• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米三氧化鎢復(fù)合催化劑的制備及對(duì)甲醇電催化性能

    2013-09-17 06:58:36劉委明胡仙超褚有群馬淳安
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:浙江工業(yè)大學(xué)淳安電催化

    周 陽 劉委明 胡仙超,3 褚有群 馬淳安,*

    (1浙江工業(yè)大學(xué)化工材料學(xué)院,綠色化學(xué)合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,科技部能源材料及應(yīng)用國(guó)際科技合作基地,杭州310032;2江西理工大學(xué)冶金與化學(xué)工程學(xué)院,江西贛州341000;3浙江工業(yè)大學(xué)分析測(cè)試中心,杭州310032)

    1 Introduction

    Direct methanol fuel cells(DMFCs)have recently attracted considerable attentions due to their excellent features such as high-energy density,convenient fuel storage,green emission,and ambient operating conditions etc.1,2However,DMFCs usually use lots of expensive platinum as anodic catalysts that tend to be poisoned by reaction intermediates such as COads.3Thus considerable efforts have been devoted to making metallic alloy,such as PtRu,4,5PtPd,6,7and PtRuSn8,9etc.,with low amount of platinum and high activity toward methanol oxidation.But the dissolution of transition metals in the alloys during the DMFC operation would be the main challenge since the dissolved transition metals may span the membrane and experience reduction on the cathode,finally leading to the unexpected performance degradation of DMFCs.10,11

    The second way to design Pt-based composite catalysts is metal oxides modified Pt particles,such as Pt/RuO2,12,13Pt/SnO2,14,15and Pt/MnO2,16etc.Tungsten trioxide(WO3)is known to be able to form a hydrogen tungsten bronze(HxWO3)compound in acid solution which is both nonstoichiometric and electrically conducting.The compound can facilitate dehydrogenation during methanol oxidation and lighten the CO poisoning of Pt catalyst.Previous studies have shown that Pt and PtRu catalysts supported on WO3have extremely high activity towards the electro-oxidation of CO,17methanol,18-21ethanol,22and formic acid.23,24However,WO3has a low specific surface area and conductivity,which limits its application in DMFC.

    Recently WO3/C hybrid material was used as the support of Pt-WO3/C catalysts.25,26Compared with Vulcan XC-72 carbon black,carbon nanotubes(CNTs)have better specific surface area and conductivity.Rajesh et al.27reported a composite catalyst of methanol electro-oxidation by depositing Pt nanoparticles on WO3-modified CNT,in which CNT was synthesised by the template carbonisation of polypyrrole on alumina membrane.In this paper CNT was further disposed by strong acid so that Pt and WO3nanoparticles were homogenously deposited on the surface of CNT.Results show that WO3-modification improves significantly electrocatalytic activity towards methanol oxidation.

    2 Experimental

    2.1 Preparation of WO3modified acid treated CNTs

    Carbon nanotubes(Shenzhen Nanoharbor Co.,China)were functionalized in nitric acid(65%-68%)under refluxing at 150°C for 5 h,washed by distilled water and dried in vacuum at 85°C.28WO3-modified carbon nanotubes(WO3-CNTs)were prepared by the conventional means with sodium tungstate as the precursor.Briefly,50 mg of CNTs was added into 5 mmol·L-1aqueous solution of sodium tungstate.After ultrasonic dispersed for 30min,the solution were stirred vigorously at 60°C for 1 h,then excessive 1 mol·L-1hydrochloric acid was dropwised into the above solution.After the reaction proceeded for 6 h,the suspension was filtered,washed and dried at 80°C in a vacuum oven.The resultant was transferred into a tubular oven and heat-treated at 500°C for 6 h under the protection of a nitrogen atmosphere.The ideal ratio of WO3to CNTs was calculated as 25%(w),but for comparison,ratio of WO3to CNTs with 10%,25%,50%,and 75%(w)were also prepared following same procedures as above.

    2.2 Synthesis of Pt nanoparticles on WO3-CNTs

    Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.In brief,5.7 mL of 5 mmol·L-1chloroplatinic acid was well mixed with 15 mL ethylene glycol(EG)in a special reaction tube,and then 50.0 mg of as-prepared WO3/CNTs was added into the mixture.After the pH of the mixture was adjusted to 10 using 1.0 mol·L-1NaOH aqueous,well-dispersed slurry was obtained after being stirred in an ultrasonic bath for 30 min.Thereafter,the slurry was microwave-heated at 160°C for 30 min in the microwave synthesizer(Initiator Biotage,Sweden).The resulting solution was filtered,washed and dried at 85°C for 10 h in a vacuum oven,yielding 10%(w)Pt loading on the supports.As contrast samples,Pt nanoparticles(10%(w)metal content)on acid treated CNTs(Pt/CNTs)was prepared using similar procedures as described above.

