• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources*

    2013-07-31 22:43:41WEIXiaoxing魏曉星LIUFeng劉峰JIANJia簡嘉WANGRuiyan王瑞妍andCHENGuoqiang陳國強
    關鍵詞:劉峰

    WEI Xiaoxing (魏曉星), LIU Feng (劉峰), JIAN Jia (簡嘉), WANG Ruiyan (王瑞妍)and CHEN Guoqiang (陳國強),4,**

    1Department of Basic Medicine, Medical College of Qinghai University, Xining 810016, China

    2MOE Key Lab of Bioinformatics and Systems Biology, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China

    3Tuspark Kunshan Biotech Science Park Development Center, 4/F, Science & Technology Plaza, Tsinghua Science Park, Kunshan, Jiangsu 215347, China

    4Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

    Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources*

    WEI Xiaoxing (魏曉星)1,2, LIU Feng (劉峰)2,3, JIAN Jia (簡嘉)2, WANG Ruiyan (王瑞妍)2and CHEN Guoqiang (陳國強)2,4,**

    1Department of Basic Medicine, Medical College of Qinghai University, Xining 810016, China

    2MOE Key Lab of Bioinformatics and Systems Biology, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China

    3Tuspark Kunshan Biotech Science Park Development Center, 4/F, Science & Technology Plaza, Tsinghua Science Park, Kunshan, Jiangsu 215347, China

    4Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

    Synthetic biology promises to simplify the construction of metabolic pathways by assembling the detached modules of the whole pathway. This gives new approaches for the microbial production of industrial products such as polyhydroxyalkanoates (PHA). In this study, to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by Pseudomonas stutzeri 1317 from unrelated carbon sources such as glucose, the phaC1-phaZ-phaC2 operon of P. stutzeri 1317 was knocked out to generate the PHA deficient mutant P. stutzeri 1317LF. Then three modules containing phaCAhAReBRe, phaCAhBReGPpand phaCAhPAhwere introduced into P. stutzeri 1317LF separately. The shake flask results indicated that the precursor supply and PHA synthase activity were the vital factors for the PHBHHx accumulation of P. stutzeri 1317LF. Furthermore, the PHBHHx accumulation of the recombinants from different carbon resources were performed. The highest PHBHHx content was 23.7% (by mass) with 58.6% (by mole) 3HB fraction. These results provide basis for further improving the PHBHHx accumulation of P. stutzeri from unrelated carbon sources.

    Pseudomonas stutzeri 1317, PHBHHx, unrelated carbon sources

    1INTRODUCTION

    Polyhydroxyalkanoates (PHA) are biodegradable polyesters synthesized by many microorganisms as carbon and energy storage substances under certain stress conditions [1, 2]. PHA has attracted increasing interests not only for its similar properties to petrochemical plastics but also its excellent biocompatibility, chirality and high combustion value. It can be widely applied in the fields of new materials, tissue engineering, pharmacy and bio-energy [3-5]. According to the monomer compositions, PHA can be categorized into three classes: short-chain-length (SCL) PHA, mediumchain-length (MCL) PHA and PHA consisting of both SCL and MCL monomers (SCL-MCL PHA) [6]. One of the SCL-MCL PHA copolymers, poly(3-hydroxybutyrateco-3-hydroxyhexanoate) (PHBHHx) consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx) monomers is considered as the third-generation commercial PHA product. Compared with other PHAs, PHBHHx shows better biocompatibility and material processing properties [5, 7]. However, PHBHHx is mainly produced from expensive substrates such as lauric acid, the high cost of which greatly limits the industrial promotion and application of PHBHHx [8]. Reducing the cost of PHBHHx production by using proper strains and unrelated carbon sources, such as glucose or gluconate, has been the focus of the research.

    Aeromonas hydrophila 4AK4 is a commonly used strain for PHBHHx production, because the PHA synthase from A. hydrophila 4AK4 shows the specificity for accumulating PHA with C4-C6 monomers [9]. However, it can only utilize lauric acid as carbon sources but not glucose or any other unrelated carbon sources [10]. Pseudomonas stutzeri 1317 has been studied for accumulating PHA, which contains complicated monomer compositions from the related or unrelated carbon sources [11-13]. Combining the ability of P. stutzeri 1317 to provide 3HA precursors from unrelated carbon sources and the specificity of PHA synthase from A. hydrophila 4AK4 on C4-C6 monomers will be advantageous for the production of PHBHHx from cheap substrates and thus reduce the cost of PHBHHx production.

    Synthetic biology offers efficient and versatile DNA assembly systems to facilitate the building of new modules/pathways from basic DNA parts in a standardized way. The modules with specific functions are integrated according to pre-designed order for new biological functions [14]. In this paper, a new PHBHHx biosynthesis pathway is designed in P. stutzeri 1317LF, a phaC deficient mutant of P. stutzeri 1317.

