• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes*

    2013-07-31 22:44:06XUFeng許鋒WANGYeye汪曄曄andLUOXionglin羅雄麟

    XU Feng (許鋒), WANG Yeye (汪曄曄) and LUO Xionglin (羅雄麟)**

    Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes*

    XU Feng (許鋒), WANG Yeye (汪曄曄) and LUO Xionglin (羅雄麟)**

    Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    Chemical processes are usually nonlinear singular systems. In this study, a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes, which are augmented as state variables. Based on the observability of the singular system, this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When the observability is satisfied, the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer. The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation. With the catalyst circulation rate as the only unknown input without model error, one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate. However, when uncertain model parameters also exist, additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.

    soft sensor, state observer, nonlinear singular system, unknown inputs, uncertain model parameters, riser reactor of fluid catalytic cracking unit

    1INTRODUCTION

    In chemical processes, the operation and control depend on many key input variables that are difficult to measure in real-time with current process instruments. Soft sensor is an effective method for real-time measurement of unmeasurable variables and gradually receives more attention.

    At present, the research on soft sensor is mainly on the modeling of soft sensor, establishing mathematical relation between the primary variables unmeasurable and the secondary variables easy to be measured. The modeling of soft sensor includes the extended Kalman filter [1], the high-gain observer [2], the artificial neural network [3], the hybrid fuzzy c-means algorithm and support vector machine [4], the independent component analysis and partial least squares [5], and the relevance vector machine [6]. The multiple model method [7, 8] and local learning adaptive model [9] are also used in the modeling of soft sensor. Because of the complexity and uncertainty of chemical processes, errors are inevitably present. Many input variables are unmeasurable and model parameters are uncertain in chemical processes, so the soft sensor for unknown inputs and uncertain model parameters can be corrected only on-line by secondary variables easy to be measured. The form of soft sensor using output correction of secondary variables will be similar to state observer. When the unknown inputs [10-13] and the uncertain model parameters [14, 15] are augmented as state variables, the soft sensor based on state observer could be built to estimate the unknown inputs and correct the uncertain model parameters online.

    The first-principle models of chemical processes are composed of both algebraic and differential equations (DAE), which are called singular systems. Mass and energy balance equations are differential equations, while the equations for mass and energy transfer rate, chemical reaction rate, and thermodynamic state are algebraic equations. In some chemical processes, such as in a riser reactor of fluid catalytic cracking unit (FCCU), the dynamic response of component mass percents is much faster than that of temperature. Hence, the former can be assumed as a quasi-steady state, and mass balance equations become algebraic equations to form another singular system. In the past two decades, singular systems have been widely studied, including stability and Lyapunov theorem [16], poles assignment [17], state feedback stabilization [18], impulse analysis [19], observability and controllability [20-22], most of which focus on linear singular systems or a specific class of nonlinear singular systems. To build the soft sensor for unknown inputs and uncertain model parameters, the nonlinear singular state observer must be used.

    State observer for nonlinear singular systems is important in the singular system control theory. The study on the state observer of a linear singular system is mainly focused on the Luenberger observer [23-25] and has been studied intensively. However, state observer for nonlinear singular systems is much more complicated. Zimmer and Meier [26] studied the problem of observing the state of continuous nonlinear descriptor systems in quasilinear form and presented a method to construct a state observer. Lan et al. [27] presented the state observer for bilinear descriptor systems by poles assignment method and the observeerror was Lyapunov asymptotically stable. For a class of Lipschitz nonlinear singular systems, Lu and Ho [28] constructed both types of full-order and reduced-order observers by a unified linear matrix inequality approach. Darouach and Boutat-Baddas gave the sufficient conditions for the existence of observers using linear matrix inequalities formulation [29] and the H∞observers for Lipschitz nonlinear singular systems [30]. Xu et al. [31] transformed a singular system to a normal system after the linearization of nonlinear singular system at current operating point and designed the state observer according to normal system. In this study, we directly design the singular state observer according to singular system. Using the method of adaptive observer [32, 33], the output feedback matrix of state observer is obtained online through poles assignment of the linear parameter-varying singular system at current operating point of the nonlinear singular system.

    When unknown inputs and uncertain model parameters are augmented as state variables, state observation will become more difficult as the system dimension increases. Waldraff et al. [34] and Vanden-Berg et al. [35] used the observability matrix of linearized systems to analyse system observability and modified sensor placement.

    The present paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When observability is satisfied, a soft sensor using augmented nonlinear singular state observer is designed for unknown inputs and uncertain model parameters.

    2AUGMENTATIONS OF UNKNOWN INPUTS AND UNCERTAIN MODEL PARAMETERS

    In the nonlinear singular system given by

    x∈Rnis the state, y∈Rlis the measured output, u∈Rm0is the known control input, v∈Rm1is the unknown input, p∈Rm2is the uncertain model parameter, and f(?) is the n-dimensional mapping function of the state and is assumed to be smooth. The matrix E∈Rn×nmay be singular, and rank(E)=q<n.

    In general real processes, E=diag(Iq,0), and a more practical form is given by

    where x1∈Rqis the differential vector and x2∈Rn?qis the algebraic vector.

    Chemical processes usually belong to an indexone singular system, which implies that

    To be observed, the unknown input v needs to be augmented as state variables. As Besancon [36] reported, the estimation accuracy of an augmented state observer is independent of the dimension of augmented state variables. Thus the dynamic model of augmented unknown input v is

    with the initial value v(t0)=v0.