    2.3 Characterizations

    The morphology,crystal phase,structure and element distribution of the samples were respectively characterized by XRD,XPS,and TEM.XRD was performed with a Thermo ARL SCINTAG X?TRA X-ray at room temperature,using quartz monochromatic Cu Kα1radiation source(λ=0.1541 nm)under a voltage of 45 kV and a current of 40 mA.The XRD patterns were recorded with a step size of 0.04°from 10°to 80°at the speed of 2.4(°)·min-1.TEM was carried out on a Tecnai G2 F30 S-Twin(Philips-FEI).XPS was carried out on Kratos AXIS Ultra DLD.

    2.4 Electrochemical measurements

    Electrochemical measurements were performed on Ivium electrochemical workstation.A standard three-electrode cell with separate anode and cathode compartments was used.A Pt foil and saturated calomel electrode(SCE)were used as counter and reference electrodes,respectively.For electrode preparation,2.5 mg of electrocatalyst sample was ultrasonically mixed in 400 μL of ethanol-water solution(1:1,V/V)to form a homogeneous ink followed by dropping 5 μL of the electrocatalyst ink onto the surface of a glassy carbon electrode(GCE,with a diameter of 3 mm),and 7 μL of Nafion solution of 1.0%(DuPont,USA)in ethanol was added to fix the electrocatalyst on the GCE surface.The electrochemical active surface(EAS)assessed in a nitrogen-saturated 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1and the electrocatalytic activity for the methanol oxidation reaction was measured in a nitrogensaturated 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1.

    The CO stripping experiments were performed in a 0.5 mol·L-1H2SO4solution.Along with the continuous CO bubbling for 30 min,the anode electrode was controlled at-0.14 V for CO adsorption.The solution was then purged with N2for 30 min to remove the dissolved CO before the stripping test.

    3 Results and discussion

    3.1 XRD and TEM analysis of samples

    Fig.1 shows the typical XRD patterns of the samples.The diffraction peak at 2θ=26.2°is characteristic of the graphite(002)plane,demonstrating the graphitization of carbon in the sample.The distinct diffraction peaks at 2θ of 23.09°,23.58°,24.33°,33.25°,34.12°,and 41.44°are indexed as the(002),(020),(200),(022),(202),and(222)planes of monoclinic WO3phase.29Those slight diffraction peaks at 2θ of 39.76°,46.28°,and 67.53°are attributed to the Pt(111),(200),and(220)planes,which are not obvious for Pt/WO3-CNTs,indeed,the broaden peak centered at 41.45°is the overlapped peak of the(111)peak of Pt and the(222)peak of WO3.

    Fig.1 XRD patterns of(a)WO3-CNTs,(b)Pt/WO3-CNTs,and(c)Pt/CNTs catalysts

    Fig.2 shows scanning transmission electron microscope(STEM)images of Pt/CNTs and Pt/WO3-CNTs catalyst.The black and white picture is sample particle morphology and color pictures are samples?elements distribution density by energy dispersive spectrometer(EDS)surface scan.As can be seen from Fig.2(a),W,Pt,and O elements are distributed on the outer surface of CNTs.Combined with XRD characterization of results,Pt/WO3-CNTs catalyst is composed of Pt,WO3,and CNTs.

    Fig.3 gives the TEM images of Pt/CNTs and Pt/WO3-CNTs catalysts and the corresponding histograms of the Pt particle diameters,as well.It can be seen from the TEM images that the Pt particles on the WO3-CNTs support are smaller and more uniformly dispersed than those on CNTs support.The average sizes of the Pt particles in Pt/CNTs and Pt/WO3-CNTs catalysts are estimated from their histograms as being approximately 4.8 and 3.6 nm,respectively,indicating that the introduction of WO3can inhibit the aggregation of Pt particles.26

    3.2 XPS analysis of samples

    Fig.4 shows the XPS spectra of Pt 4f and W 4f photoemission from Pt/WO3-CNTs,respectively.The two characteristic peaks observed in the Pt 4f region with binding energies of 71.5 and 74.8 eV should be attributed to the metallic Pt.30The two peaks in the W 4f region with binding energies centered at 35.7 and 37.9 eV,suggest the presence of tungsten in the+VI oxidation state.31Fig.5 displays the XPS spectra of Pt 4f photoemission from Pt/CNTs.It can be observed that the two peaks with binding energies of 71.5 and 74.8 eV are characteristic of the metallic Pt,and the other two peaks at 72.3 and 75.8 eV can be assigned to Pt2+in PtO and Pt(OH)2-like species.32

    3.3 Electro-catalytic performance

    Fig.2 EDS elemental mapping of(a)Pt/WO3-CNTs and(b)Pt/CNTs catalysts under STEM model

    Fig.3 TEM images of(a)Pt/WO3-CNTs and(b)Pt/CNTs,and Pt particle size distributions of(c)Pt/WO3-CNTs and(d)Pt/CNTs

    Fig.4 XPS spectra of the Pt 4f and W 4f photoemission from Pt/WO3-CNTs

    Fig.6 presents cyclic voltammograms(CVs)of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1.The platinum in Pt/WO3-CNT has a larger EAS than that in Pt/CNTs,which is reflected by the hydrogen adsorption/desorption currents at the potentials between-0.2 and 0.2 V,as shown in Fig.6.The EAS of platinum can be calculated from the integrated charge in the hydrogen adsorption region of the cyclic voltammograms(Fig.6)based on ESA=QH/0.21×[Pt],where QHis the integrated charge(mC),[Pt]is the Pt loading(mg·cm-2)on the electrode.The EAS values calculated for Pt/CNTs and Pt/WO3-CNTs are shown in Table 1,which reveals that the EAS of platinum is influenced by the particle sizes.This result is consistent with Pt particle size distributions of Pt/CNTs and Pt/WO3-CNTs(Fig.3).