    The designed PHBHHx biosynthesis pathway in P. stutzeri 1317LF can be constructed as Fig. 1 (a). The3HB monomers can be generated by glycolysis pathway. Two acetyl-CoA molecules can be condensed into acetoacetyl-CoA, which is then reduced to generate 3-hydroxybutyryl-CoA with the participation of the enzyme β-ketothiolase and acetoacetyl-CoA reductase encoded by phaAReBRefrom Ralstonia eutropha. The 3HHx precursors can be produced from the fatty acid de novo biosynthetic pathway. The (R)-3-hydroxyacyl in this pathway is converted from their acyl carrier protein (ACP) form to the CoA form catalyzed by the enzyme acyl-ACP: CoA transacylase, encoded by phaG from P. putida. The PHA synthase from A. hydrophila 4AK4 finally catalyzes the polymerization. The phasin gene, phaP, from A. hydrophila 4AK4 can be used for regulating the expression of phaC to enhance the PHBHHx accumulation.

    Figure 1Engineered PHBHHx synthesis pathway and PHBHHx production in P. stutzeri 1317LF and its recombinants(a) The PHBHHx synthesis pathway and constructed modules, with genes: phaCAh, PHA synthase from A. hydrophila with C4-C6 substrate specificity; phaARe, β-ketothiolase from R. eutropha; phaBRe, NADPH dependent acetoacetyl-CoA reductase from R. eutropha; phaGPp, acyl-ACP: CoA transacylase from P. putida; phaPAh, phasin gene from A. hydrophila; (b) The PHBHHx production of P. stutzeri 1317LF and its recombinants, with strains cultured in MS medium containing 20 g·L?1glucose and 0.5 g·L?1(NH4)2SO4at 30 °C, 200 r·min?1for 48 h

    For the PHBHHx biosynthesis pathway in P. stutzeri 1317 described above, each of the five genes can be regarded as a unit and assembled separately to form three different functional modules including phaCAhAReBRe, phaCAhBReGPpand phaCAhPAh. In this study, the native phaC1-phaZ-phaC2 operon that encodes PHA synthase is deleted from the genome of P. stutzeri 1317 to obtain P. stutzeri 1317LF. Then the three modules are heterologously introduced into the P. stutzeri 1317LF strain to facilitate the production of PHBHHx from glucose and other unrelated carbon sources.

    Table 1Strains and plasmids used in this study

    2MATERIALS AND METHOD

    All bacterial strains and plasmids used in this study were described in previous studies (Table 1) except strain P. stutzeri 1317LF, which was constructed in this study. The PHA synthase gene operon phaC1-phaZ-phaC2 in P. stutzeri was deleted through the homologous double-exchange method described by Sch?fer et al [15-17]. The shake flask and cultural conditions for the recombinant P. stutzeri strains were determined as previously described [18]. PHA accumulation and monomer composition were analyzed by gas chromatography (GC) [19].

    3RESULTS AND DISCUSSION

    3.1Construction of P. stutzeri mutant strain with phaC1-phaZ-phaC2 deletion

    The wild type strain of P. stutzeri was found to be able to synthesize mcl-PHA through de novo fatty acid biosynthetic pathway with glucose as the sole carbon source. In this study, phaC1ZC2-deficient mutant P. stutzeri 1317LF was constructed by gene deletion and this mutant strain failed to accumulate PHA [Fig. 1 (b)].

    3.2Heterologous expression of three modules containing phaCAhAReBRe, phaCAhBReGPpand phaCAhPAhin P. stutzeri1317LF

    In order to accumulate PHBHHx through fatty acid de novo synthetic pathway, phaCAhgene from A. hydrophila 4AK4 was incorporated to P. stutzeri 1317LF via the plasmid pAH02. Shake flask results are shown in Fig. 1 (b). The introduction of pha CAhgene restored the PHA-producing ability of the mutant P. stutzeri 1317LF from glucose, but it only accumulated a small amount of PHBHHx [0.23% (by mass) of CDW]. Probably, insufficient supply of intracellular 3-hydroxybutyrate (3HB) and 3-hydroxy acid (3HHx) as PHBHHx precursors may result in the low PHBHHx accumulation. To explore the effect of precursor supply, two modules containing phaCAhAReBReand phaCAhBReGPpwere introduced into P. stutzeri 1317LF separately to enhance the PHBHHx production [Fig. 1 (a)]. Plasmid pQh-CAB was constructed harboring phaCAhencoding PHA synthase from A. hydrophila 4AK4 and phaAReBReencoding β-ketothiolase and acetoacetyl-CoA reductase from R. eutropha, to provide 3-hydroxybutyryl-CoA from acetyl-CoA. Meanwhile, pQh-CBG was constructed containing phaCAhphaBReand phaGPp, which encodes acyl-ACP: CoA transacylase from P. putida, in order to increase 3-hydroxybutyryl-CoA by phaBReand the native phaA from P. stutzeri and 3-hydroxyhexanoyl-CoA from fatty acid de novo biosynthesis pathway by phaGPp. Shake flask results revealed that the expression of phaCAhAReBRein

