羅偉峰, 韓之波, 楊舟鑫, 李麗娜, 及月茹, 王有為, 李 萡, 李揚(yáng)秋, 韓忠朝, △
(1暨南大學(xué)血液病研究所,廣東 廣州 510632; 2中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所泰達(dá)生命科學(xué)技術(shù)研究中心,天津 300457;3中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300020)
CD151對(duì)人臍帶來(lái)源間充質(zhì)干細(xì)胞生物學(xué)特性的影響*
羅偉峰1, 韓之波2,3, 楊舟鑫3, 李麗娜1, 及月茹3, 王有為3, 李 萡1, 李揚(yáng)秋1, 韓忠朝1,2,3 △
(1暨南大學(xué)血液病研究所,廣東 廣州 510632;2中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所泰達(dá)生命科學(xué)技術(shù)研究中心,天津 300457;3中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300020)
目的探討CD151對(duì)人臍帶來(lái)源間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)生物學(xué)性狀的影響。方法使用siRNA干擾hUC-MSCs 表面CD151,實(shí)驗(yàn)分為實(shí)驗(yàn)組(siRNA-CD151組)和對(duì)照組(siRNA-NC組);流式細(xì)胞術(shù)檢測(cè)干擾72 h后hUC-MSCs CD151及其它細(xì)胞表型,von Kossa和油紅O染色檢測(cè)體外成骨、成脂誘導(dǎo)分化情況;流式細(xì)胞術(shù)分析細(xì)胞周期變化;real-time PCR檢測(cè)hUC-MSCs CD151、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)、轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1,TGF-β1)、環(huán)氧合酶2(cyclooxygenase 2,COX-2)和吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)mRNA的表達(dá)量;ELISA檢測(cè)hUC-MSCs HGF分泌量。結(jié)果(1) 流式細(xì)胞術(shù)檢測(cè)發(fā)現(xiàn)干擾72 h hUC-MSCs實(shí)驗(yàn)組CD151(11.97±2.63vs95.66±1.56;P<0.01)和CD105(93.66±0.21vs83.37±0.71;P<0.05)較對(duì)照組顯著降低;real-time PCR 檢測(cè)hUC-MSCs CD151 mRNA變化和流式結(jié)果一致。(2)給予siRNA-CD151后能夠減緩細(xì)胞周期進(jìn)展,表現(xiàn)為細(xì)胞G1期增多,S期減少。(3)實(shí)驗(yàn)組hUC-MSCs HGF和TGF-β1表達(dá)量低于對(duì)照組(P<0.01),而COX-2表達(dá)量升高(P<0.05),IDO無(wú)明顯改變;ELISA檢測(cè)顯示實(shí)驗(yàn)組hUC-MSCs HGF分泌量較對(duì)照組下降(P<0.01)。結(jié)論體外干擾CD151后hUC-MSCs 仍保持干細(xì)胞表型,體外成脂誘導(dǎo)分化能力無(wú)明顯變化,但成骨誘導(dǎo)分化能力、增殖能力和相關(guān)免疫調(diào)節(jié)因子表達(dá)發(fā)生改變。
CD151; 間充質(zhì)干細(xì)胞; RNA干擾; 免疫調(diào)節(jié)
與骨髓和脂肪相比,人臍帶來(lái)源的間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)具有來(lái)源廣泛、安全無(wú)風(fēng)險(xiǎn)和增殖能力強(qiáng)等特點(diǎn)[1],因此具有廣泛的應(yīng)用前景并逐漸成為細(xì)胞治療的首選。MSCs具有多向分化能力,能在體外特定條件下分化成為脂肪細(xì)胞、骨細(xì)胞、軟骨細(xì)胞等[2]。研究發(fā)現(xiàn)MSCs通過(guò)細(xì)胞間接觸和分泌可溶性因子抑制CD4+T細(xì)胞和CD8+T細(xì)胞、B細(xì)胞和NK細(xì)胞的增殖發(fā)揮免疫調(diào)節(jié)特性[3]。