[摘 要] 筆者通過一道習(xí)題講評(píng)的教學(xué)意外延伸成一堂習(xí)題解法的探究活動(dòng)課,通過對(duì)知識(shí)橫向與縱向的聯(lián)系,形成一題多解策略,促進(jìn)學(xué)生思維的發(fā)展,提升學(xué)生的數(shù)學(xué)品質(zhì).
[關(guān)鍵詞] 解題方法;策略;思維
1.背景分析
這是蘇科版義務(wù)教育教科書七年級(jí)(下冊(cè))第七章復(fù)習(xí)題(課本第41頁)的一道習(xí)題,教材安排這一習(xí)題,我認(rèn)為有三個(gè)目的:
(1)讓學(xué)生理解與運(yùn)用平行的性質(zhì).
(2)讓學(xué)生經(jīng)歷探索、解決問題的過程,體驗(yàn)科學(xué)的解決方法.
(3)鞏固平行的性質(zhì)與翻折的相關(guān)結(jié)論,學(xué)生運(yùn)用平行的性質(zhì)與翻折的相關(guān)結(jié)論解決有關(guān)角度計(jì)算問題,也可以多角度思考,提高學(xué)生分析問題與解決問題的能力.
2.教師預(yù)設(shè)
我對(duì)這道例題起初沒有怎么在意,只覺得這是一道普普通通的習(xí)題,不過學(xué)生在課上的意外表現(xiàn),“逼著”大家進(jìn)一步找到其他的解法.
課堂生成
在教師的引導(dǎo)下,10分鐘基本完成書本上提供的解法. 學(xué)生提出由已知條件出發(fā)得到翻折前后對(duì)應(yīng)角大小相等,根據(jù)“兩直線平行,內(nèi)錯(cuò)角相等”,完成說明理由,全班鼓掌,教師給予很高的肯定.
生2提出:我跟他的解法有相似的地方,不一樣的地方是依據(jù)“三角形的內(nèi)角和是180°”來求角. 聽完生2的過程后,絕大多數(shù)的學(xué)生表示贊同.
對(duì)于生2的解答,我很驚訝,原來學(xué)生早就不滿足于老師的單一常規(guī)解法了.轉(zhuǎn)而我又是滿是歡喜,試探性地問道:除了以上兩種解法以外,你們還能想出其他的解法嗎?
生3膽怯地問道:求∠2的時(shí)候,我沒有用平行的性質(zhì),可以嗎?
老師滿是驚奇的回道:愿洗耳恭聽.
生3指出自己的求法,并說道:我運(yùn)用的是多邊形的內(nèi)角和公式來計(jì)算∠2的值.
大家也認(rèn)識(shí)到,上述解法同樣是借用平行的條件與翻折的性質(zhì),再引用“多邊形內(nèi)角和公式”來表達(dá)多邊形內(nèi)角之間的關(guān)系,既利用本章節(jié)的平行性質(zhì),也將已學(xué)知識(shí)——多邊形內(nèi)角和公式進(jìn)行回顧與運(yùn)用,妙哉!
班上也響起了熱烈的掌聲,老師說:太精彩了!生3也解決了同學(xué)們解決問題的局限與拓展方法:要找到好的方法,需要聯(lián)系現(xiàn)在所學(xué),更要結(jié)合已有知識(shí)與經(jīng)驗(yàn).那我們?cè)俳Y(jié)合已有的基本活動(dòng)經(jīng)驗(yàn)來嘗試有沒有不一樣的方法.
生4說:相比生3,我的方法簡(jiǎn)單且獨(dú)特,我充分利用平行的性質(zhì)來求角.
班級(jí)再一次響起掌聲,老師說:聯(lián)系已有的不同的解題策略,如果將平行的性質(zhì)、翻折的性質(zhì)、多邊形內(nèi)角和公式進(jìn)行任意組合,還有其他的解法嗎?
生5站起來,提出:我的方法跟前者差不多,只是在利用平行的性質(zhì)上不一致,我偏愛選擇平行的性質(zhì)之“兩直線平行,同旁內(nèi)角互補(bǔ)”.
大家經(jīng)歷了前面幾種解法的解題過程,很興奮,覺得數(shù)學(xué)問題的解決方法真多,真有趣!
大家表示贊許,掌聲不斷,大家的思維在一起碰撞出了火花.
生6站起來說:剛才大家已經(jīng)做了很多方法的成功嘗試,我想僅用多邊形內(nèi)角和公式來解決(大家都驚嘆其方法的獨(dú)創(chuàng)).
生7不急不忙地站起來,針對(duì)生6的解法進(jìn)行補(bǔ)充道:我想用一元一次方程來解決這道題(此方法將本節(jié)課帶入高潮).
正當(dāng)大家都沉浸在這道題的眾多解法時(shí),最后老師將這道題以及7種解法進(jìn)行總結(jié),大家意猶未盡.
在學(xué)完三角形的外角性質(zhì)知識(shí)后,學(xué)生又提供了一種解法.
生8說:我是利用三角形的外角的性質(zhì)來解的.
其他學(xué)生就問了:你是怎么想到的?