    P. stutzeri 1317LF improved the 3HB precursor supply, resulting in 8.75% (by mass) PHBHHx containing 98.45% (by mole) 3HB. When phaCAhBReGPpwas expressed in P. stutzeri 1317LF, both 3HB and 3HHx precursors increased. On this basis, the PHBHHx accumulation achieved 6.77% (by mass) with 6.45% (by mole) 3HHx [Fig. 1 (b)]. Although phaAPsand phaBPsgenes were found in the genome of P. stutzeri [20], only a small amount of 3HB monomers can be produced by P. stutzeri 1317LF. Expression of phaAReBReor phaBRealone improved the 3HB precursor supply, resulting in the production of 8.61% (by mass) and 6.33% (by mass) 3HB, respectively. This result indicates that native PhaA and PhaB exhibit low enzyme activities in P. stutzeri 1317, so that 3HB precursor is provided ineffectively. PhaGPpfrom P. putida KT2440 is a 3-hydroxyacyl- ACP: CoA transferase with a widerange substrate specificity for C6-C14 substances [21]. Heterologous expression of PhaGPpgene significantly increases the 3HHx monomers for PHBHHx accumulation in P. stutzeri 1317LF.

    Studies showed that phasin gene, phaP, canregulate the gene expression of phaC and contribute to the accumulation of PHA [22]. To study the effect of phaPAhgene on the PHBHHx accumulation of P. stutzeri 1317LF with phaCAh, plasmid pZWJ421 harboring phaCAhand phaPAhthat encodes phasin gene from A. hydrophila was constructed and studied in P. stutzeri 1317LF [Fig. 1 (a)]. The results showed 3.05% (by mass) of PHBHHx accumulation in glucose medium [Fig. 1 (b)]. Compared with the trace amount of PHA synthesized in P. stutzeri 1317LF (phaCAh), incorporation with phaP gene enhanced the efficiency of phaCAhand the PHBHHx accumulation from glucose. In view of the above, low activity of PHA polymerase was another possible reason for trace amount of PHA accumulation in P. stutzeri 1317LF (ph aCAh).

    Table 2The PHBHHx production of P. stutzeri 1317LF recombinants from different carbon sources

    3.3PHBHHx accumulation in recombinant P. stutzeri 1317LF with different carbon sources

    The recombinant P. stutzeri 1317LF strains with different plasmids, P. stutzeri 1317LF (pQh-CAB), P. stutzeri 1317LF (pQh-CBG) and P. stutzeri 1317LF (pZWJ421), were studied for PHBHHx synthesis from glucose. In addition, the utilization of other unrelated carbon sources was further studied in these three strains. The results are given in Table 2. Shake flask results showed that no significant effect was found on the monomer composition of PHBHHx with different carbon sources. Compared with using glucose as the carbon source, using gluconate remarkably increased the production of PHBHHx, though the cell dry mass of these strains decreased slightly. The contents of PHBHHx in P. stutzeri 1317LF (pQh-CAB), P. stutzeri 1317LF (pQh-CBG) and P. stutzeri 1317LF (pZWJ421) achieved 15.04% (by mass), 9.67% (by mass) and 9.68% (by mass), respectively. The amounts of accumulated PHBHHx increased by 67.11%, 23.50% and 172.79%, respectively, as compared with using glucose medium as the carbon source. The results showed that gluconate was a better carbon source candidate for PHBHHx accumulation in the recombinant P. stutzeri. When a small amount of lauric acid (0.5 g·L?1) was added in the culture medium, the intracellular PHBHHx content could be improved greatly. In P. stutzeri 1317LF (phaPCAh), the cellular dry mass and cellular PHBHHx content achieved 1.41 g·L?1and 23.70% (by mass), respectively. This suggests that PHBHHx accumulation in the recombinant P. stutzeri 1317LF can be further improved with low-cost carbon sources such as unrelated carbon sources, providing a higher industrial value.

    4CONCLUSIONS

    In this study, three modules containing phaCAhAReBRe, phaCAhBReGPpand phaCAhPAhwere constructed and introduced into the phaC1-phaZ-C2 operon deficient mutant strain P. stutzeri 1317LF. The PHBHHx synthesis of all the recombinant strains from unrelated carbon sources such as glucose was studied. The gluconate was found to be a better carbon source for PHBHHx accumulation than glucose, and the lauric acid could significantly increase the PHBHHx content. Through improving the precursors of PHBHHx in recombinant strains and enhancing the PHA synthase activity, the PHBHHx production was increased. The results provide basis for further improvement of PHBHHx production from unrelated carbon sources in P. stutzeri 1317. In summary, the recombinant P. stutzeri 1317LF appears to be a good candidate strain for production of PHBHHx.