本實(shí)驗(yàn)室前期發(fā)現(xiàn)在hUC-MSCs表面99%表達(dá)CD151,有實(shí)驗(yàn)發(fā)現(xiàn)在免疫調(diào)節(jié)中敲除CD151小鼠的T細(xì)胞對(duì)于有絲分裂刺激有更強(qiáng)的反應(yīng),表明CD151可能與T細(xì)胞活化和增殖有密切關(guān)系[4]。樹突細(xì)胞敲除CD151也有更強(qiáng)刺激T細(xì)胞能力[5]。CD151為4跨膜蛋白超家族(transmembrane 4 superfamily,TM4SF)中的一員,首次于血小板內(nèi)皮細(xì)胞四跨膜抗原中發(fā)現(xiàn)[6]。研究證實(shí)CD151與腫瘤細(xì)胞關(guān)系密切,細(xì)胞表達(dá)CD151意味著腫瘤轉(zhuǎn)移風(fēng)險(xiǎn)更大,CD151通過(guò)與整合素α3β1、α6β1和α6β4作用,調(diào)控細(xì)胞生長(zhǎng)、遷移、形態(tài)和增強(qiáng)黏附能力,CD151參與腫瘤細(xì)胞轉(zhuǎn)移也與其促進(jìn)腫瘤細(xì)胞遷移及運(yùn)動(dòng)有關(guān)[7]。但還沒(méi)有報(bào)道hUC-MSCs和CD151有何聯(lián)系。所以深入了解CD151與hUC-MSCs關(guān)系和作用顯得尤為重要,本實(shí)驗(yàn)旨在通過(guò)下調(diào)hUC-MSCs表面CD151探討CD151在hUC-MSCs中生物學(xué)特性變化,為進(jìn)一步將hUC-MSCs用于免疫性疾病治療提供相關(guān)理論基礎(chǔ)和實(shí)驗(yàn)依據(jù)。
1主要試劑及儀器
DMEM/F12培養(yǎng)基(Thermo);RPMI-1640干粉培養(yǎng)基和胰酶(Gibco);胎牛血清(fetal bovine serum,FBS;HyClone);人淋巴細(xì)胞分離液(天津?yàn)笊镏破房萍加邢薰?;LipofectamineTMRNAiMAX、CD151 StealthTMRNAi和Negative Control StealthTMRNAi(Invitrogen);Opti-MEM?I無(wú)血清培養(yǎng)基(Gibco);CD151-PE、CD34-FITC、CD45-FITC、CD73-PE、CD90-PE、CD105-PE、HLA-ABC-FITC和碘化丙啶(BD Biosciences);RNaseA(北京博大泰克公司);Total RNA Kit(Omega);M-MLV Kit(Invitrogen); Human HGF Instant ELISA(eBioscience);倒置相差顯微鏡 (Olympus);流式細(xì)胞儀(Becton Dickinson)。
2主要方法
2.1hUC-MSCs分離培養(yǎng)擴(kuò)增和鑒定 臍帶來(lái)源于產(chǎn)婦的捐獻(xiàn),均經(jīng)本人及家屬同意。母血檢測(cè)乙型肝炎病毒(hepatitis B virus,HBV)、丙型肝炎病毒(hepatitis C virus,HCV)、人類免疫缺陷病毒(human immunodeficiency virus,HIV)、巨細(xì)胞病毒(cytomegalovirus,CMV)、梅毒等病原學(xué)均為陰性,實(shí)驗(yàn)過(guò)程符合醫(yī)學(xué)倫理學(xué)標(biāo)準(zhǔn)。MSCs體外分離、培養(yǎng)、擴(kuò)增及鑒定方法均和本實(shí)驗(yàn)室以前一致[8]。
2.2siRNA-CD151干擾hUC-MSCs 復(fù)蘇第3代hUC-MSCs,72 h后觀察待細(xì)胞融合度達(dá)90%左右時(shí),胰酶消化細(xì)胞,細(xì)胞計(jì)數(shù),取2×105cells,用含10%FBS的DMEM/F12培養(yǎng)基重懸,終體積為2 mL接種于6孔板中,置于37 ℃、5% CO2、飽和濕度的恒溫箱中,培養(yǎng)4 h后棄去培養(yǎng)基再加入2 mL/well的Opti-MEM?I無(wú)血清培養(yǎng)基開始實(shí)驗(yàn),實(shí)驗(yàn)分為2組:實(shí)驗(yàn)組(轉(zhuǎn)染特異性siRNA-CD151序列)和對(duì)照組(轉(zhuǎn)染陰性對(duì)照siRNA-NC序列)。siRNA購(gòu)自Invitrogen,方法按照說(shuō)明書提供的轉(zhuǎn)染方法進(jìn)行。
