltage sensors are elevated[J]. J Gen Physiol, 2011, 138(6): 593?607.
[12] Ghatta S, Nimmagadda D, Xu X,. Large-conductance, calcium-activated potassium channels: structural and functional implications[J]. Pharmacol Ther, 2006, 110(1): 103?116.
[13] Jaggar JH, Porter VA, Lederer WJ,. Calcium sparks in smooth muscle[J]. Am J Physiol Cell Physiol, 2000, 278(2): C235?256.
[14] Joseph BK, Thakali KM, Moore CL,. Ion channel remodeling in vascular smooth muscle during hypertension: implications for novel therapeutic approaches[J]. Pharmacol Res, 2013, 70(1): 126?138.
[15] Liu Y, Hudtz AG, Knaus HG,. Increased expression of Ca2+-sensitive K+channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm[J]. Circ Res, 1998, 82(6): 729?737.
[16] Sausbier M, Arntz C, Bucurenciu L,. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice[J]. Circulation, 2005, 112 (1): 60?68.
[17] Bratz IN, Swafford AN Jr, Kanaqy NL,. Reduced functional expression of K+channels in vascular smooth muscle cells from rats made hypertensive with Nw-nitro-L-arginine[J]. Am J Physiol Heart Circ Physiol, 2005, 289(3): H1284?1290.
[18] Bratz IN, Dick GM, Partridge LD,. Reduced molecular expression of K+channel proteins in vascular smooth muscle from rats made hypertensive with Nw-nitro-L-arginine[J]. Am J Physiol Heart Circ Physiol, 2005, 289(3): H1277?1283.
[19] Pluger S, Faulhaber J, Furstenau M,. Mice with disrupted BK channel β1 subunit gene feature abnormal Ca2+spark/STOC coupling and elevated blood pressure[J]. Circ Res, 2000, 87(11): E53?60.
[20] Brenner R, Perez GJ, Bonev AD,. Vasoregulation by the beta1 subunit of calcium-activated potassium channel[J]. Nature, 2000, 407 (6806): 870?876.
[21] Yang Y, Li PY, Cheng J,. Function of BKCachannels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension[J]. Hypertension, 2013, 61(2): 519?525.
[22] Xu H, Garver H, Galligan JJ,. Large-conductance Ca2+-activated K+channel beta1-subunit knockout mice are not hypertensive[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H476?H485.
[23] Lu T, Ye D, He T,. Impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+channels in the coronary artery smooth muscle cells of Zucker diabetic fatty rats[J]. Biophys J, 2008, 95(11): 5165?5177.
[24] Wang RX, Li XR, Yang ZY,. Changes in large conductance Ca2+-activated K+channels on coronary smooth muscle cells from diabetic rats[J]. Chin J Cardiol, 2010, 38(12): 1098?1101. [王如興, 李肖蓉, 羊鎮(zhèn)宇, 等. 糖尿病對(duì)冠狀動(dòng)脈平滑肌細(xì)胞大電導(dǎo)鈣激活鉀通道的影響[J]. 中華心血管病雜志, 2010, 38(12): 1098?1101.]
[25] Wang RX, Yu ZM, Zhang CB,. Changes in open probability of large conductance Ca2+-activated K+channels in diabetic coronary smooth muscle cells of rats[J]. Chin J Cardiol, 2012, 40(9): 770?774. [王如興, 郁志明, 張常瑩, 等. 糖尿病大鼠冠狀動(dòng)脈平滑肌細(xì)胞大電導(dǎo)鈣激活鉀通道開放概率的變化[J]. 中華心血管病雜志, 2012, 40(9): 770?774.]
[26] Zhang DM, He T, Katusic ZS,. Muscle-specific f-box only proteins facilicate BK channel β1 subunit downregulation in vascular smooth muscle cells of diabetes mellitus[J]. Circ Res, 2010, 107(12): 1454?1459.
[27] Borbouse L, Dick GM, Asano S,. Impaired function of coronary BK(Ca) channels in metabolic syndrome[J]. Am J Physiol Heart Circ Physiol, 2009, 297(5): H1629?H1637.