    As the uncertain model parameter is constant, it is augmented as a state variable of one dimension and the dynamic model is

    with the initial value p(t0)=p0.

    After the unknown inputs and uncertain parameters are augmented as state variables, the augmented system becomes

    The linearized form of the augmented system in Eq. (5) is

    3OBSERVABILITY CRITERION FOR UNKNOWN INPUTS AND UNCERTAIN MODEL PARAMETERS

    Based on the observability criterion of singular systems, a simplified observability criterion under certain conditions is presented for unknown inputs anduncertain model parameters.

    Lemma 1[37]The linear singular system (E, A, C) is observable, if and only if

    Theorem 1With the assumption that the original system in Eq. (1) is observable at the current operating point, the augmented system in Eq. (5), in which unknown inputs and uncertain model parameters are augmented as state variables, is locally observable at an operating point, if and only if

    ProofThe augmented system in Eq. (5) is locally observable at an operating point, if and only if its linearized system ( Ee,Ae,Ce) is observable, such that

    As the original system in Eq. (1) is observable at the current operating point, its linearized system is also observable. Hence, Eq. (11) is obviously satisfied, and Eq. (10) is satisfied, if and only if

    This completes the proof.

    The necessary observability conditions for unknown inputs and uncertain model parameters can be further deduced fromTheorem 1.

    CorollaryThe necessary observability conditions of the augmented system in Eq. (5), in which unknown inputs and uncertain model parameters are augmented as state variables, are

    TheCorollarymeans that the augmented system in Eq. (5) will not be observable if the dimension of the unknown inputs plus the dimension of uncertain model parameters m1+m2is larger than the dimension of measured outputs l.

    4SOFT SENSOR USING AUGMENTED NONLINEAR SINGULAR STATE OBSERVER

    For the augmented system in Eq. (5), a singular state observer exists as

    Based on the singular state observer in Eq. (12), a soft sensor is built to estimate the unknown inputs and uncertain model parameters.

    where0y is the output of soft sensor,, and

    If e=xe?x?eis the estimation error of real states and estimated states, e satisfies the following error equation of the state observer:

    Equation (14) shows that an equilibrium point at e=0 exists. If the error equation in Eq. (14) is locally and asymptotically stable at its equilibrium point e=0, the nonlinear singular state observer in Eq. (12) will be convergent.

    The linearized form of the error equation in Eq. (14) at e=0 is

    Lemma 2[37]If (E, A, C) is observable, a matrix L always exists, which makes the poles set of (E, A?LC)equal any set Λ of q conjugated complex numbers [i.e., σ(E,A?LC)=Λ].

    Theorem 2x=0 is an equilibrium point for the nonlinear singular system Ex˙=f(x) andwhere f:D→Rnis continuously differentiable, and D is the neighbourhood near the origin. If (E, A) is stable and impulse-free, the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    ProofSee Appendix.

    Theorem 2extends the theory of Lyapunov linearization and stability from a normal system to a singular system. On the basis ofTheorem 2, the following theorem is proposed for the design of a nonlinear singular state observer.

    Theorem 3For the nonlinear singular systemif its linearized system (E, A, C) at the operating point is observable, an asymptotically stable singular state observermust exist.

    ProofThe error equation of the singular state observer is

    Its linearized form at equilibrium point 0=e is

    FromLemma 2, if (E, A, C) is observable, (E, A?LC) can be made stable and impulse-free by choosing L to assign the poles of (E, A?LC) arbitrarily.

    FromTheorem 2, if (E, A?LC) is stable and impulse-free, the error equation of the singular state observer is locally and asymptotically stable at 0=e. The singular state observer will be convergent.

    This procedure completes the proof.

    Hence, if the linearized augmented system (Ee, Ae, Ce) is observable, a singular state observer must exist.

    Obviously, the linearized systemic matrix Aeof the augmented system changes with the operating point of the real process, so the feedback gain matrix L of the singular state observer should be adjusted online accordingly to assign the dynamic poles of (Ee, Ae?LCe) at the appropriate location. Therefore, at each sampling time, the feedback gain matrix L should be refreshed to accommodate the operating point changes through online poles assignment of the linearized system.

    The implementation steps for calculating the feedback gain matrix L are as follows.

    (1) Linearize the augmented nonlinear singular system in Eq. (5) at the operating point to obtain (Ee, Ae, Ce). As Eq. (5) is the index-one singular system, (Ee, Ae, Ce) is the second equivalent form of the singular system [37].

    wheree,22A is non-singular,

    (3) Non-singular matrices Q and P exist.

    The system is thus transformed into the first equivalent form of the singular system [37].

    (4) As (Ee,Ae,Ce) is observable,is controllable and the slow subsystem (A1,B1) is also controllable. On the basis of the state feedback stabilisation controller design method of the normal system,can be found to assign the poles of (A1?B1K1) at the appropriate locations. Thenmakesfor the designed poles assignments.