2.3流式細(xì)胞術(shù)檢測(cè)干擾效率及各組MSCs免疫表型 分別收集各組細(xì)胞干擾72 h后上清備用,胰酶消化各組細(xì)胞用PBS洗3次后,標(biāo)記抗CD151-PE、CD34-FITC、CD45-FITC、CD73-PE、CD90-PE、CD105-PE、HLA-ABC-FITC,以FITC-IgG和PE-IgG作為同型對(duì)照抗體,流式細(xì)胞儀檢測(cè)。
2.4hUC-MSCs向成骨細(xì)胞、成脂細(xì)胞誘導(dǎo)分化 計(jì)數(shù)干擾后的hUC-MSCs,按2×104cells/well接種于6孔板,待細(xì)胞長(zhǎng)至70%左右融合時(shí)更換成骨或成脂誘導(dǎo)培養(yǎng)基(成骨誘導(dǎo)培養(yǎng)基:IMBM培養(yǎng)基、10%FBS、100U青/鏈霉素、2 mmol/L左旋谷氨酰胺、0.1 μmol/L地塞米松、0.2 μmol/L 維生素C和10 μmol/L β-磷酸甘油;成脂誘導(dǎo)培養(yǎng)基:IMBM培養(yǎng)基、10%FBS、100U青/鏈霉素、2 mmol/L左旋谷氨酰胺、1 μmol/L地塞米松、0.5 μmol/L 3-異丁基-1甲基黃嘌呤、10 μmol/L胰島素和100 μmol/L吲哚美辛),分對(duì)照組和實(shí)驗(yàn)組。在誘導(dǎo)培養(yǎng)21 d后,進(jìn)行成脂油紅O染色或成骨von Kossa染色,觀察拍照。
2.5流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期 干擾72 h后胰酶消化細(xì)胞,1 000 r/min離心5 min,4 ℃預(yù)冷PBS洗1次,去PBS,1 mL 4 ℃預(yù)冷的PBS重懸細(xì)胞,固定于預(yù)冷的80%乙醇中,1 000 r/min 離心5 min,加RNaseA 至終濃度為50 mg/L,37 ℃孵育30 min,加碘化丙啶50 mg/L,4 ℃避光孵育30 min,流式細(xì)胞儀檢測(cè),評(píng)價(jià)細(xì)胞增殖速率。
2.6Real-time PCR檢測(cè)CD151、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)、轉(zhuǎn)化生長(zhǎng)因子 β1(transforming growth factor β1,TGF-β1)、環(huán)氧合酶(cyclooxygenase 2,COX-2和吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)mRNA表達(dá)量 干擾72 h后hUC-MSCs用Omega試劑盒抽提細(xì)胞總RNA,并按照M-MLV的逆轉(zhuǎn)錄體系合成cDNA。實(shí)時(shí)定量PCR反應(yīng)體系:2×SYBR Green PCR Master Mix 5 μL、上下游引物各0.25 μL、逆轉(zhuǎn)錄產(chǎn)物0.5 μL以及ddH2O 4 μL。使用Applied Biosystems 7300 Real-Time PCR System擴(kuò)增儀進(jìn)行 PCR擴(kuò)增,反應(yīng)條件為:94 ℃ 10 min,94 ℃ 15 s,60 ℃ 1 min,共 40個(gè)循環(huán)。以次黃嘌呤磷酸核糖轉(zhuǎn)移酶(hypoxanthine phosphoribosyltransferase,HPRT)為內(nèi)參照,分析目的基因的相對(duì)表達(dá)量。擴(kuò)增產(chǎn)物的特異性通過(guò)繪制熔解曲線來(lái)進(jìn)行驗(yàn)證,引物序列見表1。
表1 引物序列
2.7ELISA測(cè)定HGF分泌量 收集干擾72 h后細(xì)胞上清,ELISA測(cè)其上清中細(xì)胞分泌HGF的量,按照eBioscience公司Human HGF Instant ELISA試劑盒推薦的方法測(cè)定。
3統(tǒng)計(jì)學(xué)處理
采用Graphpad Prism 5 Demo軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,樣本之間的比較采用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1hUC-MSCs的形態(tài)與表型
細(xì)胞復(fù)蘇24 h后倒置顯微鏡下觀察,細(xì)胞呈梭形,貼壁生長(zhǎng);流式細(xì)胞術(shù)檢測(cè)其表型,表達(dá)CD73、CD90、CD105、CD151術(shù)HLA-ABC,不表達(dá)CD14、CD19、CD34、CD45術(shù)HLA-DR。