    Fig.7 shows CVs of the electrodes in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution between 0.0 to 1.0 V at a scan rate of 50 mV·s-1.The electrocatalytic activity of Pt/WO3-CNTs and Pt/CNTs catalysts on the oxidation of methanol was studied in 0.5 mol·L-1H2SO4aqueous solution containing 1.0 mol·L-1CH3OH at a scan rate of 50 mV·s-1.It can be observed from Fig.7 that the onset of methanol oxidation peaks for the Pt/WO3-CNTs catalyst is at 0.25 V,which is apparently lower than that on Pt/CNTs catalysts with the onsets at 0.30 V.The negative shift on the potential onset of Pt/WO3-CNTs indicates that Pt nanoparticles on WO3-CNTs surface can effectively reduce the over potentials in the methanol electro-oxidation reaction.In addition,it can be seen that the mass specific current of Pt/WO3-CNTs(403 mA·mg-1)is 5 times that of Pt/CNT(80 mA·mg-1)at 0.69 V,indicating that WO3plays a key role in the high catalytic performance.

    Fig.5 XPS spectra of the Pt 4f photoemission from Pt/CNTs

    Fig.6 Cyclic voltammograms of(a)Pt/WO3-CNTs and(b)Pt/CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1

    Table 1 Onset potential,EAS,peak current density,and forward anodic to reverse anodic peak current density ratio ofthe different catalysts for methanol oxidation

    Besides,it is well known that the ratio of the forward anodic peak current density(If)to the reverse anodic peak current density(Ib),i.e.,If/Ib,suggests a tolerance to carbonaceous species accumulation of catalysts during methanol electro-oxidation.And the high If/Ibindicates excellent oxidation of methanol during the reverse anodic scan and less accumulation of residues on the catalyst.Here the If/Ibratio for Pt/WO3-CNT is about 1.37,which is much higher than that of Pt/CNT catalyst(0.96),showing the Pt/WO3-CNT has a better tolerance to carbonaceous species accumulation.

    Fig.8(a)shows the cyclic voltammograms of Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution.In Fig.8(b),the effects of WO3content on the anodic peak current density and the If/Ibratio are shown.It can be seen that for Pt/WO3-CNTs catalyst,the peak current density of methanol oxidation increases along with the increasing of WO3content because WO3reduces the Pt nanoparticles size and improves the dispersion of Pt nanoparticles on the surface of CNTs.26However,the increasing of WO3amount would lead to a decrease of the electrode conductivity,thus decreases the reaction performance of Pt/WO3-CNTs catalyst on the contrary,finally,the content of WO3is optimized at ca 25%.

    Fig.7 Cyclic voltagrammograms of methanol oxidation on(a)Pt/WO3-CNTs,(b)Pt/CNTs,and(c)WO3/CNTs in 0.5 mol·L-1 H2SO4+1 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1

    Fig.8 (a)Cyclic voltammograms of the Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution with a scan rate of 50 mV·s-1;(b)dependencyof anodic peak current density and the ratio ofIf/Ibto the mass fraction of WO3

    CO-stripping voltammograms is measured and the characteristic CO stripping curves of Pt/WO3-CNTs and Pt/CNTs catalysts are shown in Fig.9.The onset potential and the peak potential may directly reflect the CO oxidizing ability of the catalysts.It is revealed that the onset potential and the peak potential for the oxidation of adsorbed CO on Pt/WO3-CNTs(Fig.9(a))are much lower than those on Pt/CNTs(Fig.9(b)),so WO3efficiently reduces the overpotential of CO oxidation due to forming HxWO3-OHadsspecies at lower potentials,which is helpful to oxidize COadsthrough bi-functional mechanism.33

    Fig.9 CO-stripping voltammograms of Pt/WO3-CNTs and Pt/CNTs catalysts in 0.5 mol·L-1H2SO4solution at room temperature and a scan rate of 50 mV·s-1

    Fig.10 Chronoamperomtric curve of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution at an operation potential of 0.7 V