    (5) With L=KTas the feedback gain matrix of the state observer,

    When the state observer is running, changing the feedback gain matrix L is not continuous but discrete. During each sampling period, the feedback gain matrix L remains unchanged, and the state observer will run for a sampling period. After the sampling period is finished, the feedback gain matrix L will be calculated following Steps (1) to (5), and running the next sampling period will begin. For the convergence of numerical simulation, the sampling period h and the poles need to assign λj, j=1,2,…,m1+m2+q which should satisfy the condition

    5CASE STUDY

    The dynamic model [38] of the riser reactor of FCCU (fluid catalytic cracking unit) is given by

    The dynamic model can be rewritten as

    The riser reactor of FCCU is a typical index-one nonlinear singular system. The catalyst circulation rate GCis the main unknown input. The pre-exponential factor of reaction rate constant of crude oil kA0is always influenced by oil material properties and needs to be modified by real process data, which is considered as the main uncertain model parameter. N is the number of FCCU riser segments, and 4N= here.

    Firstly, the dynamic model of the FCCU riser reactor is assumed to be accurate without uncertain model parameters, and only GCis unknown. GCis thus augmented as one state variable. Only one temperature sensor is present at the outlet of the FCCU riser, that is

    The dimension of the unknown inputs is equal to the dimension of the measurable output, which satisfies the necessary observability condition of theCorollary. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is also satisfied.

    The soft sensor using augmented singular state observer is designed to estimate GC. To examine how the assigned poles of state observer to influence the observation results, we take two set of assigned poles of state observer into account, with the first poles set of [?0.68, ?0.68, ?0.68, ?0.68, ?0.68] and the second poles set of [?0.4, ?0.4, ?0.4, ?0.4, ?0.4]. To study the influence of signal forms of the unknown input, we consider GCof a square signal or a sinusoidal signal. Fig. 1 (a) shows the curves of the real values and estimated values of GCwhen the unknown input is a square signal, while Fig. 1 (b) shows those when the unknown input is a sinusoidal signal. The estimated values of GCare convergent to the real values. When the assigned poles of state observer are more negative, the convergence rate of state observer is quicker.

    To investigate the adaptive capacity for stochastic noise, we add the normally distributed stochastic noise on the signal of the unknown input. Fig. 2 shows the curves of the real values and estimated values of GCwith two poles set for the unknown input of a square signal or a sinusoidal signal with stochastic noise added. The simulation indicates that the impact of stochastic noise is very limited and the state observer with more negative assigned poles is also of the faster convergence rate even under the condition of stochastic noise.

    Table 1 shows the mean errors of GCduring the whole dynamic processes of state observer. The mean error with noise is slightly larger than that without noise and the more negative assigned poles gives less mean error.

    Figure 1Catalyst circulation rate for unknown input without noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Figure 2Catalyst circulation rate for unknown input with noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Table 1The mean errors of the catalyst circulation rate/kg·s?1

    Secondly, both unknown input and uncertain model parameter exist in the dynamic model of the FCCU riser reactor, where GCis the unknown input and kA0is the uncertain model parameter. If only one temperature sensor is present at the outlet of the FCCU riser as before, that is C1=[000 1], the dimension of the unknown input plus the dimension of the uncertain model parameter is 2, which is larger than that of measured outputs for the only one temperature sensor at the outlet of the FCCU riser. It will not satisfy the necessary observability conditions of theCorollary. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is not satisfied either.

    More measure points should be added. If one temperature sensor is placed in the middle of the riser reactor and another is at the outlet, the dimension of the measured outputs becomes 2, that is

    The dimension of the unknown input plus the dimension of the uncertain model parameter is equal to that of measured outputs. The necessary observability condition of theCorollaryis satisfied. At the same time, n=7×N=28, m1=1, m2=1, and

    soTheorem 1is satisfied.

    The soft sensor using augmented singular state observer is designed to estimate both unknown input and uncertain model parameter with the temperature sensor in the middle of the riser reactor added. To study the impact of the assigned poles of state observer, we also consider two set of assigned poles of state observer, the first poles set is [?0.7, ?0.7, ?0.7,?0.7, ?0.1, ?0.1] and the second set is [?0.5, ?0.5,?0.5, ?0.5, ?0.05, ?0.05]. To study the influence of signal forms of the unknown input, we also consider GCof a square signal or a sinusoidal signal. Fig. 3 shows the curves of the real values and estimated values of GCand Fig. 4 shows the curves of kA0. Theestimated values of GCare convergent to the real values, and even if an initial estimation error is encountered for kA0, the estimated value converges to the real value through the online modification of the state observer when it is augmented as a state variable. The assigned poles of state observer are relevant to the convergence rate of state observer. The more negative the assigned poles, the faster the convergence rate.

    Figure 3Catalyst circulation rate for unknown input and uncertain model parameter without noise real value; estimated value of the first poles set; estimated value of the second poles set

    Figure 4Reaction rate constant pre-exponential factor of crude oil without noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Figure 5Catalyst circulation rate for unknown input and uncertain model parameter with noise real value; estimated value of the first poles set; estimated value of the second poles set

    With both the unknown input and uncertain model parameter, we add the normally distributed stochastic noise on the signal of the unknown input. Fig. 5 shows the curves of the real values and estimated values of GCwith stochastic noise and Fig. 6 shows the curves of kA0. The estimated values of GCand kA0converge to the real values and the state observer with more negative assigned poles has faster convergence rate even under the influence of stochastic noise.

    Figure 6Reaction rate constant pre-exponential factor of crude oil with noisereal value; estimated value of the first poles set; estimated value of the second poles set

    Table 2The mean errors of the catalyst circulation rate/kg·s?1

    Table 3The mean errors of the reaction rate constant pre-exponential factor/10?3Pa?1·s?1

    Tables 2 and 3 show the mean errors of GCand kA0in the whole dynamic process of state observer. The mean error with noise is very close to the mean error without noise and the more negative assigned poles also give less mean error. The modified model parameter is used for the online calculation of the state observer, effectively improving the robustness of the soft sensor.