2干擾效率檢測(cè)及對(duì)hUC-MSCs相關(guān)表型的影響
細(xì)胞干擾72 h后流式細(xì)胞術(shù)檢測(cè)結(jié)果顯示,與對(duì)照組相比,實(shí)驗(yàn)組細(xì)胞CD151表達(dá)明顯下降(P<0.01),見圖1。Real-time PCR檢測(cè)實(shí)驗(yàn)組CD151表達(dá),與對(duì)照組相比明顯下降(P<0.05),見圖2。CD105表達(dá)下降(P<0.05),而其它相關(guān)表型未有明顯改變,見表2。這說(shuō)明用siRNA干擾成功,不改變干細(xì)胞表型。
Figure 1. Expression of CD151 on hUC-MSCs with siRNA-CD151 or negative control after 72 h assayed by flow cytometry.
圖1流式細(xì)胞術(shù)檢測(cè)干擾效率結(jié)果
Figure 2. Quantitative analysis of CD151 mRNA expression in hUC-MSCs with siRNA-CD151 or negative control after 72 h. Mean±SD.n=3.*P<0.05vsnegative control (NC).
圖2Real-timePCR檢測(cè)2組細(xì)胞CD151mRNA表達(dá)量
表2 2組細(xì)胞干細(xì)胞表型結(jié)果
*P<0.05,**P<0.01vsnegative control.
3干擾后對(duì)hUC-MSCs分化潛能的影響
干擾后,hUC-MSCs向脂肪細(xì)胞分化過(guò)程中,油紅O染色,細(xì)胞內(nèi)紅色脂滴形成無(wú)明顯改變;向成骨細(xì)胞分化過(guò)程中,von Kossa染色后鏡下發(fā)現(xiàn)2組細(xì)胞鈣沉積有差異,實(shí)驗(yàn)組hUC-MSCs鈣沉積體積減小,數(shù)量增加,說(shuō)明實(shí)驗(yàn)組hUC-MSCs誘導(dǎo)成骨潛能可能降低,見圖3。
Figure 3. Adipogenic (A, B; oil red O staining, ×100) and osteogenic (C, D; von Kossa staining, ×40) differentiation of hUC-MSCs in siRNA-CD151 (A, C) and negative control (B, D) groups after induction for 21 d.
圖32組細(xì)胞成脂、成骨誘導(dǎo)分化結(jié)果
4流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期
對(duì)照組hUC-MSCs G1期比例82.13%,S期比例15.47%,見圖4A。而實(shí)驗(yàn)組hUC-MSCs與對(duì)照組相比,G1期比例增高為88.24%,S期比例降低為10.31%,見圖4B。干擾CD151后細(xì)胞增殖速率降低,周期延遲。
Figure 4. Cell cycle detected by flow cytometry. A: negative control group (G1: 82.13%, G2: 2.40%, S: 15.47%); B: siRNA-CD151 group (G1: 88.24%,G2: 1.45%, S: 10.31%).
圖42組細(xì)胞周期結(jié)果
5Real-timePCR結(jié)果
實(shí)驗(yàn)組CD151、HGF和TGF-β1相對(duì)表達(dá)量與對(duì)照組相比明顯下降(P<0.05或P<0.01),而COX-2的相對(duì)表達(dá)量則相反,表達(dá)增高(P<0.05),見圖5A。干擾素 γ(interferon γ,IFN-γ)刺激24 h后,2組IDO表達(dá)無(wú)明顯差異,見圖5B。
6ELISA檢測(cè)HGF結(jié)果
siRNA干擾CD151后,hUC-MSCs分泌HGF較對(duì)照組明顯降低(P<0.01),見圖6。
Figure 5. Quantitative analysis of HGF,TGF-β1,COX-2 (A) and IDO (B) mRNA expression in hUC-MSCs.Mean±SD.n=3.*P<0.05,**P<0.01vsnegative control (NC).