    ACKNOWLEDGEMENTS

    We are grateful to professor Andreas Sch?fer for the generous donation of vector pK18mobsacB. And we also thank QIU Yuanzheng and LU Xiaoyun for the plasmids used in this paper.

    REFERENCES

    1 Chen, G.Q., “A microbial polyhydroalkanoates (PHA) based bioand materials industry”, Chem. Soc. Rev.,38, 2434-2446 (2009).

    2 Dowes, E.A., Senior, P.J., “The role and regulation of energy reserve polymers in microorganisms”, Ad v. Microb. Physiol.,10, 135-266 (1973).

    3 Chen, G.Q., Luo, R.C., Xu, J., Wu, Q., Microbial PHA Based Eco-Material Industry, Chemical Industry Press, Beijing, 1-21 (2008). (in Chinese)

    4 Chen, G.Q., Wu, Q., “The application of polyhydroxyalkanoates as tissue engineering materials”, Biomaterials,26, 6565-6578 (2005).

    5 Li, Z.J., Wei, X.X., Chen, G.Q., “Microbial cell factories for production of polyhydroxyalkanoates”, Chin. J. Biotechnol.,26, 1426-1435 (2010).

    6 Steinbüchel, A., “Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example”, Macromol. Biosci.,1, 1-24 (2001).

    7 Wu, Q., Wang, Y., Chen, G.Q., “Medical application of microbial biopolyesters polyhydroxyalkanoates”, Artif. Cells Blood Substit. Immobil. Biotechnol.,37, 1-12 (2009).

    8 Liu, F., Jian, J., Shen, X.W., Chung, A., Chen, J.C., Chen, G.Q.,“Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate”, Bioresour. Technol.,102, 8123-8129 (2011).

    9 Lu, X.Y., Zhang, W.J., Jian, J., Wu, Q., Chen, G.Q., “Molecular cloning and functional analysis of two polyhydroxyalkanoate synthases from two strains of Aeromonas hydrophila spp.”, FEMS Microbiol. Lett.,243, 149-155 (2005).

    10 Chen, G.Q., Zhang, G., Park, S.J., Lee, S.Y., “Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)”, Appl. Microbiol. Biotechnol.,57, 50-55 (2001).

    11 He, W.N., Tian, W.D., Zhang, G., Chen, G.Q., Zhang, Z.M., “Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil”, FEMS. Microbiol. Lett.,169, 45-49 (1998).

    12 Chen, J.Y., Liu, T., Zheng, Z. Chen, J.C., Chen, G.Q., “Polyhydroxyalkanoate synthases phaC1 and phaC2 from Pseudomonas stutzeri 1317 had different substrate specificities”, FE MS. Microbiol. Lett.,234, 231-237 (2004).

    13 Chen, G.Q., Xu, J., Wu, Q., Zhang, Z.M. Ho, K.P., “Synthesis of copolyesters consisting of medium-chain-length β-hydroxyalkanoates by Pseudomonas stutzeri 1317”. React. Funct. Poly.,48, 107-112 (2001).

    14 Benner, S.A., Sismour, A.M., “Synthetic biology”, Nat. Rev. Genet.,6, 533-543 (2005).

    15 Sch?fer, A., Tauch, A., J?ger, W., Kalinowski, J., Thierbach, G., Pühler, A., “Small mobilizable multi-purpose cloning vectors derived from the Escherich ia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum”, Gene.,145, 69-73 (1994).

    16 Chen, J.Y., Song, G., Chen, G.Q., “A lower specificity phaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates”, Anton Leeuw. Int. J. G.,89, 157-167 (2006).

    17 Cai, L., Yuan, M.Q., Liu, F., Chen, G.Q., “Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442”, Bioresour. Technol.,100, 2265-2270 (2009).

    18 Chung, A., Liu, Q., Ouyang, S.P., Wu, Q., Chen, G.Q., “Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene”, Appl. Microbiol. Biotechnol.,83, 513-519 (2009).

    19 Wei, X.X., Shi, Z.Y., Yuan, M.Q., Chen, G.Q., “Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli”, Appl. Microbiol. Biotechnol.,82, 703-712 (2009).

    20 Yan, Y.L., Yang, J., Dou, Y.T., Chen, M., Ping, S.Z., Peng, J.P., Zhang, W., Yao, Z.Y., Li, H.Q., Liu, W., He, S., Geng, L.Z., Zhang, X.B., Yang, F., Yu, H.Y., Zhan, Y.H., Li, D.H., Lin, Z.L., Wang, Y.P., Elmerich, C., Lin, M., Jin, Q., “Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501”, Proc. Natl. Acad. Sci. USA,105, 7564-7569 (2008).