生8解釋道:我只是覺得這道題既然有這么多解法,我也想做一次成功的嘗試,當(dāng)時(shí)只想將所學(xué)的知識(shí)轉(zhuǎn)變到我們熟悉的數(shù)學(xué)問題情境中去,進(jìn)而產(chǎn)生新的求解方法.
我的反思
1. 對(duì)教學(xué)設(shè)計(jì)的思考
本次解法探究活動(dòng)是由教師講評(píng)一道習(xí)題而引發(fā)的意外. 按照原教學(xué)計(jì)劃,只需點(diǎn)評(píng)一下即可,但在課時(shí)相對(duì)不寬松的情況下,延伸出兩個(gè)課時(shí)進(jìn)行解法的探究活動(dòng),旨在通過解法探究活動(dòng)來發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)與增強(qiáng)學(xué)生的數(shù)學(xué)思維品質(zhì).
針對(duì)本節(jié)課我想從三個(gè)方面說:
首先,教師應(yīng)該鼓勵(lì)學(xué)生大膽探究,自主建構(gòu)知識(shí),并積極主動(dòng)尋求解法.教師通過探究活動(dòng)讓學(xué)生切身感受數(shù)學(xué)探究成功的快樂,“做數(shù)學(xué)”是學(xué)會(huì)數(shù)學(xué)的途徑,獨(dú)立思考是“做數(shù)學(xué)”的基礎(chǔ).教師要學(xué)會(huì)把問題解決交還給學(xué)生,讓學(xué)生更好地探究問題,這對(duì)學(xué)生進(jìn)一步提高思維、提升數(shù)學(xué)素質(zhì)有一定的意義.
其次,教師要及時(shí)抓住教學(xué)中的“意外”,并精心加工,使課堂活起來,提高課堂效率. 教師在設(shè)計(jì)教學(xué)時(shí),應(yīng)將著力點(diǎn)放在培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力上,教師要有心研究教學(xué),更要用心研究教學(xué). 教師在探究活動(dòng)課上,應(yīng)打破課時(shí)的約束,開放課堂,把話語權(quán)交還給學(xué)生,以學(xué)生為主體,讓學(xué)生積極參與,使學(xué)生在其中享受數(shù)學(xué)方法的不一樣,感受數(shù)學(xué)解法的多種多樣、豐富多彩. 這節(jié)課也讓學(xué)生更關(guān)注解法的探究,讓學(xué)生收獲遠(yuǎn)遠(yuǎn)超過這節(jié)課的幾道題,更獲得關(guān)注問題背后的思維過程與關(guān)注研究問題的方法.
最后,教師在探究活動(dòng)中,精心設(shè)計(jì),適時(shí)出現(xiàn),及時(shí)調(diào)控指導(dǎo),這樣可以提升研究課討論研究的質(zhì)量;另外還要激發(fā)學(xué)生對(duì)數(shù)學(xué)活動(dòng)課堂的興趣,也要設(shè)疑、懸疑、激疑、鼓勵(lì),這樣才會(huì)帶領(lǐng)學(xué)生更好地參與課堂、享受課堂、感受高效的數(shù)學(xué)課堂.
2. 對(duì)一題多解的思考
數(shù)學(xué)學(xué)科特點(diǎn):概念性強(qiáng)、充滿思辨性、量化突出、解法多樣性.解題方法多樣性是從不同角度、不同方位審視與分析同一題中的數(shù)量關(guān)系,用不同的策略來解決問題的思維過程.一方面,教學(xué)中采用適當(dāng)?shù)囊活}多解,可以激發(fā)學(xué)生的探究意識(shí)和強(qiáng)烈的創(chuàng)造渴望,加深學(xué)生對(duì)知識(shí)的深刻理解,訓(xùn)練學(xué)生對(duì)數(shù)學(xué)思想和數(shù)學(xué)方法的嫻熟運(yùn)用,鍛煉學(xué)生的思維廣闊性、深刻性、靈活性和獨(dú)創(chuàng)性,從而培養(yǎng)學(xué)生的數(shù)學(xué)思維品質(zhì),發(fā)展學(xué)生的創(chuàng)造性思維;另一方面,教師通過一道習(xí)題引發(fā)一節(jié)解法探究的活動(dòng)課,不僅能使學(xué)生掌握新知識(shí),還能起到鞏固復(fù)習(xí)的作用,同時(shí)能活躍課堂氣氛.一題多解的數(shù)學(xué)探究課讓學(xué)生在參與中對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生了濃厚的興趣,培養(yǎng)了學(xué)生的數(shù)學(xué)鉆研精神,使學(xué)生在思考問題時(shí)具有靈活性、多維度.
綜上,探究教學(xué)是新課程的亮點(diǎn),探究活動(dòng)是充滿生機(jī)的心智活動(dòng).如果從我們的初一起始年級(jí)就讓學(xué)生親身體驗(yàn)探究的過程,引導(dǎo)學(xué)生從不同的角度切入問題的“核心地帶”進(jìn)行探究,對(duì)話數(shù)學(xué)問題,讓習(xí)題“活”起來,學(xué)生的思維“動(dòng)”起來,那么不僅會(huì)把典型習(xí)題的教學(xué)功能演繹得淋漓盡致,而且對(duì)學(xué)生思維品質(zhì)的提高也大有裨益,勢(shì)必會(huì)在教學(xué)內(nèi)容與方法上給師生更廣闊的自由空間.