圖52組細(xì)胞HGF、TGF-β1、COX-2和IDOmRNA的表達(dá)量
Figure 6. Determination of HGF concentration in cell culture supernatants by ELISA.Mean±SD.n=6.**P<0.01vsnegative control (NC).
圖62組細(xì)胞上清HGF分泌量
CD151第1次在血小板表面發(fā)現(xiàn),是一個(gè)穿越細(xì)胞膜的蛋白,屬于4跨膜蛋白家族的一員,在多種細(xì)胞表面表達(dá),在本實(shí)驗(yàn)室前期研究中發(fā)現(xiàn)臍帶來(lái)源的MSCs表面高表達(dá)CD151的基礎(chǔ)上,本研究中,我們重點(diǎn)檢測(cè)了下調(diào)MSCs表面CD151表達(dá)對(duì)hUC-MSCs的表型、分化、細(xì)胞周期等基本生物學(xué)特性,探究了干擾后MSCs分泌可溶性免疫調(diào)節(jié)因子的變化情況。
通過(guò)利用siRNA干擾hUC-MSCs表面的CD151 72 h后,流式細(xì)胞術(shù)檢測(cè)干擾效率,CD151表達(dá)量從95.55%下降至14.03%(圖1),且mRNA水平得出一致結(jié)果(圖2),說(shuō)明此方法能如預(yù)期成功下調(diào)CD151表達(dá)。觀察形態(tài),發(fā)現(xiàn)干擾后hUC-MSCs形態(tài)無(wú)改變,呈梭形貼壁生長(zhǎng),流式細(xì)胞儀檢測(cè)干擾后發(fā)現(xiàn)除CD105表達(dá)下降外hUC-MSCs表面其它標(biāo)志無(wú)明顯變化(表2),表明干擾CD151后不改變hUC-MSCs表型。hUC-MSCs具有多向分化潛能,能在特定條件下分化成為多種細(xì)胞,我們比較了干擾后hUC-MSCs成脂、成骨情況,發(fā)現(xiàn)與對(duì)照組相比干擾CD151后其脂滴形成能力未降低,鏡下觀察鈣沉積體積減小,數(shù)量增加(圖3),但有文獻(xiàn)指出,在成軟骨分化過(guò)程中,TGF-β3存在時(shí),其MSCs表面CD151會(huì)下降,CD151可能是MSCs成軟骨分化過(guò)程中的陰性表面標(biāo)記[9]。雷奈酸鍶可通過(guò)上調(diào)TGF-β1表達(dá)促進(jìn)大鼠骨髓間充質(zhì)干細(xì)胞向成骨細(xì)胞分化[10]。關(guān)于干擾CD151對(duì)hUC-MSCs的干細(xì)胞特性及分化潛能的確切影響,需進(jìn)一步檢測(cè)hUC-MSCs的相關(guān)基因。文獻(xiàn)報(bào)道指出轉(zhuǎn)染CD151質(zhì)粒的HeLa細(xì)胞,其增殖能力增加,細(xì)胞周期改變表現(xiàn)為S+G2/M的細(xì)胞比例增高,表明CD151參與腫瘤細(xì)胞增殖。我們干擾hUC-MSCs表面CD151后得出同樣結(jié)論,細(xì)胞周期改變表現(xiàn)為G1期比例增多,而S期比例減少(圖4),提示CD151與細(xì)胞增殖密切相關(guān)。
文獻(xiàn)指出hUC-MSCs可通過(guò)分泌可溶性細(xì)胞因子對(duì)T淋巴細(xì)胞抑制作用是MSCs發(fā)揮免疫調(diào)節(jié)作用機(jī)制之一,MSCs通過(guò)分泌HGF、TGF-β1、PGE2、IDO參與免疫調(diào)節(jié),而COX-2是PGE2合成的關(guān)鍵酶,COX-2升高可以使PGE2升高[11]。Wright等[4]發(fā)現(xiàn)CD151-null的小鼠T淋巴細(xì)胞對(duì)于有絲分裂原刺激有更強(qiáng)的反應(yīng),表現(xiàn)為CD4+T淋巴細(xì)胞和CD8+T淋巴細(xì)胞與對(duì)照組相比增殖能力明顯增強(qiáng),但是免疫球蛋白G1的分泌量沒(méi)有明顯差別。