    6CONCLUSIONS

    For the nonlinear singular system in chemical processes, the unknown inputs and uncertain model parameters are augmented as state variables. On the basis of the observability of the singular system, a simplified observability criterion under certain conditions is presented for unknown input and uncertain model parameters. The augmented system will not be observable if the dimension of the unknown input plus the dimension of the uncertain model parameters is larger than the dimension of the measured output.

    When the observability is satisfied, a soft sensor using augmented nonlinear singular state observer is used to estimate the unknown inputs and uncertain model parameters. For the FCCU riser reactor, with only the catalyst circulation rate unknown and no uncertain model parameter, only one temperature sensor at the riser outlet can ensure that the catalyst circulation rate is correctly estimated by soft sensor. When an unknown input and an uncertain model parameter exist, however, another temperature sensor should be added to satisfy the necessary observability condition. Then the catalyst circulation rate and the uncertain model parameter can be estimated correctly by soft sensor.

    NOMENCLATURE

    A systemic matrix of singular system

    B input matrix of singular system

    C output matrix of singular system

    Cracoke mass percentage of catalyst in riser, %

    E singular matrix

    EA, Eφreaction activation energy of oil cracking and catalyst deactivation, kJ·kmol?1

    e observation error

    F unknown input matrix of singular system

    FOflow rate of crude oil, kg·s?1

    f state equation

    G uncertain parameter matrix of singular system

    GCcatalyst circulation rate, kg·s?1

    ΔHAAcoke adsorption heat, kJ·kg?1

    ΔHAR, ΔHDR, ΔHNRcracking reaction heat of crude oil, diesel and gasoline, kJ·kg?1

    h output equation

    K state feedback gain matrix

    kA0, kD0, kN0pre-exponential factor of reaction rate constant of crude oil, diesel and gasoline, Pa?1·s?1

    kφ0pre-exponential factor of reaction rate constant of catalyst deactivation, Pa?1

    L output feedback matrix of state observer

    l dimension of outputs

    m dimension of inputs

    N number of riser segments

    n dimension of states

    P, Q equivalent transform matrix

    p uncertain model parameter

    prapressure of riser reactor, Pa

    q rank of singular matrix

    R gas constant, 8.314 kJ·kmol?1·K?1

    STreaction time, s

    Tratemperature of riser reactor, K

    u known control input

    v unknown input

    x state of singular system

    y measurable output

    yA, yD, yN, yGunconverted oil rate, diesel yield, gasoline yield, gas yield, % (by mass)

    y0unmeasurable output

    Γ correction coefficient of heat capacity for tube

    Λ correction coefficient of heat capacity for oil

    υAD, υAN, υAG, υACstoichiometric coefficient of oil-diesel reaction, oilgasoline reaction, oil-gas reaction, oil-coke reaction

    υDN, υDG, υDC, υNGstoichiometric coefficient of diesel-gasoline reaction, diesel-gas reaction, diesel-coke reaction, gasoline-gas reaction

    ? activity of catalyst, %

    Superscripts

    — the first equivalent form

    ~ the second equivalent form

    ^ estimated value

    · derivative of time

    Subscripts

    e augmented system

    0 primary variables

    1 differential

    2 algebraic

    REFERENCES

    1 Prasad, V., Schley, M., Russo, L. P., Bequette, B. W., “Product property and production rate control of styrene polymerization”, Journal of Process Control,12(3), 353-372 (2002).

    2 Bakir, T., Othman, S., Fevotte, G.., Hammouri, H., “Nonlinear observer of crystal-size distribution during batch crystallization”, AIChE Journal,52(6), 2188-2197 (2006).

    3 Gonzaga, J.C.B., Meleiro, L.A.C., Kiang, C., Maciel, F.R.,“ANN-based soft-sensor for real-time process monitoring and control of anindustrial polymerization process”, Computers and Chemical Engineering,33(1), 43-49 (2009).

    4 Fu, Y., Su, H., Zhang, Y., Chu, J., “Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process”, Chin. J. Chem. Eng.,16(5), 746-751 (2008).

    5 Kaneko, H., Arakawa, M., Funatsu, K., “Development of a new soft sensor method using independent component analysis and partial least squares”, AIChE Journal,55(1), 87-98 (2009).

    6 Ge, Z., Song, Z., “Nonlinear soft sensor development based on relevance vector machine”, Industrial & Engineering Chemistry Research,49(18), 8685-8693 (2010).

    7 Pan, T.H., Wong, D.S.H., Jang, S.S., “Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach”, Industrial & Engineering Chemistry Research,49(10), 4738-4747 (2010).

    8 Li, X., Su, H., Chu, J., “Multiple model soft sensor based on affinity propagation, gaussian process and Bayesian committee machine”, Chin. J. Chem. Eng.,17(1), 95-99 (2009).

    9 Kadlec, P., Gabrys, B., “Local learning-based adaptive soft sensor for catalyst activation prediction”, AIChE Journal,57(5), 1288-1301 (2011).

    10 Floquet, T., Barbot, J. P., “State and unknown input estimation for linear discrete-time systems”, Automatica,42(11), 1883-1889 (2006).