    The chronoamperometry(CA)curves for the three catalysts are shown in Fig.10.These curves reflect the activity and stability of the catalysts to catalyze methanol oxidation.Obviously,the decay in the methanol oxidation current with time varies.But after 100 min the current density of Pt/WO3-CNTs catalyst is 15 times higher than that of Pt/CNTs catalyst.It shows that the modification of WO3can effectively improve the resistance to toxic and stability of Pt-based catalyst for methanol oxidation.This significant improvement in the catalytic performance of the Pt/WO3-CNTs catalysts may be attributed to three factors:first,the Pt and WO3particles supported on the carbon are smaller and more uniformly distributed;second,more metallic Pt is present on Pt/WO3-CNTs than on Pt/CNTs catalyst.Third,in the presence of WO3,the hydrogen adsorbed on the Pt spills over onto the surface of the WO3and forms HxWO3,thus releasing these Pt active sites.Subsequently,HxWO3can be readily oxidized to release hydrogen ions,electrons,and WO3.34,35This cyclic process will accelerate the dehydrogenation of methanol on Pt and improve the catalytic performance of methanol oxidation.The cyclic process on the Pt/WO3-CNTs catalyst is speculated to occur as follows:33,34

    4 Conclusions

    Nano-WO3modified carbon nanotubes were prepared by the conventional means with sodium tungstate as the precursor.Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.Electrochemical analysis shows that the Pt/WO3-CNTs catalysts prepared exhibit excellent catalytic activity and stability for methanol electro-oxidation.

    (1) Jung,E.H.;Jung,U.H.;Yang,T.H.;Peak,D.H.;Jung,D.H.;Kim,S.H.International Journal of Hydrogen Energy 2007,32,903.doi:10.1016/j.ijhydene.2006.12.014

    (2) Li,X.;Chen,J.L.;Zhu,Z.H.;De Marco,R.;Bradley,J.;Dicks,A.Energy&Fuels 2009,23,3721.doi:10.1021/ef900203h(3)Han,D.M.;Guo,Z.P.;Zeng,R.;Kim,C.J.;Meng,Y.Z.;Liu,H.K.International Journal of Hydrogen Energy 2009,34,2426.doi:10.1016/j.ijhydene.2008.12.073

    (4) Corpuz,A.R.;Olson,T.S.;Joghee,P.;Pylypenko,S.;Dameron,A.A.;Dinh,H.N.;O?Neill,K.J.;Hurst,K.E.;Bender,G.;Gennett,T.;Pivovar,B.S.;Richards,R.M.;O?Hayre,R.P.Journal of Power Sources 2012,217,142.doi:10.1016/j.jpowsour.2012.06.012

    (5) Kakati,N.;Lee,S.H.;Maiti,J.;Yoon,Y.S.Surface Science 2012,606,1633.doi:10.1016/j.susc.2012.07.008

    (6)Chu,Y.Y.;Wang,Z.B.;Jiang,Z.Z.;Gu,D.M.;Yin,G.P.Journal of Power Sources 2012,203,17.doi:10.1016/j.jpowsour.2011.11.025

    (7) Remona,A.M.;Phani,K.L.N.Journal of Fuel Cell Science and Technology 2011,8,011001.

    (8) Chu,Y.H.;Shul,Y.G.International Journal of Hydrogen Energy 2010,35,11261.doi:10.1016/j.ijhydene.2010.07.062(9) Wu,G.;Swaidan,R.;Cui,G.F.Journal of Power Sources 2007,172,180.doi:10.1016/j.jpowsour.2007.07.034

    (10) Chung,Y.S.;Pak,C.;Park,G.S.;Jeon,W.S.;Kim,J.R.;Lee,Y.;Chang,H.;Seung,D.Journal of Physical Chemistry C 2008,112,313.doi:10.1021/jp0759372

    (11) Piela,P.;Eickes,C.;Brosha,E.;Garzon,F.;Zelenay,P.Journal of the Electrochemical Society 2004,151,A2053.

    (12) Profeti,L.P.R.;Profeti,D.;Olivi,P.International Journal of Hydrogen Energy 2009,34,2747.doi:10.1016/j.ijhydene.2009.01.011

    (13) Zhou,C.M.;Wang,H.J.;Liang,J.H.;Peng,F.;Yu,H.;Yang,J.Chinese Journal of Catalysis 2008,29,1093.doi:10.1016/S1872-2067(09)60007-3

    (14) Frolova,L.A.;Dobrovolsky,Y.A.Russian Chemical Bulletin 2011,60,1101.doi:10.1007/s11172-011-0174-z

    (15) Guo,D.J.;You,J.M.Journal of Power Sources 2012,198,127.doi:10.1016/j.jpowsour.2011.10.017

    (16)Xu,M.W.;Gao,G.Y.;Zhou,W.J.;Zhang,K.F.;Li,H.L.Journal of Power Sources 2008,175,217.doi:10.1016/j.jpowsour.2007.09.069

    (17) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L85.

    (18) Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1994,141,3082.doi:10.1149/1.2059282

    (19) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Chemical Society-Faraday Transactions 1994,90,3089.doi:10.1039/ft9949003089

    (20) Cui,X.Z.;Shi,J.L.;Chen,H.R.;Zhang,L.X.;Guo,L.M.;Gao,J.H.;Li,J.B.Journal of Physical Chemistry B 2008,112,12024.