MSCs促進(jìn)Th1型T細(xì)胞向Th2型T細(xì)胞轉(zhuǎn)化,實(shí)驗(yàn)證實(shí)炎癥因子IFN-γ分泌下降[2],表明CD151可能參與T細(xì)胞免疫調(diào)節(jié)功能,我們對(duì)于hUC-MSCs可溶性的免疫調(diào)節(jié)因子進(jìn)行研究發(fā)現(xiàn)干擾CD151后HGF和TGF-β1表達(dá)明顯下降,COX-2表達(dá)量增高(圖5A),認(rèn)為HGF和TGF-β1這2種細(xì)胞因子表達(dá)量降低使得干擾CD151后MSCs免疫調(diào)節(jié)能力下降,PCR檢測(cè)COX-2是一種瞬時(shí)過(guò)程,需進(jìn)一步檢測(cè)上清中分泌PGE2含量。而IDO表達(dá)量沒(méi)有明顯變化(圖5B),可能不參與此免疫調(diào)節(jié)過(guò)程。進(jìn)一步用ELISA檢測(cè)HGF含量也得到一致結(jié)果(圖6)。HGF與其受體c-Met結(jié)合發(fā)揮生物學(xué)效應(yīng),通過(guò)阻斷調(diào)控NF-κB表達(dá)蛋白來(lái)干擾NK-κB信號(hào)通路實(shí)現(xiàn)抗炎作用,文獻(xiàn)報(bào)道CD151與c-Met和整合素α3/α6形成一個(gè)功能性的復(fù)合物,通過(guò)過(guò)度活化HGF/c-Met信號(hào)通路發(fā)揮促腫瘤遷移作用[12],我們推測(cè)干擾CD151后其HGF分泌下降且破壞了功能性復(fù)合物,從而影響HGF/c-met信號(hào)通路參與hUC-MSCs免疫調(diào)節(jié)作用。關(guān)于干擾CD151后MSCs其免疫調(diào)節(jié)功能的變化我們還需要進(jìn)一步檢測(cè)相關(guān)炎癥因子,如IFN-γ、腫瘤壞死因子 α(tumor necrosis factor α,TNF-α)等。Sheng等[5]研究發(fā)現(xiàn)缺乏CD151的樹突狀細(xì)胞不影響其發(fā)育和成熟的能力,但對(duì)T細(xì)胞有更強(qiáng)刺激作用,CD151通過(guò)共刺激調(diào)控作用介導(dǎo)樹突狀細(xì)胞促進(jìn)T細(xì)胞活化。
綜上所述,利用siRNA干擾CD151后MSCs形態(tài)、細(xì)胞表型及成脂誘導(dǎo)分化能力不變,但鈣沉積體積減小,數(shù)量增加說(shuō)明成骨誘導(dǎo)能力可能下降。細(xì)胞周期G1期比例增加,S期比例減少。免疫調(diào)節(jié)因子表達(dá)改變,HGF和TGF-β1表達(dá)下調(diào),COX-2表達(dá)上調(diào)。還需進(jìn)一步檢測(cè)相關(guān)炎癥因子確定干擾CD151后MSCs活化T細(xì)胞的能力,且免疫調(diào)節(jié)詳細(xì)作用機(jī)制還需進(jìn)一步深入研究。
[1] Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells, 2006, 24(5): 1294-1301.
[2] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005, 105(4): 1815-1822.
[3] Luz-Crawford P, Noel D, Fernandez X, et al. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway[J]. PLoS One, 2012, 7(9): e45272.
[4] Wright MD, Geary SM, Fitter S, et al. Characterization of mice lacking the tetraspanin superfamily member CD151[J]. Mol Cell Biol, 2004, 24(13): 5978-5988.
[5] Sheng KC, van Spriel AB, Gartlan KH, et al. Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC[J]. Eur J Immunol, 2009, 39(1): 50-55.
[6] Fitter S, Tetaz TJ, Berndt MC, et al. Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3[J]. Blood, 1995, 86(4): 1348-1355.
