• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Volumetric and Transport Properties of Aqueous NaB(OH)4Solutions*

    2013-07-31 22:43:56ZHOUYongquan周永全FANGChunhui房春暉FANGYan房艷andZHUFayan朱發(fā)巖
    關(guān)鍵詞:春暉

    ZHOU Yongquan (周永全), FANG Chunhui (房春暉)*, FANG Yan (房艷) and ZHU Fayan (朱發(fā)巖)

    1CAS Key Laboratory of Salt lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China

    2Graduate School of Chinese Academy of Social Sciences, Beijing 100039, China

    Volumetric and Transport Properties of Aqueous NaB(OH)4Solutions*

    ZHOU Yongquan (周永全)1,2, FANG Chunhui (房春暉)1,*, FANG Yan (房艷)1, and ZHU Fayan (朱發(fā)巖)1,2

    1CAS Key Laboratory of Salt lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China

    2Graduate School of Chinese Academy of Social Sciences, Beijing 100039, China

    Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are presented. Polyborate distributions in aqueous NaB(OH)4solution were calculated, covering all the concentrationrange,is the most dominant species, other polyborate anions are less than 5.0%. The volumetric and thetransport properties were discussed in detail, both of these properties indicate thatbehaves as a structure-disordered anion.

    aqueous NaB(OH)4solution, volumetric property, transport property, polyborate distribution

    1INTRODUCTION

    Hydroxy-hydrated borates constitute the bulk of the mineral and optical ma?terial kingdom. Especially the tetrahy?dridoborate (BH4), as the reduction product of B(OH)4, are versatile reducing agents in various organic and inorganic processes [1]. The percentage of hydrogen presented in NaBH4and released by hydrolysis are 10.6% and 10.8%, respectively. Therefore, NaBH4is the most attractive chemical hydride for H2generation and storage in automotive fuel cell applications [2, 3]. However, the extensive use of NaBH4fuel would require the disposal of large quantities of the product NaB(OH)4. NaBH4can be regenerated from NaB(OH)4chemically [4-7]. Unfortunately, most chemical regeneration syntheses proposed so far involve several reaction steps with high cost. Furthermore, the by-products, wastes, and greenhouse gas emissions have already aroused the growing concern from the public. Luckily, the use of an electrolytic cell to reduce NaB(OH)4would not create large quantities of by-products, wastes, or emissions. There are a number of patents indicating the possibility ofelectroreductionciency and 20% to 80% yield on electrocatalytic hydrogenation cathodes [8-10]. However, reproduction of these claims was facing a number of difficulties, some researchers even got the conclusion that direct electroreduction of NaB(OH)4into NaBH4was impossible [11].

    Physicochemical properties such as density, electrical conductivity, viscosity, and acidity at moderate temperatures, affect the H2generation and storage system as well as the electrochemical recyclability of sodium metaborate. The density of NaB(OH)4solutions has been measured at moderate temperatures by Ward et al. [12], Corti et al. [13] and Ganopolsky et al [14]. The conductivity and viscosity have been studied by Corti et al. [13, 15], and Cloutier et al. [16] reported the properties (pH, density, conductivity and viscosity) of saturated NaB(OH)4in aqueous alkaline solutions. However, all those studies were under the concentration of 1.0 mol·L?1or a saturated single point. In the present paper, the density, electrical conductivity, viscosity, acidity and Raman spectra of aqueous NaB(OH)4solutions were assembled systematically. Not only the volumetric and transport properties of aqueous NaB(OH)4solution were deliberated, but also the chemical species distribution was given for the first time.

    2EXPERIMENTAL

    Commercially available metaborate [NaB(OH)4·2H2O, Sinopharm Chemical Reagent Co., AR] was recrystallized twice from double-distilled water [17] (electrical conductivity, κ<1.0 μS·cm?1). The entire sample solutions were prepared by mass using double-distilled water, and the overall relative uncertainty in the solution preparation was 0.1%. The borate solutions were carefully protected from atmospheric CO2and can be used about one week without concentration changes.

    Densities, ρ, of all the solutions were determined using a DMA4500 apparatus (Anton Paar, Austria) with an uncertainty of 0.00003 g·cm?3and temperature was controlled to ±0.03 K. The instrument was calibrated prior to initiation of each series of measurements, using air and double-distilled water as reference substances. Electrical conductivity, κ, was measured with an YSI 3200 conductivity meter (YSI, USA) using black-platinized electrode with a reproducibility of 0.3%. The constant of electrode was calibrated using six NaCl standard solutions (0.0001, 0.001, 0.01, 0.1, 0.5 and 1.0 mol·kg?1). A standard solution was measured every five measurements, the constant recalibrated if the deviation ≥0.3%. Acidity, pH, of all the solutions was measured using an Orion 310P-01 pH meter(Thermo, USA) with a reproducibility of 0.5%. The pH electrode was calibrated using three pH standard solutions (4.003, 6.864 and 9.182), a standard solution was used for checkup after every five measurements, the electrode recalibrated if the deviation ≥0.5%. In all the pH and conductivity measurements, a thermostat (GDH-1015W, Sayfo Analytical Instrument Factory, Ningbo, China) was used to maintain the temperature of the solutions within ±0.01 K uncertainty. Viscosity, η, was measured with a single Ubbelohde viscometer (Jingliang Precise Instrument Co., Shanghai, China), which was placed in a well-stirred constant temperature water bath and the temperature of the solutions was kept within ±0.05K uncertainty. The flow time was measured with an accurate 0.01 s stopwatch and the double-distilled was used for calibration. Measurements were repeated at least 4 times for each solution and temperature. The uncertainty of the viscosity measurements was estimated to be 0.5%. Raman spectra of solid and liquid samples were recorded in the ranges of 300-4000 cm?1, respectively, with a Nicolet Almega Dispersive Raman spectrometer (laser: 532 nm, exposure time: 8 s) at room temperature. The solid samples were put in the microscope slide (number of exposures: 1). The liquid samples were held in a quartz glass tube (number of exposures: 32).