    (21) Jayaraman,S.;Jaramillo,T.F.;Baeck,S.H.;McFarland,E.W.Journal of Physical Chemistry B 2005,109,22958.doi:10.1021/jp053053h

    (22)Zhang,D.Y.;Ma,Z.F.;Wang,G.X.;Konstantinov,K.;Yuan,X.X.;Liu,H.K.Electrochemical and Solid State Letters 2006,9,A423.

    (23) Chen,K.Y.;Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L185.

    (24) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of Electroanalytical Chemistry 1995,389,223.doi:10.1016/0022-0728(95)03974-L

    (25)Yang,C.Z.;van der Laak,N.K.;Chan,K.Y.;Zhang,X.Electrochimica Acta 2012,75,262.doi:10.1016/j.electacta.2012.04.107

    (26)Cui,Z.M.;Feng,L.G.;Liu,C.P.;Xing,W.Journal of Power Sources 2011,196,2621.doi:10.1016/j.jpowsour.2010.08.118

    (27) Rajesh,B.;Karthik,V.;Karthikeyan,S.;Thampi,K.R.;Bonard,J.M.;Viswanathan,B.Fuel 2002,81,2177.doi:10.1016/S0016-2361(02)00162-X

    (28) Sheng,J.F.;Ma,C.A.;Zhang,C.;Li,G.H.Acta Physico-Chimica Sinica 2007,23,181.[盛江峰,馬淳安, 張 誠(chéng),李國(guó)華.物理化學(xué)學(xué)報(bào),2007,23,181.]doi:10.3866/PKU.WHXB20070209

    (29) Rajeswari,J.;Viswanathan,B.;Varadarajan,T.K.Materials Chemistry and Physics 2007,106,168.doi:10.1016/j.matchemphys.2007.05.032

    (30)Ahmadi,R.;Amini,M.K.International Journal of Hydrogen Energy 2011,36,7275.doi:10.1016/j.ijhydene.2011.03.013

    (31) Raghuveer,V.;Viswanathan,B.Journal of Power Sources 2005,144,1.doi:10.1016/j.jpowsour.2004.11.033

    (32)Su,F.B.;Poh,C.K.;Tian,Z.G.;Xu,G.W.;Koh,G.Y.;Wang,Z.;Liu,Z.L.;Lin,J.Y.Energy&Fuels 2010,24,3727.doi:10.1021/ef901275q

    (33) Park,K.W.;Choi,J.H.;Sung,Y.E.Journal of Physical Chemistry B 2003,107,5851.doi:10.1021/jp0340966

    (34)Tseung,A.C.C.;Chen,K.Y.Catalysis Today 1997,38,439.doi:10.1016/S0920-5861(97)00053-9

    (35) Ye,J.L.;Liu,J.G.;Zou,Z.G.;Gu,J.;Yu,T.Journal of Power Sources 2010,195,2633.doi:10.1016/j.jpowsour.2009.11.055