    21 Rehm, B.H.A., Kruger, N., Steinbüchel, A., “A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase”, J. Biol. Chem.,273, 24044-24051 (1998).

    22 Fukui, T., Kichise, T., Iwata, T., Doi, Y., “Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxy-alkanoates with altered molar composition by recombinant bacteria”, Biomacromolecules,2, 148-153 (2001).

    23 Simon, R., Priefer, U., Pühler, A., “A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria”, Nat. Biotechnol.,1, 784-791 (1983).

    24 Qiu, Y.Z., Han, J., Guo, J.J., Chen, G.Q., “Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida”, Biotechnol. Lett.,27, 1381-1386 (2005).

    25 Lu, X.Y., Wu, Q., Zhang, W.J., Jian, J., Chen, G.Q., “Studies on synthesis of polyhydroxyalkanoate consisting of 3-hydroxyvalerate by Aeromonas hydrophila”, Chin. J. Biotechnol.,20, 779-783 (2004).

    10.1016/S1004-9541(13)60549-2

    2012-09-27, accepted 2013-02-28.

    * Supported by the National Natural Science Foundation of China (31260015), Natural Science Foundation of Qinghai Province (2012-Z-919Q), the Extramural Project from State Key Laboratory for Agrobiotechnology (2012SKLAB06-5) and the Research Funds for Young Project of Qinghai University (2011-QYY-1).

