摘 要:本案例重點研究用坐標表示平移在教學設計中“學生問題意識的培養(yǎng)”方面的預設及實施狀況。本節(jié)課在講解點平移坐標變化的規(guī)律時,按照“描點—觀察—再描點—在觀察—歸納總結(jié)—應用”的過程。(操作實驗、觀察現(xiàn)象、提出猜想、推理論證)
關(guān)鍵詞:初中數(shù)學 有效教學 案例
中圖分類號:G623 文獻標識碼:A 文章編號:1672-3791(2013)05(c)-0171-02
所謂“有效教學”就是指教師用盡可少的時間和投入,取得盡可能好的教學效果,從而實現(xiàn)預定的教學目標和教學內(nèi)容。要提高數(shù)學課堂教學的有效性,就必須轉(zhuǎn)變教學觀念,樹立“以人為本”的教學思想,從以教師為中心的教學轉(zhuǎn)變到真正以學生為主體的自主學習上來;從傳統(tǒng)的講授為主的教學模式轉(zhuǎn)變到以探索、發(fā)現(xiàn)、合作為主的探索教學模式上來;從課堂內(nèi)的傳授知識轉(zhuǎn)變到課內(nèi)外相結(jié)合的開放式教學上來。只有這樣,才能充分調(diào)動學生認知、情感、意識等多方面能力和學習的積極性主動性,從而實現(xiàn)有效教學。
1 復習引入
通過引導學生回憶平移的定義及性質(zhì)的內(nèi)容,為本節(jié)課應用平移的特征做好鋪墊。在講解新知前首先要考慮學生的原有的知識結(jié)構(gòu),教師及時掌握學生原有的知識結(jié)構(gòu)才能進一步組織新授課。因此設計如下問題。
(1)什么叫做平移?
(2)平移后得到的新圖形與原圖形有什么關(guān)系?
2 探究新知
對新授內(nèi)容要進行適當整合,使語言表達,案例或圖式顯現(xiàn)更為有效,以幫助學生深刻領(lǐng)悟和理解數(shù)學。
共分為三個部分。
探究一。
(1)操作:在平面直角坐標系坐標中描出點A(-2,-3)并進行如下平移。
①將點A向右平移3個單位長度得到點A1,在圖中標出這個點,并寫出它的坐標。
②將點A向右平移5個單位長度得到點A2,在圖中標出這個點,并寫出它的坐標。
(2)觀察它們坐標的變化,你能從中發(fā)現(xiàn)什么規(guī)律。
(3)驗證:再找?guī)讉€點,對它們進行平移,觀察它們的坐標是否按你發(fā)現(xiàn)的規(guī)律變化。
(4)歸納結(jié)論(用字母表示)。
說明:在講解點向右平移坐標變化的規(guī)律時,按照“描點—觀察—再描點—在觀察—歸納總結(jié)—應用”的過程。(操作實驗、觀察現(xiàn)象、提出猜想、推理論證)。問題2的意圖是“引導學生發(fā)現(xiàn)問題,并為接下來的探究過程中學生發(fā)現(xiàn)問題、提出問題做好鋪墊”。學生用自己的語言總結(jié),當然大部分學生能很快的總結(jié)出縱坐標不變但橫坐標之間的關(guān)系還須思考才能有一部分學生觀察出來。問題3的意圖是再通過每位學生不同點的向右平移發(fā)現(xiàn)規(guī)律的共同之處。讓學生有發(fā)現(xiàn)問題的意識。學生的再次操作及總結(jié)相對較流暢。接下來總結(jié)規(guī)律,總結(jié)后教師的提問是“為什么一個點向右平移后,縱坐標不變,橫坐標加上平移的距離呢?”意圖是“通過這一問題的解答,使學生進行思考,從而明白規(guī)律的根本原因,便于學生理解并加強記憶?!庇兴伎疾艜袉栴},才會有反思,才會有思想,才能正真感悟到數(shù)學的本質(zhì)和價值,也才能在創(chuàng)新意識上得到發(fā)展。也希望教師這種經(jīng)常的“為什么”的提問能感染學生,潛移默化的影響學生,使學生遇到新知后也能經(jīng)常性的提問“為什么”,漸漸的有提問題的意識。但在課堂上只有少數(shù)的學生能回答出來,此時可以安排一次小組內(nèi)的討論交流,讓學生之間把自己的疑問、困惑、想法說出來,互相啟發(fā),可能效果比教師請一個學生回答要更好。
探究二。
(1)類比一個點向右平移坐標變化的特點研究的過程,請你研究一個點向其它方向平移后坐標是如何變化的?