    猜你喜歡
    浙江工業(yè)大學(xué)淳安電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    從“淳安女童失聯(lián)案”看新媒體的悲劇性事件報(bào)道
    浙江工業(yè)大學(xué)
    漁舟唱晚
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    走進(jìn)淳安,去游千島之湖
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    免费av中文字幕在线| 3wmmmm亚洲av在线观看| 99视频精品全部免费 在线| 亚洲精品一二三| 成人美女网站在线观看视频| 亚洲精品中文字幕在线视频 | 1000部很黄的大片| 麻豆成人av视频| 精品一区二区三卡| 亚洲精品一区蜜桃| 国产视频内射| 色婷婷久久久亚洲欧美| 精品久久久精品久久久| 久久99热这里只频精品6学生| 日本猛色少妇xxxxx猛交久久| 日韩中字成人| 边亲边吃奶的免费视频| 国产成人精品福利久久| 亚洲精品一二三| 国产欧美日韩精品一区二区| 国产精品久久久久久久久免| 国产精品国产三级国产专区5o| 在现免费观看毛片| 久久久色成人| 嫩草影院入口| 激情五月婷婷亚洲| xxx大片免费视频| 亚洲精品色激情综合| 亚洲av.av天堂| 黄片wwwwww| 一区二区三区精品91| 日韩欧美 国产精品| 色综合色国产| 欧美老熟妇乱子伦牲交| 亚洲精品一二三| 中国美白少妇内射xxxbb| 久久久精品免费免费高清| 欧美97在线视频| 国产一区有黄有色的免费视频| 99热这里只有精品一区| 丝瓜视频免费看黄片| 18禁动态无遮挡网站| 99热这里只有精品一区| 熟妇人妻不卡中文字幕| 国产成人aa在线观看| 在线免费十八禁| 亚洲精品日本国产第一区| 在线免费十八禁| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看| 午夜老司机福利剧场| 91精品国产国语对白视频| 最近中文字幕高清免费大全6| 少妇裸体淫交视频免费看高清| xxx大片免费视频| 免费久久久久久久精品成人欧美视频 | 色婷婷久久久亚洲欧美| 97热精品久久久久久| 日韩成人av中文字幕在线观看| 国产精品女同一区二区软件| 国产精品女同一区二区软件| 成人漫画全彩无遮挡| 99九九线精品视频在线观看视频| 大片电影免费在线观看免费| 有码 亚洲区| 亚洲自偷自拍三级| 国产伦精品一区二区三区视频9| 看非洲黑人一级黄片| 亚洲精品日韩av片在线观看| 午夜福利在线在线| 国产乱人视频| 亚洲精品乱码久久久久久按摩| 亚洲电影在线观看av| 国产一区二区三区综合在线观看 | 亚洲欧美日韩东京热| 插阴视频在线观看视频| 深爱激情五月婷婷| 久久青草综合色| 欧美zozozo另类| 国产免费视频播放在线视频| 国产av国产精品国产| 久久99热这里只频精品6学生| 一区二区三区四区激情视频| 精品少妇久久久久久888优播| 国精品久久久久久国模美| 能在线免费看毛片的网站| 校园人妻丝袜中文字幕| av国产精品久久久久影院| 亚洲成人手机| 日韩免费高清中文字幕av| 春色校园在线视频观看| 亚洲av免费高清在线观看| 一本一本综合久久| 亚洲国产精品成人久久小说| 欧美xxxx性猛交bbbb| 国产无遮挡羞羞视频在线观看| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 新久久久久国产一级毛片| 观看免费一级毛片| 一级爰片在线观看| 精品视频人人做人人爽| 99热这里只有是精品50| 国产av一区二区精品久久 | .国产精品久久| 欧美三级亚洲精品| 日韩欧美 国产精品| 日日啪夜夜撸| 日本午夜av视频| 26uuu在线亚洲综合色| 久久久成人免费电影| 亚洲一级一片aⅴ在线观看| xxx大片免费视频| 激情 狠狠 欧美| 视频中文字幕在线观看| 毛片一级片免费看久久久久| 免费观看的影片在线观看| 久久国产亚洲av麻豆专区| 美女福利国产在线 | 国产精品蜜桃在线观看| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 老女人水多毛片| 日韩欧美一区视频在线观看 | 青春草视频在线免费观看| 精品一区二区三卡| 日韩一区二区视频免费看| 成人午夜精彩视频在线观看| 欧美高清成人免费视频www| 91精品一卡2卡3卡4卡| 欧美+日韩+精品| av天堂中文字幕网| 亚洲欧美精品自产自拍| 高清午夜精品一区二区三区| 久久久久久九九精品二区国产| 中文欧美无线码| 日本猛色少妇xxxxx猛交久久| 国产精品爽爽va在线观看网站| 日本av手机在线免费观看| av国产久精品久网站免费入址| 五月天丁香电影| 极品教师在线视频| 99久久人妻综合| 日韩电影二区| 国产成人一区二区在线| 人妻制服诱惑在线中文字幕| 波野结衣二区三区在线| 永久免费av网站大全| 少妇人妻一区二区三区视频| 男女下面进入的视频免费午夜| 亚州av有码| 五月玫瑰六月丁香| 久久综合国产亚洲精品| 一区二区三区免费毛片| 大香蕉97超碰在线| 国产视频内射| 久久久久久久久久久丰满| 99久久精品一区二区三区| 国产淫语在线视频| 亚洲最大成人中文| 国产永久视频网站| 国产精品av视频在线免费观看| 一级片'在线观看视频| 偷拍熟女少妇极品色| 午夜老司机福利剧场| 午夜激情福利司机影院| 久久久久久久国产电影| 亚洲丝袜综合中文字幕| 国产毛片在线视频| 熟女电影av网| 亚洲精品,欧美精品| 色吧在线观看| 97在线视频观看| 一级毛片我不卡| 99热这里只有是精品在线观看| 久久精品久久久久久久性| 国产日韩欧美在线精品| 在线观看一区二区三区激情| 一个人看视频在线观看www免费| 一个人看视频在线观看www免费| 国产av精品麻豆| freevideosex欧美| 色吧在线观看| 国产亚洲91精品色在线| 国产免费视频播放在线视频| 99热6这里只有精品| 高清在线视频一区二区三区| 欧美老熟妇乱子伦牲交| 在线天堂最新版资源| av播播在线观看一区| 国产一区亚洲一区在线观看| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说 | 午夜精品国产一区二区电影| 国产成人a区在线观看| 久久久久久久久久成人| 国产成人精品久久久久久| 免费播放大片免费观看视频在线观看| 久久久久人妻精品一区果冻| 久久青草综合色| 久久久久网色| 久久精品国产鲁丝片午夜精品| 国产av一区二区精品久久 | 一区二区三区精品91| 亚洲av福利一区| 亚洲国产精品一区三区| 女性被躁到高潮视频| 国产v大片淫在线免费观看| 精品一品国产午夜福利视频| 亚洲成色77777| 亚洲精品乱码久久久久久按摩| 99久久精品热视频| 