    ** To whom correspondence should be addressed. E-mail: chengq@mail.tsinghua.edu.cn

    猜你喜歡
    劉峰
    Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters
    The effect of pulse voltage rise rate on the polypropylene surface hydrophilic modification by ns pulsed nitrogen DBD
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry
    History of World Smile Day
    初冬月季
    陌上
    西風長路,擎燭行舟
    分身術
    青春(2018年11期)2018-11-15 22:17:32
    劉峰:從“發(fā)明狂人”到“創(chuàng)業(yè)達人”
    金色年華(2016年14期)2016-02-28 01:44:29
    最近最新中文字幕大全免费视频 | 男女午夜视频在线观看| 99久国产av精品国产电影| 啦啦啦视频在线资源免费观看| 国产视频首页在线观看| 国产一区亚洲一区在线观看| 精品一区二区免费观看| 亚洲av电影在线观看一区二区三区| 免费观看在线日韩| 捣出白浆h1v1| 国产在线视频一区二区| 女性生殖器流出的白浆| 两个人免费观看高清视频| 国产黄色视频一区二区在线观看| 欧美少妇被猛烈插入视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久久久免| 精品第一国产精品| 国产精品无大码| 岛国毛片在线播放| 久久久国产欧美日韩av| 欧美在线黄色| 亚洲国产看品久久| 国产精品香港三级国产av潘金莲 | 大码成人一级视频| 久久久久人妻精品一区果冻| 日本爱情动作片www.在线观看| 校园人妻丝袜中文字幕| 亚洲国产最新在线播放| 国产一级毛片在线| 岛国毛片在线播放| 精品一区二区免费观看| 中文字幕精品免费在线观看视频| 一级爰片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产一区亚洲一区在线观看| 成人漫画全彩无遮挡| 欧美日韩国产mv在线观看视频| 国产精品嫩草影院av在线观看| 国产在视频线精品| 欧美日韩视频高清一区二区三区二| 久久ye,这里只有精品| 欧美国产精品一级二级三级| 久久99热这里只频精品6学生| 嫩草影院入口| 中文乱码字字幕精品一区二区三区| 一区二区三区激情视频| 日韩中文字幕欧美一区二区 | 最新的欧美精品一区二区| 男女免费视频国产| 精品国产一区二区三区久久久樱花| av有码第一页| 美女高潮到喷水免费观看| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| a级毛片在线看网站| 天天操日日干夜夜撸| 亚洲精品aⅴ在线观看| 久久久久久久久久久久大奶| 这个男人来自地球电影免费观看 | 亚洲色图 男人天堂 中文字幕| 亚洲欧美成人综合另类久久久| 国产精品亚洲av一区麻豆 | 桃花免费在线播放| 亚洲综合色网址| 中国国产av一级| 精品第一国产精品| 啦啦啦在线免费观看视频4| 黄色怎么调成土黄色| 午夜福利视频精品| 国产精品久久久久成人av| 女性被躁到高潮视频| 狂野欧美激情性bbbbbb| 久久精品久久久久久久性| 午夜精品国产一区二区电影| 久久久国产欧美日韩av| 欧美精品一区二区大全| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 国产女主播在线喷水免费视频网站| 中文字幕色久视频| 亚洲欧美精品综合一区二区三区 | 日韩一卡2卡3卡4卡2021年| 一二三四中文在线观看免费高清| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 久久久久久免费高清国产稀缺| 国产成人一区二区在线| 日韩精品有码人妻一区| 欧美 亚洲 国产 日韩一| 久久久久久久亚洲中文字幕| 欧美xxⅹ黑人| 中文字幕人妻熟女乱码| 91aial.com中文字幕在线观看| 国产av一区二区精品久久| 永久网站在线| 哪个播放器可以免费观看大片| 在线观看三级黄色| 在线观看美女被高潮喷水网站| 国产精品嫩草影院av在线观看| 女的被弄到高潮叫床怎么办| 久久久久久人妻| 中文字幕人妻丝袜一区二区 | kizo精华| 丝袜美腿诱惑在线| 大香蕉久久成人网| 可以免费在线观看a视频的电影网站 | 久久久a久久爽久久v久久| 国产又色又爽无遮挡免| 夫妻性生交免费视频一级片| 国产一区二区三区av在线| 国产亚洲欧美精品永久| 国产视频首页在线观看| 亚洲欧美一区二区三区久久| 欧美日韩精品网址| 一边摸一边做爽爽视频免费| 日日啪夜夜爽| 国产成人午夜福利电影在线观看| 国产精品二区激情视频| 永久网站在线| 99热国产这里只有精品6| 国产激情久久老熟女| 91精品国产国语对白视频| 最近的中文字幕免费完整| 伊人久久国产一区二区| 日韩在线高清观看一区二区三区| 欧美激情高清一区二区三区 | 日韩精品有码人妻一区| 久久久久人妻精品一区果冻| 99九九在线精品视频| 国产精品久久久久久久久免| 啦啦啦在线观看免费高清www| 国产男人的电影天堂91| 综合色丁香网| 欧美国产精品va在线观看不卡| 欧美成人精品欧美一级黄| 亚洲三级黄色毛片| 欧美激情极品国产一区二区三区| 成年人免费黄色播放视频| 久久免费观看电影| 看非洲黑人一级黄片| 成人国语在线视频| 日日摸夜夜添夜夜爱| 一二三四在线观看免费中文在| 免费黄频网站在线观看国产| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| av在线老鸭窝| av视频免费观看在线观看| 老女人水多毛片| 看免费成人av毛片| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 欧美日韩视频高清一区二区三区二| 亚洲国产av新网站| 久久97久久精品| 午夜日韩欧美国产| 久久久久久人人人人人| 亚洲第一青青草原| 2022亚洲国产成人精品| 夫妻午夜视频| 亚洲国产色片| videos熟女内射| 国产精品一区二区在线观看99| 又大又黄又爽视频免费| 美女福利国产在线| 国产在线一区二区三区精| 国产成人精品在线电影| 久久久久精品久久久久真实原创| 国产精品女同一区二区软件| 99热全是精品| 成人午夜精彩视频在线观看| 91精品三级在线观看| 香蕉国产在线看| 亚洲情色 制服丝袜| av又黄又爽大尺度在线免费看| 欧美国产精品va在线观看不卡| 亚洲精品一区蜜桃| 精品酒店卫生间| 久久这里只有精品19| 热re99久久国产66热| 999久久久国产精品视频| 国产精品.