[7] Takeda Y, Li Q, Kazarov AR, et al. Diminished metastasis in tetraspanin CD151-knockout mice[J]. Blood, 2011, 118(2): 464-472.
[8] Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials[J]. Haematologica, 2006, 91(8): 1017-1026.
[9] Lee HJ, Choi BH, Min BH, et al. Changes in surface markers of human mesenchymal stem cells during the chondrogenic differentiation and dedifferentiation processesinvitro[J]. Arthritis Rheum, 2009, 60(8): 2325-2332.
[10] 王小娜, 李 正, 吳 文, 等. TGF-β1在雷奈酸鍶促進(jìn)大鼠骨髓間充質(zhì)干細(xì)胞向成骨細(xì)胞分化中的作用[J]. 中國(guó)病理生理雜志, 2011, 27(12):2357-2361.
[11] Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10): 3838-3843.
[12] Klosek SK, Nakashiro K, Hara S, et al. CD151 regulates HGF-stimulated morphogenesis of human breast cancer cells[J].Biochem Biophys Res Commun, 2009, 379(4): 1097-1100.
EffectofCD151onbiologicalcharacteristicsofhumanumbilicalcordmesenchymalstemcells
LUO Wei-feng1, HAN Zhi-bo2,3, YANG Zhou-xin3, LI Li-na1, JI Yue-ru3, WANG You-wei3, LI Bo1, LI Yang-qiu1, HAN Zhong-chao1,2,3
(1InstituteofHematology,JinanUniversity,Guangzhou510632,China;2TEDALifeScienceandTechnologyResearchCenter,InstituteofHematology,ChineseAcademyofMedicalSciences,Tianjin300457,China;3StateKeyLaboratoryofExpe-rimentalHematology,InstituteofHematology,ChineseAcademyofMedicalSciencesandPekingUnionMedicalCollege,Tianjin300020,China.E-mail:hanzhongchao@hotmail.com)
AIM: To study the effect of CD151 on the biological characteristics of human umbilical cord mesenchymal stem cells (hUC-MSCs).METHODSCD151 expression on hUC-MSCs was interfered by siRNA. The cells were divided into siRNA-CD151 group and negative control group (treated with siRNA-NC). The efficiency of interference after 72 h and the changes of other surface markers were detected by flow cytometry. The ability of differentiation was assessed by oil red O and von Kossa staining. The cell cycle was analyzed by flow cytometry. The mRNA expression of CD151, hepatocyte growth factor (HGF), transforming growth factor β1(TGF-β1), cyclooxygenase 2 (COX-2) and indoleamine 2, 3-dioxygenase (IDO) in hUC-MSCs was detected by real-time PCR. The secretion of HGF by hUC-MSCs was measured by ELISA.RESULTSThe results of flow cytometry showed that the expression of CD151 (11.97±2.63vs95.66±1.56,P<0.01) and CD105 (93.66±0.21vs83.37±0.71,P<0.05) on hUC-MSCs in siRNA-CD151 group was lower than that in negative control group. The consistent results were also achieved by using the method of real-time PCR. Treatment with siRNA-CD151 down-regulated the progress of the cell cycle as the G1phase increased and the S phase decreased. The mRNA expression levels of HGF and TGF-β1in hUC-MSCs in siRNA-CD151 group were lower than those in negative control group, and opposite result of COX-2 mRNA expression was observed. The IDO mRNA in hUC-MSCs was unchanged with IFN-γ stimulation for 24 h. HGF concentration in siRNA-CD151 group was decreased as compared with negative control group.CONCLUSIONInterfering CD151 expression on hUC-MSCs doesn’t change other surface markers except CD105, and maintains the capacity of adipogenic differentiation. However, it changes the osteogenic differentiation, proliferation and the expression of immunomodulatory cytokines.
CD151; Mesenchymal stem cells; RNA interference; Immunomodulation
R363
A
10.3969/j.issn.1000- 4718.2013.04.022
1000- 4718(2013)04- 0701- 06
2012- 12- 13
2013- 03- 05
國(guó)家重大科學(xué)計(jì)劃“973計(jì)劃”(No. 2011CB964800)
△通訊作者 Tel: 022-23909172; E-mail: hanzhongchao@hotmail.com