黑人高潮一二区| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久精品久久久久久久性| 久久久久久久久久久丰满| 熟女av电影| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 又粗又硬又长又爽又黄的视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品中文字幕在线视频 | 三级国产精品片| 男女无遮挡免费网站观看| h日本视频在线播放| 亚洲精品久久久久久婷婷小说| 中国三级夫妇交换| 18禁在线无遮挡免费观看视频| 成年免费大片在线观看| 精品久久久噜噜| 伦理电影大哥的女人| 免费人妻精品一区二区三区视频| 最近最新中文字幕免费大全7| 国产高清有码在线观看视频| 亚洲欧美中文字幕日韩二区| 中文字幕制服av| 小蜜桃在线观看免费完整版高清| 黑丝袜美女国产一区| 少妇被粗大猛烈的视频| 成人18禁高潮啪啪吃奶动态图 | 国产淫语在线视频| 亚洲成人av在线免费| 亚洲成人中文字幕在线播放| 男女国产视频网站| 国产中年淑女户外野战色| 直男gayav资源| 人妻一区二区av| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 国产乱来视频区| av专区在线播放| 国产av精品麻豆| 免费播放大片免费观看视频在线观看| 国产精品一区二区在线不卡| 精品一区二区三区视频在线| 精品亚洲成国产av| 看十八女毛片水多多多| 蜜臀久久99精品久久宅男| 九色成人免费人妻av| av女优亚洲男人天堂| 在线观看人妻少妇| 色网站视频免费| 日韩制服骚丝袜av| 人人妻人人添人人爽欧美一区卜 | 久久精品国产a三级三级三级| 久久久久久久久久成人| av播播在线观看一区| 亚洲国产欧美人成| 一本一本综合久久| 亚洲av不卡在线观看| 91狼人影院| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 免费观看的影片在线观看| 亚洲美女搞黄在线观看| 日日摸夜夜添夜夜添av毛片| 午夜福利高清视频| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 欧美极品一区二区三区四区| 欧美+日韩+精品| 观看av在线不卡| 视频中文字幕在线观看| 午夜激情福利司机影院| 秋霞伦理黄片| 国产高潮美女av| 777米奇影视久久| 国产亚洲精品久久久com| av在线老鸭窝| 晚上一个人看的免费电影| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区免费观看| 街头女战士在线观看网站| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡 | 18+在线观看网站| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 好男人视频免费观看在线| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 麻豆乱淫一区二区| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 啦啦啦在线观看免费高清www| 毛片女人毛片| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 高清欧美精品videossex| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花 | 欧美亚洲 丝袜 人妻 在线| 噜噜噜噜噜久久久久久91| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 亚洲激情五月婷婷啪啪| 亚洲内射少妇av| 久久精品夜色国产| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 在线观看三级黄色| 熟女人妻精品中文字幕| 尾随美女入室| 亚洲欧美精品专区久久| 久久精品久久精品一区二区三区| 亚洲人成网站在线播| 久久精品国产亚洲av涩爱| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| av在线老鸭窝| 国产免费一级a男人的天堂| 精品久久久久久久久av| 少妇人妻精品综合一区二区| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久久电影| 亚洲怡红院男人天堂| 我要看黄色一级片免费的| 久久婷婷青草| 久久国产乱子免费精品| 日本av手机在线免费观看| av线在线观看网站| 亚洲av日韩在线播放| 国国产精品蜜臀av免费| 欧美3d第一页| 一个人看的www免费观看视频| 一级a做视频免费观看| 少妇 在线观看| kizo精华| 欧美精品人与动牲交sv欧美| 日本午夜av视频| 日产精品乱码卡一卡2卡三| 大香蕉久久网| 欧美+日韩+精品| 欧美老熟妇乱子伦牲交| 免费黄网站久久成人精品| 尾随美女入室| 午夜福利在线在线| 亚洲av电影在线观看一区二区三区| 亚洲精品456在线播放app| 三级经典国产精品| 一级片'在线观看视频| 秋霞在线观看毛片| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 在线观看一区二区三区| 最近手机中文字幕大全| 精品一品国产午夜福利视频| 国产极品天堂在线| 一二三四中文在线观看免费高清| av在线app专区| 日韩av在线免费看完整版不卡| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| 99久久综合免费| 日韩电影二区| 亚洲熟女精品中文字幕| 日本欧美国产在线视频| 午夜免费观看性视频| 免费观看a级毛片全部| 成人无遮挡网站| 男女无遮挡免费网站观看| 日产精品乱码卡一卡2卡三| 久久6这里有精品| 国产日韩欧美在线精品| av在线观看视频网站免费| 99久久综合免费| 男人添女人高潮全过程视频| 国产精品无大码| 久久午夜福利片| 赤兔流量卡办理| 日本wwww免费看| 国产精品久久久久久精品电影小说 | 人人妻人人看人人澡| 看非洲黑人一级黄片| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 97精品久久久久久久久久精品| 亚洲经典国产精华液单| 国产国拍精品亚洲av在线观看| 热re99久久精品国产66热6| av天堂中文字幕网| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| freevideosex欧美| 欧美日韩国产mv在线观看视频 | 