(2)歸納結(jié)論(用字母表示)。
(3)鞏固練習。
在平面直角坐標系中,有一點P(-4,2),
若將點P:
(1)向左平移2個單位長度,所得點的坐標為_____________ ;
(2)向右平移3個單位長度,所得點的坐標為_____________ ;
(3)向下平移4個單位長度,所得點的坐標為_____________ ;
(4)向上平移5個單位長度,所得點的坐標為_____________ ;
(5)先向左平移2個單位長度,再向上平移1個單位長度,所得點的坐標為________
說明:學生進行數(shù)學學習的過程中應當給他們留有充足的思維空間,使學生能夠真正地進行數(shù)學的思維活動。在這一過程中學生會自主提出問題如一個點向左、向上、向下平移坐標的變化的特點這正是教師希望得到的答案,但還有的學生會提出向其它方向平移后坐標的變化的特點教師也應給予鼓勵及引導發(fā)現(xiàn)規(guī)律。在這一活動中可組織學生進行小組合作交流,組內(nèi)派代表發(fā)言,學生之間的互相交流不僅可以有更多的機會對自己的想法進行表述和反思,取長補短,而且可以學會分析點評他人的意見。通過這一活動重點意在培養(yǎng)學生發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力。
探究三:圖形的平移。
正方形ABCD四個頂點的坐標分別是A(-2,4),B(-2,2),C(-4,2),D(-4,4),將正方形ABCD向下平移7個單位長度,再向右平移5個單位長度,兩次平移后四個頂點相應變?yōu)辄cE,F(xiàn),G,H,它們的坐標分別是什么?如果直接平移正方形ABCD,使點A移到點E,它和我們前面得到的正方形位置相同嗎
說明:本題主要的意圖是(1)圖形的平移實質(zhì)就是圖形上點的平移因此點的坐標的變化符合以上探究的結(jié)論。(2)將一個圖形依次沿兩個坐標軸方向平移所得到的圖形,可以通過將原來的圖形做一次平移得到。在這一活動中學生自主畫圖,總結(jié)方法,小組合作交流。學生得到平移后的坐標有三種方法:(1)先按題意進行平移畫出平移后的圖形,根據(jù)最后的位置確定點的坐標。(2)按照以上探究的規(guī)律先算出EFGH的坐標,根據(jù)坐標描點確定圖形。(3)先確定一個點的對應點的坐標,再根據(jù)圖形的相對位置關(guān)系確定其他的點畫出圖形。(見圖1)
3 總結(jié)歸納
課堂小結(jié)是對本節(jié)所學內(nèi)容進行梳理,歸納,總結(jié),理清知識脈絡,構(gòu)建知識框架結(jié)構(gòu),進行學法指導,深化、升華情感態(tài)度與價值觀的過程。在這一過程中教師要充分鼓勵學生大膽說出自己的收獲、經(jīng)驗及質(zhì)疑,讓學生在小結(jié)這一環(huán)節(jié)處能有所提升。因此可以設計為:談談本節(jié)課你知識上的收獲,經(jīng)驗上的提升?
初中數(shù)學課堂有效教學還取決于學生的年齡特征、學習基礎(chǔ)、個性差異。如同一個年級的不同班級由于學習基礎(chǔ)不在同一水平上,教學方法也不能一樣。只有關(guān)注學生,“備”學生,才能找到有效的教學方法,提高教學的效率??傊?,初中數(shù)學課堂有效教學要以培養(yǎng)學生的有效學習方式和有效學習能力為重點,更新教育觀念,以提高教學效益,注意培養(yǎng)學生的有效學習意識,才能讓讓學生學得有質(zhì)量、學得輕松。
參考文獻
[1]郭宏旻,成繼紅.論新課程背景下的數(shù)學有效教學[J].教育與職業(yè),2006(33).
[2]宋俊奎.在數(shù)學教學中培養(yǎng)學生的創(chuàng)新思維[J].中學數(shù)學教育,2002(5).