[28] Li J, Flammer AJ, Lennon RJ,. Comparison of the effect of the metabolic syndrome and multiple traditional cardiovascular risk factors on vascular function[J]. Mayo Clin Proc, 2012, 87(10): 968?965.
[29] Wang RX, Shi HF, Chai Q,. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2+-activated K+channel impairment[J]. Chin Med J, 2012, 125(14): 2548?2555.
[30] Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function[J]. Am J Physiol Cell Physiol, 2011, 300(5): C951?C967.
[31] Navarro-Antolin J, Levitsky KL, Calderon E,. Decreased expression of maxi-K+channel β1-subunit and altered vasoregulation in hypoxia[J]. Circulation, 2005, 112 (9): 1309?1315.
[32] Han JG, Yang Q, Yao XQ,. Role of large-coductance calcium-activated potassium channels of coronary arteries in heart preservation[J]. J Heart Lung Transplant, 2009, 28(10): 1094?1101.
[33] Wan E, Kushner JS , Zakharov S,. Reduced vascular smooth muscle BK channel current underlies heart failure-induced vasoconstriction in mice[J]. FASEB J, 2013, 27(5): 1859?1867.
[34] Kotsis V, Stabouli S, Karafillis I,. Early vascular aging and the role of central blood pressure[J]. J Hypertens, 2011, 29(10): 1847?1853.
[35] Marijic J, Li Q, Song M,. Decreased expression of voltage- and Ca2+-activated K+channels in coronary smooth muscle during aging[J]. Circ Res, 2001, 88(2): 210?216.
[36] Nishimaru K, Eqhbali M, Lu R,. Functional and molecular evidence of MaxiK channel β1 subunit decrease with coronary artery aging in the rat[J]. J Physiol, 2004, 559(Pt 3): 849?862.
[37] Toro L, Marijic J, Nishimaru K,. Aging, ion channel expression, and vascular function[J]. Vasc Pharmacol, 2002, 38(1): 73?80.
[38] Albarwani S, Al-Siyabi S, Baomar H,. Exercise training attenuates aging-induced BKCachannel downregulation in rat coronary arteries[J]. Exp Physiol, 2010, 95(6): 746?755.
[39] Shi LJ, Zeng FX, Zhu YL,. Aerobic exercise training activating the large-conductance Ca2+-activated K+channels in rat thoracic aorta smooth muscle cells[J]. Chin Sport Sci, 2012, 32(2): 64?68. [石麗君, 曾凡星, 朱一力. 等. 有氧運(yùn)動(dòng)誘導(dǎo)大鼠胸主動(dòng)脈平滑肌細(xì)胞大電導(dǎo)鈣激活鉀通道活性增加[J]. 中國(guó)體育科學(xué), 2012, 32(2): 64?68.]
(編輯: 王雪萍)
Large conductance Ca2+-activated K+channel in cardiovascular diseases
TANG Xu, QIAN Ling-Ling, WANG Ru-Xing, LI Xiao-Rong*
(Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China)
Large conductance Ca2+-activated K+channels (BKCachannel) are found to be abundantly expressed in the membrane of coronary vascular smooth muscle cells, and play an important role in the maintenance of cellular physiological functions. Evidence shows that cell membrane depolarization and/or increase in intra-cellular Ca2+activates BKCachannels, then the opening of the channels enables K+efflux, thus finally, membrane hyperpolarization and vasodilation take place. However, the functions of BKCachannels are altered under some pathophysiological conditions, such as hypertension, diabetes mellitus, hypoxia, heart failure, aging and so on. This alteration exerts dramatic impacts on vascular functions. The paper mainly reviewed the recent research progress in BKCachannel in cardiovascular diseases.
large conductance calcium activated potassium channel; cardiovascular diseases; hypertension; diabetes mellitus; heart failure; aging
(81070157; 81370303)(BK2011179),(006),(RC201134).
R54
A
10.3724/SP.J.1264.2014.00018
2013?06?28;
2013?07?20
國(guó)家自然科學(xué)基金(81070157; 81370303);江蘇省自然科學(xué)基金(BK2011179);江蘇省人事廳“六大人才高峰”第七批高層次項(xiàng)目(006);江蘇省醫(yī)學(xué)重點(diǎn)人才資助項(xiàng)目(RC201134)
李肖蓉, E-mail: ruxingw@aliyun.com