久久久| 亚洲精品日韩在线中文字幕| 国产精品免费大片| 国产免费视频播放在线视频| 亚洲精品国产av蜜桃| 捣出白浆h1v1| 99热国产这里只有精品6| 国产免费视频播放在线视频| 老熟女久久久| 国产免费现黄频在线看| 久久精品久久久久久噜噜老黄| 亚洲 欧美一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 国产深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀 | 久久人人97超碰香蕉20202| 国产乱人偷精品视频| 人妻一区二区av| 看免费成人av毛片| 最近中文字幕2019免费版| 国产女主播在线喷水免费视频网站| 在线天堂最新版资源| 国产精品一区二区在线观看99| 日韩熟女老妇一区二区性免费视频| 午夜福利在线免费观看网站| 人人妻人人澡人人爽人人夜夜| 看十八女毛片水多多多| 亚洲经典国产精华液单| 女性生殖器流出的白浆| 99国产综合亚洲精品| 精品国产乱码久久久久久男人| 丝袜美腿诱惑在线| 国产成人精品无人区| 久久久亚洲精品成人影院| 大香蕉久久成人网| 黄片无遮挡物在线观看| 永久网站在线| 美女国产高潮福利片在线看| 夜夜骑夜夜射夜夜干| 国产片特级美女逼逼视频| 最近中文字幕高清免费大全6| 啦啦啦中文免费视频观看日本| 亚洲一区中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 日韩一区二区视频免费看| 人成视频在线观看免费观看| 亚洲国产欧美在线一区| 老司机影院成人| 国产又爽黄色视频| 午夜福利网站1000一区二区三区| 色吧在线观看| 亚洲欧美清纯卡通| 女人高潮潮喷娇喘18禁视频| videosex国产| av免费观看日本| 一区二区三区四区激情视频| 成年av动漫网址| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 欧美人与性动交α欧美软件| 国产在线视频一区二区| 搡老乐熟女国产| 少妇精品久久久久久久| 视频区图区小说| 9热在线视频观看99| 蜜桃在线观看..| 婷婷色综合大香蕉| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区| 日日撸夜夜添| 国产深夜福利视频在线观看| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| 成年美女黄网站色视频大全免费| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| 爱豆传媒免费全集在线观看| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 日韩欧美一区视频在线观看| xxx大片免费视频| 纯流量卡能插随身wifi吗| 麻豆av在线久日| 日韩欧美精品免费久久| 看十八女毛片水多多多| av国产精品久久久久影院| 两个人免费观看高清视频| 国产97色在线日韩免费| 99久久人妻综合| 大香蕉久久成人网| a级毛片黄视频| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 午夜免费观看性视频| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 亚洲成人av在线免费| 日本爱情动作片www.在线观看| 久热这里只有精品99| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕| 日韩 亚洲 欧美在线| 日本免费在线观看一区| 一本久久精品| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| a级片在线免费高清观看视频| av网站在线播放免费| 高清在线视频一区二区三区| 成人国产麻豆网| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 国产精品国产av在线观看| 日韩三级伦理在线观看| 欧美av亚洲av综合av国产av | av免费在线看不卡| 亚洲av在线观看美女高潮| 国产精品无大码| 免费黄色在线免费观看| 亚洲精品视频女| 超碰成人久久| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| www.熟女人妻精品国产| 精品99又大又爽又粗少妇毛片| 国产精品av久久久久免费| 午夜激情久久久久久久| 飞空精品影院首页| 免费女性裸体啪啪无遮挡网站| 一级毛片电影观看| 亚洲精品一区蜜桃| 男女边摸边吃奶| 午夜激情久久久久久久| 少妇熟女欧美另类| 熟女电影av网| 观看美女的网站| 丁香六月天网| 亚洲熟女精品中文字幕| 精品久久蜜臀av无| 国产精品蜜桃在线观看| 国产极品粉嫩免费观看在线| 国产精品嫩草影院av在线观看| 久久久久精品人妻al黑| 亚洲色图综合在线观看| 美女高潮到喷水免费观看| 最近中文字幕高清免费大全6| 国产成人一区二区在线| 看免费av毛片| 伦理电影大哥的女人| 国精品久久久久久国模美| 99国产精品免费福利视频| 人人澡人人妻人| 18禁国产床啪视频网站| 观看美女的网站| 高清视频免费观看一区二区| 精品少妇久久久久久888优播| 深夜精品福利| av国产精品久久久久影院| 91精品三级在线观看| 综合色丁香网| 欧美人与善性xxx| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀 | 亚洲男人天堂网一区| 最新中文字幕久久久久| 在现免费观看毛片| 黄片小视频在线播放| 日韩一卡2卡3卡4卡2021年| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 最新中文字幕久久久久| 女性被躁到高潮视频| 深夜精品福利| 七月丁香在线播放| 少妇人妻精品综合一区二区| 亚洲男人天堂网一区| 大码成人一级视频| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 中文欧美无线码| 99久国产av精品国产电影| 99国产精品免费福利视频| 男女高潮啪啪啪动态图| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 青草久久国产| 狠狠精品人妻久久久久久综合| 日韩中字成人| 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| 男人添女人高潮全过程视频| av一本久久久久| 欧美老熟妇乱子伦牲交| av国产精品久久久久影院| av有码第一页| 午夜福利影视在线免费观看| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 亚洲精品视频女| 青春草国产在线视频| 大香蕉久久成人网| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 