    11 Jiang, Q., Cao, Z., Chen, Z., “Online observation for unmeasurable inputs in FCCU riser”, Journal of Chemical Industry and Engineering,54(2), 204-208 (2003). (in Chinese)

    12 Kravaris, C., Sotiropoulos, V., Georgiou, C., “Nonlinear observer design for state and disturbance estimation”, Systems & Control Letters,56(11-12), 730-735 (2007).

    13 Ha, Q.P., Trinh, H., “State and input simultaneous estimation for a class of nonlinear systems”, Automatica,40(10), 1779-1785 (2004).

    14 Dochain, D., “State and parameter estimation in chemical and biochemical processes: A tutorial”, Journal of Process Control,13(8), 801-818 (2003).

    15 Keesman, K.J., “State and parameter estimation in biotechnical batch reactors”, Control Engineering Practice,10(2), 219-225 (2002).

    16 Ishihara, J.Y., Terra, M.H., “On the Lyapunov Theorem for singular systems”, IEEE Transactions on Automatic Control,47(11), 1926-1930 (2002).

    17 Yu, R., Wang, D., “Structural properties and poles assignability of LTI singular systems under output feedback”, Automatica,39(4), 685-692 (2003).

    18 Xia, Y., Boukas, E.K., Shi, P., Zhang, J., “Stability and stabilization of continuous-time singular hybrid systems”, Automatica,45(6), 1504-1509 (2009).

    19 Yan, Z., Duan, G., “Impulse analysis of linear time-varying singular systems”, IEEE Transactions on Automatic Control,51(12), 1975-1979 (2006).

    20 Ishihara, J.Y., Terra, M.H., “Impulse controllability and observability of rectangular descriptor systems”, IEEE Transactions on Automatic Control,46(6), 991-994 (2001).

    21 Wang, C.J., Liao, H.E., “Impulse observability and impulse controllability of linear time-varying singular systems”, Automatica,37(11), 1867-1872 (2001).

    22 Reis, T., “Controllability and observability of infinite-dimensional descriptor systems”, IEE E Transactions on Automatic Control,53(4), 929-940 (2008).

    23 Hou, M., Muller, P. C., “Observer design for descriptor systems”, IEEE Transactions on Automatic Control,44(1), 164-168 (1999).

    24 Wang, W., Zou, Y., “Analysis of impulsive modes and Luenberger observers for descriptor systems”, Systems & Control Letters,44(5), 347-353 (2001).

    25 Wang, Z., Shen, Y., Zhang, X., Wang, Q., “Observer design for discrete-time descriptor systems: An LMI approach”, Systems & Control Letters,61(6), 683-687 (2012).

    26 Zimmer, G., Meier, J., “On observing nonlinear descriptor systems”, Systems & Control Letters,32(1), 43-48 (1997).

    27 Lan, Q., Liang, J., Guo, W., “Design of state observer for generalized bilinear systems”, Systems Engineering and Electronics,29(7), 1144-1148 (2007). (in Chinese).

    28 Lu, G., Ho, D. W. C., “Full-order and reduced-order observers for Lipschitz descriptor systems: The unified LMI approach”, IEEE Transactions on Automatic Control,53(7), 563-567 (2006).

    29 Darouach, M., Boutat-Baddas, L., “Observers for a class of nonlinear singular systems”, IEEE Transactions on Automatic Control,53(11), 2627-2633 (2008).

    30 Darouach, M., Boutat-Baddas, L., Zerrougui, M., “H∞ observers design for a class of nonlinear singular systems”, Automatica,47(11), 2517-2525 (2011).

    31 Xu, F., Guan, J., Luo, X., “On-line estimation of FCCU riser unmeasurable variables based on state observer”, CIESC Journal,62(10), 2828-2838 (2011). (in Chinese).

    32 Liu, Y., “Robust adaptive observer for nonlinear systems with unmodeled dynamics”, Automatica,45(8), 1891-1895 (2009).

    33 Xu, F., Guan, J., Luo, X., “Adaptive state observer design of nonlinear differential-algebraic systems”, Systems Engineering and Electronics,32(11), 2442-2446 (2010). (in Chinese)

    34 Waldraff, W., Dochain, D., Bourrel, S., “On the use of observability measures for sensor location in tubular reactor”, Journal of Process Control,8(5-6), 497-505 (1998).

    35 VandenBerg, F.W.J., Hoefsloot, H.C.J., Boelens, H.F.M., “Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria”, Chemical Engineering Science,55(4), 827-837(2000).

    36 Besancon, G., “Remarks on nonlinear adaptive observer design”, Systems & Control Letters,41(4), 271-280 (2000).

    37 Yang, D., Zhang, Q., Yao, B., Singular System, Science Press, Beijing (2004). (in Chinese)

    38 Luo, X., Yuan, P., Lin, S., “Dynamic model of fluid catalytic cracking unit (I) Reactor section”, Acta Petrolei S inica (Petroleum Processing Section),14(1), 34-40 (1998). (in Chinese)

    APPENDIX

    Proof of Theorem 2

    Consider a linear singular system described by

    where E∈Rn×nis singular, and rank(E)=q<n. r=degdet(sE ?A) is assumed, and obviously, r≤q<n. (E, A) is said to be impulse-free if (E, A) is regular and r=q.