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 身体一侧抽搐| 高清不卡的av网站| 精品久久久噜噜| 国产一区二区三区av在线| 中文字幕精品免费在线观看视频 | 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 看非洲黑人一级黄片| 麻豆成人午夜福利视频| 国产日韩欧美在线精品| 国产精品一区二区性色av| 国产黄片视频在线免费观看| 久久国产精品男人的天堂亚洲 | 日韩大片免费观看网站| 国产乱来视频区| 亚洲电影在线观看av| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| 午夜福利影视在线免费观看| 中国美白少妇内射xxxbb| 亚洲综合色惰| 国产美女午夜福利| 伦精品一区二区三区| 久久久国产一区二区| 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 美女内射精品一级片tv| 久久亚洲国产成人精品v| av免费在线看不卡| 超碰97精品在线观看| 1000部很黄的大片| 毛片一级片免费看久久久久| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 久久久久久久久久人人人人人人| 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲 | 亚洲伊人久久精品综合| 熟妇人妻不卡中文字幕| 日韩人妻高清精品专区| 男男h啪啪无遮挡| 日韩成人伦理影院| 一级毛片 在线播放| 国产精品久久久久久久久免| 中文天堂在线官网| 大片免费播放器 马上看| 麻豆成人av视频| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 在线观看一区二区三区| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| av在线老鸭窝| 少妇丰满av| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 高清不卡的av网站| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 97在线人人人人妻| 国产真实伦视频高清在线观看| 毛片女人毛片| 国产高清不卡午夜福利| 日本av手机在线免费观看| h视频一区二区三区| 视频区图区小说| 免费看日本二区| 亚洲精品,欧美精品| 99久国产av精品国产电影| 亚洲中文av在线| 欧美一区二区亚洲| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 啦啦啦啦在线视频资源| 身体一侧抽搐| 嫩草影院入口| 国产精品99久久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线播| 日本av免费视频播放| 国产精品一区www在线观看| 老司机影院毛片| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看 | 日韩中文字幕视频在线看片 | 欧美日韩视频精品一区| 少妇 在线观看| 永久免费av网站大全| 99久久精品国产国产毛片| 三级经典国产精品| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| 777米奇影视久久| 99热这里只有是精品50| 99久久精品热视频| 中文字幕制服av| 看非洲黑人一级黄片| 亚洲av综合色区一区| 亚洲精品自拍成人| 国产 精品1| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说 | 最新中文字幕久久久久| 91精品国产九色| 3wmmmm亚洲av在线观看| 国产精品久久久久久久久免| 国产 一区精品| 国产精品久久久久久久久免| 免费大片18禁| 人妻 亚洲 视频| 欧美另类一区| 国产av一区二区精品久久 | 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频 | 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 中文欧美无线码| 性色av一级| 在线观看免费日韩欧美大片 | 久久久成人免费电影| 国产在线一区二区三区精| 九九久久精品国产亚洲av麻豆| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 国产视频内射| 国产精品国产三级专区第一集| 久久人人爽人人片av| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| 亚洲一区二区三区欧美精品| 国产精品一区www在线观看| av网站免费在线观看视频| 精品人妻熟女av久视频| 午夜福利高清视频| 亚洲欧美日韩另类电影网站 | 亚洲国产精品一区三区| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 看免费成人av毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲经典国产精华液单| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩国产mv在线观看视频 | 男男h啪啪无遮挡| 插逼视频在线观看| 亚洲精品国产av成人精品| 男女免费视频国产| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 亚洲美女黄色视频免费看| 狠狠精品人妻久久久久久综合| 亚洲国产av新网站| 久久久久久久亚洲中文字幕| 免费久久久久久久精品成人欧美视频 | 一区二区三区免费毛片| av.在线天堂| 在线免费十八禁| 日日啪夜夜撸| 男人狂女人下面高潮的视频| 在线观看一区二区三区| 新久久久久国产一级毛片| 国产男人的电影天堂91| 少妇的逼水好多| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 五月天丁香电影| 亚洲激情五月婷婷啪啪| 成人二区视频| 亚洲怡红院男人天堂| 丝袜喷水一区| 精品久久国产蜜桃| 亚洲精品一二三| 免费观看性生交大片5| 性高湖久久久久久久久免费观看| 能在线免费看毛片的网站| 亚洲av日韩在线播放| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 国产一级毛片在线| 国产精品av视频在线免费观看| 国产在线一区二区三区精| 啦啦啦在线观看免费高清www| av专区在线播放| 美女xxoo啪啪120秒动态图| 国产成人精品福利久久| 性色avwww在线观看| 日韩欧美 国产精品|