乱人伦中国视频| 七月丁香在线播放| 国产精品香港三级国产av潘金莲 | 久久久久久伊人网av| 新久久久久国产一级毛片| 少妇的丰满在线观看| 久久狼人影院| 欧美精品av麻豆av| 十八禁网站网址无遮挡| 精品国产国语对白av| 国产精品av久久久久免费| 2021少妇久久久久久久久久久| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 精品第一国产精品| 亚洲中文av在线| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 亚洲国产色片| 在线观看免费日韩欧美大片| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 国产乱来视频区| 欧美黄色片欧美黄色片| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 久久国产精品男人的天堂亚洲| 婷婷色综合大香蕉| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 久久久久久久久免费视频了| 国产爽快片一区二区三区| 大香蕉久久成人网| 欧美日韩精品网址| 黄频高清免费视频| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 少妇的丰满在线观看| 久久精品国产鲁丝片午夜精品| 桃花免费在线播放| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 欧美成人精品欧美一级黄| 国产一区二区在线观看av| 国产日韩欧美在线精品| 中国国产av一级| 九草在线视频观看| 亚洲精品国产av成人精品| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 久久久久久伊人网av| 精品人妻一区二区三区麻豆| 亚洲成国产人片在线观看| 成年女人在线观看亚洲视频| 天美传媒精品一区二区| 精品国产露脸久久av麻豆| 国产亚洲欧美精品永久| 深夜精品福利| 丰满少妇做爰视频| a级毛片在线看网站| 婷婷色av中文字幕| 日本vs欧美在线观看视频| 国产精品香港三级国产av潘金莲 | 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 免费观看性生交大片5| 亚洲av电影在线进入| av卡一久久| 亚洲精品美女久久av网站| 高清不卡的av网站| 满18在线观看网站| 天堂俺去俺来也www色官网| 一区二区av电影网| 午夜福利乱码中文字幕| 一区二区三区四区激情视频| 制服丝袜香蕉在线| 日本欧美国产在线视频| 国产一区二区三区综合在线观看| 99久久精品国产国产毛片| 人妻一区二区av| 国产亚洲午夜精品一区二区久久| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 丝袜在线中文字幕| 黄片无遮挡物在线观看| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 成年动漫av网址| 欧美精品国产亚洲| 免费少妇av软件| 亚洲av男天堂| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 老熟女久久久| 国产麻豆69| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 国产乱人偷精品视频| 性少妇av在线| 在线观看人妻少妇| 七月丁香在线播放| 久久久国产欧美日韩av| 亚洲成国产人片在线观看| av在线老鸭窝| 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线黄色| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 丰满乱子伦码专区| 热99久久久久精品小说推荐| 国产片内射在线| kizo精华| 观看美女的网站| 你懂的网址亚洲精品在线观看| 人妻系列 视频| 国产精品偷伦视频观看了| 成人二区视频| 熟女av电影| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 国产一区二区三区av在线| 麻豆乱淫一区二区| 一级片免费观看大全| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 日韩中文字幕欧美一区二区 | 国产一级毛片在线| av福利片在线| 九九爱精品视频在线观看| 少妇人妻 视频| 久久精品国产鲁丝片午夜精品| 国产97色在线日韩免费| 久久国产精品男人的天堂亚洲| 色哟哟·www| 国产精品不卡视频一区二区| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 性高湖久久久久久久久免费观看| 好男人视频免费观看在线| 久久人妻熟女aⅴ| 9热在线视频观看99| 亚洲人成电影观看| 晚上一个人看的免费电影| 国产国语露脸激情在线看| 老女人水多毛片| 国产激情久久老熟女| 久久精品国产亚洲av涩爱| 中文乱码字字幕精品一区二区三区| 欧美日韩一级在线毛片| 久久精品aⅴ一区二区三区四区 | 国产探花极品一区二区| 亚洲国产色片| 久久这里只有精品19| 亚洲精品一二三| 天天躁日日躁夜夜躁夜夜| 免费高清在线观看视频在线观看| 欧美av亚洲av综合av国产av | 国产爽快片一区二区三区| 欧美少妇被猛烈插入视频| 亚洲成人av在线免费| 亚洲精品在线美女| 午夜激情久久久久久久| 国产免费现黄频在线看| 三级国产精品片| 成人国语在线视频| 国产探花极品一区二区| 丝袜脚勾引网站| 国产麻豆69| 午夜福利,免费看| 老司机影院成人| 亚洲av成人精品一二三区| 国产不卡av网站在线观看| 欧美人与性动交α欧美软件| 成人手机av| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产一区二区精华液| 伦理电影大哥的女人| 韩国av在线不卡| 大码成人一级视频| 日韩熟女老妇一区二区性免费视频| 99热全是精品| 久久久久视频综合| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 日日撸夜夜添| 不卡视频在线观看欧美| 777久久人妻少妇嫩草av网站| 精品久久久久久电影网| 亚洲成av片中文字幕在线观看 | 欧美日韩一区二区视频在线观看视频在线| 黄色 视频免费看| 夫妻午夜视频| 日本免费在线观看一区| 纯流量卡能插随身wifi吗| 久久ye,这里只有精品| 久久人妻熟女aⅴ| 自线自在国产av| 久久综合国产亚洲精品| 亚洲中文av在线| 热99国产精品久久久久久7| 新久久久久国产一级毛片| 日本色播在线视频| 韩国精品一区二区三区| 又粗又硬又长又爽又黄的视频| 国产在线视频一区二区|