    Lemma 3[37](E, A) is stable and impulse-free if and only if a matrix Y exists, such that

    Theorem 20=x is assumed to be an equilibrium point for the nonlinear singular system ()=˙ Exf x andwhere f:D→Rnis continuously differentiable, and D is the neighbourhood near the origin. If (E, A) is stable and impulse-free, the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    ProofThe origin x=0 is an equilibrium point for the nonlinear singular system [i.e., f(0)=0]. The nonlinear system is linearized near the origin

    As (E, A) is stable and impulse-free, V(x)=xTETYx is used as the Lyapunov function for the nonlinear singular system. The derivative of V(x) of the system is given by

    FromLemma 3, 0>W(wǎng) can be derived. Thus, the first term on the right of the equation is negative.

    Due to the continuous function, g(x) satisfies

    Therefore, for any 0γ>, an 0r> exists, such that

    Hence,

    whereλmin(?) is the minimum eigenvalue of a matrix.

    As W is symmetric and positive definite, λmin(W) is real and positive., which ensures that V˙ is negative definite. Thus the nonlinear singular system Ex˙=f(x) is asymptotically stable near the origin.

    This procedure completes the proof.

    10.1016/S1004-9541(13)60570-4

    2012-08-28, accepted 2013-01-10.

    * Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).

    ** To whom correspondence should be addressed. E-mail: luoxionglin@gmail.com

    亚洲成人免费av在线播放| 欧美丝袜亚洲另类 | 一二三四社区在线视频社区8| 18禁美女被吸乳视频| bbb黄色大片| 高清在线国产一区| 国产亚洲精品一区二区www | 国产极品粉嫩免费观看在线| 免费观看精品视频网站| 亚洲精品国产区一区二| 亚洲成av片中文字幕在线观看| 天天操日日干夜夜撸| 亚洲人成电影免费在线| 91老司机精品| 在线观看66精品国产| 久久久国产欧美日韩av| 日韩欧美免费精品| 国产区一区二久久| 国产成人免费无遮挡视频| 精品一区二区三区视频在线观看免费 | 日本黄色视频三级网站网址 | 黑人欧美特级aaaaaa片| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| 精品国产乱码久久久久久男人| 无人区码免费观看不卡| 色播在线永久视频| 动漫黄色视频在线观看| 十八禁网站免费在线| 91国产中文字幕| 亚洲欧洲精品一区二区精品久久久| 色婷婷久久久亚洲欧美| 麻豆乱淫一区二区| 欧美+亚洲+日韩+国产| 久久99一区二区三区| 久久久久久久精品吃奶| 日韩人妻精品一区2区三区| 女警被强在线播放| 男女高潮啪啪啪动态图| 国产精品.久久久| 亚洲精品美女久久久久99蜜臀| 国产精品二区激情视频| 国产免费现黄频在线看| 天堂中文最新版在线下载| 国产色视频综合| 99久久精品国产亚洲精品| 午夜老司机福利片| 色婷婷av一区二区三区视频| 欧美成人免费av一区二区三区 | 热re99久久国产66热| 超碰成人久久| av国产精品久久久久影院| 首页视频小说图片口味搜索| 丁香六月欧美| 日韩免费高清中文字幕av| 亚洲国产精品合色在线| 麻豆成人av在线观看| www.自偷自拍.com| 午夜免费成人在线视频| 国产无遮挡羞羞视频在线观看| 女人被躁到高潮嗷嗷叫费观| 久久中文看片网| 国产精品自产拍在线观看55亚洲 | 欧美日韩精品网址| 欧美日韩黄片免| 两个人免费观看高清视频| 国产亚洲精品久久久久5区| 色94色欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 精品午夜福利视频在线观看一区| 国产精品美女特级片免费视频播放器 | 女人精品久久久久毛片| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 久久久久国产精品人妻aⅴ院 | 免费观看a级毛片全部| 99久久精品国产亚洲精品| 免费久久久久久久精品成人欧美视频| 精品国内亚洲2022精品成人 | 五月开心婷婷网| 国产av又大| 精品国产乱子伦一区二区三区| 亚洲精品国产区一区二| 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| 国产免费男女视频| 热99久久久久精品小说推荐| 一区在线观看完整版| xxx96com| 美女视频免费永久观看网站| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 中文字幕精品免费在线观看视频| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放 | 日韩免费av在线播放| 五月开心婷婷网| 久久这里只有精品19| av电影中文网址| 国产精品久久久av美女十八| 又大又爽又粗| 制服人妻中文乱码| 伊人久久大香线蕉亚洲五| 大型av网站在线播放| 精品无人区乱码1区二区| 久久国产亚洲av麻豆专区| 精品电影一区二区在线| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 色婷婷久久久亚洲欧美| 久热这里只有精品99| 亚洲五月婷婷丁香| 咕卡用的链子| 久热这里只有精品99| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 一区二区三区激情视频| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 国产免费男女视频| 欧美激情 高清一区二区三区| 制服诱惑二区| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 后天国语完整版免费观看| 窝窝影院91人妻| 91字幕亚洲| 国产成人精品在线电影| 午夜久久久在线观看| 一二三四在线观看免费中文在| 欧美午夜高清在线| 精品一区二区三区四区五区乱码| 色老头精品视频在线观看| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 国产成人av教育| 9191精品国产免费久久| 999久久久国产精品视频| 国产精品自产拍在线观看55亚洲 | 午夜福利,免费看| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区 | 国产精品偷伦视频观看了| 人妻丰满熟妇av一区二区三区 | 亚洲色图 男人天堂 中文字幕| 日日爽夜夜爽网站| 欧美在线黄色| 在线观看免费日韩欧美大片| 亚洲成人手机| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 满18在线观看网站| 99精品在免费线老司机午夜| 国产淫语在线视频| 无人区码免费观看不卡| 激情在线观看视频在线高清 | 热re99久久国产66热| tube8黄色片| 母亲3免费完整高清在线观看| 丰满迷人的少妇在线观看| 国产高清视频在线播放一区| 黄色视频,在线免费观看| 成年女人毛片免费观看观看9 | 亚洲av日韩在线播放| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 99在线人妻在线中文字幕 | 久久精品国产亚洲av香蕉五月 | tube8黄色片| av超薄肉色丝袜交足视频| 校园春色视频在线观看| 丝袜在线中文字幕| 亚洲黑人精品在线| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 最新的欧美精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 欧美亚洲日本最大视频资源| 交换朋友夫妻互换小说| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 欧美人与性动交α欧美软件| 成年人免费黄色播放视频| 女人被狂操c到高潮| 亚洲欧美精品综合一区二区三区| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说 | 最近最新免费中文字幕在线| netflix在线观看网站| 国产又色又爽无遮挡免费看| 黄色片一级片一级黄色片| av不卡在线播放| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 下体分泌物呈黄色| 久久国产精品大桥未久av| 亚洲综合色网址| 精品国产超薄肉色丝袜足j| 亚洲精品粉嫩美女一区| 欧美一级毛片孕妇| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 老熟女久久久| 丝袜人妻中文字幕| 一本综合久久免费| 老汉色av国产亚洲站长工具| 亚洲综合色网址| 999精品在线视频| 俄罗斯特黄特色一大片| 久久人妻av系列| 亚洲 国产 在线| 亚洲一码二码三码区别大吗| 美女福利国产在线| 国产免费av片在线观看野外av| 欧美色视频一区免费| 美国免费a级毛片| 日韩欧美一区二区三区在线观看 | 久久久精品区二区三区| 狠狠狠狠99中文字幕| 精品少妇久久久久久888优播| 亚洲美女黄片视频| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲| 视频区欧美日本亚洲| 美女扒开内裤让男人捅视频| 亚洲伊人色综图| 大香蕉久久成人网| 又黄又爽又免费观看的视频| 成在线人永久免费视频| 人妻丰满熟妇av一区二区三区 | 美女 人体艺术 gogo| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 国产av一区二区精品久久| 欧美在线一区亚洲| 国产精品久久久久成人av| 亚洲av成人av| xxx96com| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 国产精品.久久久| av天堂久久9| 免费看a级黄色片| 18禁裸乳无遮挡免费网站照片 | 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 欧美在线黄色| 女人精品久久久久毛片| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 精品久久久精品久久久| 国产精品.久久久| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区蜜桃| av超薄肉色丝袜交足视频| 精品国产国语对白av| 一进一出好大好爽视频| 大片电影免费在线观看免费| 精品人妻1区二区| 国产精华一区二区三区| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 中文字幕制服av| av超薄肉色丝袜交足视频| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 日本精品一区二区三区蜜桃| 国产精品 欧美亚洲| 亚洲精品在线观看二区| 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| 一夜夜www| 丝袜美足系列| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 免费观看a级毛片全部| 国产精品1区2区在线观看. | 91在线观看av| 黄色视频不卡| 人人妻人人添人人爽欧美一区卜| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 国产精品秋霞免费鲁丝片| 身体一侧抽搐| 两性夫妻黄色片| 水蜜桃什么品种好| 久久99一区二区三区| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 欧美精品av麻豆av| av欧美777| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人爽人人夜夜| 高潮久久久久久久久久久不卡| 成年动漫av网址| 欧美丝袜亚洲另类 | 亚洲欧美激情在线| 国产精品久久视频播放| 亚洲一区中文字幕在线| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 在线免费观看的www视频| 国产精品免费大片| 啦啦啦免费观看视频1| 99久久精品国产亚洲精品| ponron亚洲| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女 | 黄色视频,在线免费观看| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区| 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 亚洲综合色网址| 精品久久久久久,| 无人区码免费观看不卡| 久久人人97超碰香蕉20202| 久久九九热精品免费| 少妇 在线观看| 免费人成视频x8x8入口观看| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频 | 久久中文看片网| 成人18禁在线播放| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 国产主播在线观看一区二区| 黑人猛操日本美女一级片| 国产xxxxx性猛交| 国产成人免费观看mmmm| 免费看a级黄色片| 国产精品秋霞免费鲁丝片| 三上悠亚av全集在线观看| 如日韩欧美国产精品一区二区三区| 久久香蕉精品热| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 51午夜福利影视在线观看| 色播在线永久视频| 国产精品av久久久久免费| 中文字幕高清在线视频| 久久久国产精品麻豆| 一级毛片女人18水好多| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 99精品欧美一区二区三区四区| 高清在线国产一区| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| 如日韩欧美国产精品一区二区三区| 国产亚洲av高清不卡| 天天操日日干夜夜撸| 久久精品亚洲熟妇少妇任你| 91av网站免费观看| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 亚洲中文日韩欧美视频| 99在线人妻在线中文字幕 | 少妇裸体淫交视频免费看高清 | 久久国产精品影院| 亚洲五月天丁香| 成年人午夜在线观看视频| 丝袜美腿诱惑在线| 免费日韩欧美在线观看| 亚洲av熟女| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| 亚洲专区字幕在线| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 天天添夜夜摸| 香蕉国产在线看| 亚洲中文字幕日韩| 超色免费av| 久久香蕉精品热| 18在线观看网站| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久99久久久不卡| 交换朋友夫妻互换小说| 亚洲专区国产一区二区| 国产精品成人在线| ponron亚洲| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 精品熟女少妇八av免费久了| ponron亚洲| 国产精品美女特级片免费视频播放器 | 国产1区2区3区精品| 久久久久精品人妻al黑| 看免费av毛片| 美女高潮到喷水免费观看| 精品国内亚洲2022精品成人 | 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 午夜免费鲁丝| 亚洲精品美女久久av网站| 黄色毛片三级朝国网站| 老司机影院毛片| 天天躁日日躁夜夜躁夜夜| 久久人妻福利社区极品人妻图片| 激情在线观看视频在线高清 | 国产高清视频在线播放一区| 国产欧美日韩综合在线一区二区| 婷婷精品国产亚洲av在线 | 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 人妻一区二区av| 黄色怎么调成土黄色| 女人久久www免费人成看片| 精品国内亚洲2022精品成人 | 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 久久精品熟女亚洲av麻豆精品| 国产成人啪精品午夜网站| 宅男免费午夜| 黄片播放在线免费| 日韩三级视频一区二区三区| 色综合婷婷激情| 欧美日韩亚洲综合一区二区三区_| 色婷婷久久久亚洲欧美| 亚洲精品自拍成人| 天堂俺去俺来也www色官网| 香蕉国产在线看| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 日本五十路高清| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 国产在线精品亚洲第一网站| 视频区欧美日本亚洲| netflix在线观看网站| 午夜亚洲福利在线播放| 午夜激情av网站| 桃红色精品国产亚洲av| 美女视频免费永久观看网站| x7x7x7水蜜桃| 99re在线观看精品视频| 久久热在线av| 日韩熟女老妇一区二区性免费视频| 亚洲成人手机| 久久精品国产亚洲av高清一级| 国产乱人伦免费视频| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 久久午夜亚洲精品久久| 成人国产一区最新在线观看| 欧美丝袜亚洲另类 | 视频区欧美日本亚洲| 丁香六月欧美| 90打野战视频偷拍视频| 精品久久久精品久久久| 亚洲七黄色美女视频| 激情在线观看视频在线高清 | 亚洲专区国产一区二区| 久久久久国内视频| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 天天躁日日躁夜夜躁夜夜| 91成年电影在线观看| 窝窝影院91人妻| 黄色视频不卡| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 中文字幕av电影在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| www日本在线高清视频| 一夜夜www| 老司机亚洲免费影院| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 动漫黄色视频在线观看| 首页视频小说图片口味搜索| 午夜福利,免费看| 香蕉久久夜色| 国产精华一区二区三区| 精品久久久久久,| 久久热在线av| 欧美日韩乱码在线| 建设人人有责人人尽责人人享有的| 国产精品秋霞免费鲁丝片| 人妻 亚洲 视频| 精品高清国产在线一区| 亚洲一区二区三区欧美精品| 十八禁高潮呻吟视频| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 变态另类成人亚洲欧美熟女 | 精品久久久久久久久久免费视频 | 首页视频小说图片口味搜索| 国产免费av片在线观看野外av| 一级片'在线观看视频| 天堂动漫精品| xxxhd国产人妻xxx| 日本a在线网址| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 国产免费男女视频| 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 亚洲av日韩在线播放| 999精品在线视频| 成年人黄色毛片网站| 女人高潮潮喷娇喘18禁视频| 久久久久视频综合| 91精品三级在线观看| 高清在线国产一区| 99国产精品免费福利视频| av不卡在线播放| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网| 极品人妻少妇av视频| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频 | 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| 大片电影免费在线观看免费| 国产不卡一卡二| 国产精品永久免费网站| 999久久久精品免费观看国产| 国产一区二区激情短视频| 一边摸一边抽搐一进一出视频| 又大又爽又粗| 亚洲国产毛片av蜜桃av| 中出人妻视频一区二区| av有码第一页| 又黄又粗又硬又大视频| 69av精品久久久久久| 精品电影一区二区在线| 日本一区二区免费在线视频| 欧美午夜高清在线| 国产精品电影一区二区三区 | 色综合婷婷激情| 国产黄色免费在线视频| 国产亚洲av高清不卡| 久久久久视频综合| 一进一出好大好爽视频| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 一边摸一边抽搐一进一出视频| 精品无人区乱码1区二区| 99久久人妻综合| 欧美成人免费av一区二区三区 | 99热网站在线观看| 日韩欧美国产一区二区入口| 国产区一区二久久| 男女午夜视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产在线一区二区三区精| 成熟少妇高潮喷水视频| 午夜福利在线免费观看网站| 欧美国产精品va在线观看不卡| 黄色片一级片一级黄色片| 国产深夜福利视频在线观看| 成人三级做爰电影| 韩国精品一区二区三区| 91成年电影在线观看| 9热在线视频观看99| 很黄的视频免费| 99re6热这里在线精品视频| 热re99久久国产66热| 香蕉国产在线看| 国产高清视频在线播放一区| 欧美精品av麻豆av| av视频免费观看在线观看| 精品久久久精品久久久| 亚洲人成电影免费在线|