    3RESULTS AND DISCUSSION

    3.1Chemical species in solutions

    Measured pH of aqueous NaB(OH)4solutions were collected in Table 1 as functions of molality (m), at 298.15 and 323.15 K.

    pH of aqueous NaB(OH)4solutions raises with concentration increasing, but at different concentration range different increasing rate can be found. In extreme low concentration (m<0.07 mol·kg?1), pH rises sharply with concentration increase. This maybe because the polyborates do not show any significant extent of polymerization, and the dominant species are B(OH)?4and B(OH)3in the extremely dilute solution. The dehydration and polymerization make pH changes complicated with concentration increase in moderate concentration (0.07<m<1.46 mol·kg?1). A good linear relationship between pH and concentration can be seen in high concentration (m>1.46 mol·kg?1), which may be due to the low acidity makes B(OH)?4become the dominant borate.

    Raman spectrum is an effective method for polyborate study [18]. In order to get a clear picture of the main polyborates and their equilibria in aqueous NaB(OH)4solutions, Raman spectra of the labeled solutions in Table 1 were recorded and displayed in Fig. 1. Range of 500-1200 cm?1is the most favorable zone for the investigation of borate solution, which might be considered as the characteristic absorption bands of polyborates [19-21]. The only obvious band near 741 cm?1in Raman spectra of aqueous NaB(OH)4solutions is the characteristic peak of the

    Table 1pH of aqueous NaB(OH)4solutions as functions of concentration at 298.15 and 323.15 K

    Figure 1microcrystals; ● characteristic peak

    Polyborate distributions in aqueous NaB(OH)4solution at 298.15 and 323.15 K were calculated using measured pH values and the literature equilibrium constants [22-24] by Newton iteration algorithm, as Fig. 2 shown. δ is the moles of boron for individual polyborate divided by the moles of total boron. As Fig. 2 shown, the dominating borate anions is B(OH)?4, the other polyborates (H3BO3, B3O3(OH)?4, B3O3(OH)52?, B4O5(OH)24?and B5O6(OH)?4are less than 5% in NaB(OH)4solution.

    Figure 2Variation in the distribution of boron species with concentration in aqueous NaB(OH)4solutions at 298.15 and■ H3BO3;

    Table 2Density and φvof aqueous NaB(OH)4solutions at various temperatures

    So the sodium metaborate [NaB(OH)4·2H2O] was assumed to dissociate in aqueous NaB(OH)4solution as follows:

    Therefore, all our results reported for sodium metaborate were denoted as NaB(OH)4 which dissoci

    3.2Volumetric properties

    3.2.1Density

    The densities of aqueous NaB(OH)4solutions were measured at 293.15, 298.15, 303.15, 313.15 and 323.15 K. The density and apparent molar volume of the solution, as a function of concentration and temperature are shown in Table 2.

    The apparent molar volumes φvfor these solutions, given in Table 2 were calculated from the equation

    where ρ0is the density of water at corresponding temperatures, ρ0=0.99823, 0.99707, 0.99568, 0.99225 and 0.98807 g·cm?3at 293.15, 298.15, 303.15, 313.15 and 323.15 K, respectively; m is the molality (mol·kg?1) of solution and M2is the molecular weight of the compounds, 101.828 for NaB(OH)4here.

    Most of the equations reported in the literature [25] with only two variables, i.e. the density and theconcentration or temperature. Here we proposed a new expression, Eq. (3), which takes the density as a function of both concentration and temperature.

    ρ=A+Bm+Cmt+Dmt2+Em1.5+Fm1.5t+Gm1.5t2(3) where A, B, C, D, E, F, G are empirical constant determined by least-squares fit; m is the concentration in units of mol·kg?1; t is the temperature in units of °C. Herein, for the aqueous NaB(OH)4solution, an empirical equation

    with R2=0.9988 was deduced in temperature range from 20 to 50 °C. Fig. 3 displays the measurements and the empirical density correlation of aqueous NaB(OH)4solutions vs. concentration at 293.15, 298.15, 303.15, 313.15 and 323.15 K. As shown in Fig. 3, our experimental data are also in good agreement with the literature [12].

    Figure 3Density vs. concentration plots for aqueous NaB(OH)4solutions at various temperatures○ experimental values; ▲ literature data for NaB(OH)4[12]; calculated data from nonlinear fitting

    3.2.2Apparent molar volumes

    The concentration dependence of the φvof NaB(OH)4is shown in Fig. 4. Correspondingly, we fi tted the experimental data to a three constant polynomial of concentration (mol·kg?1)

    Figure 4Plot of apparent molar volume (φv) against molality of aqueous NaB(OH)4solutions at different temperatures■ 313.15 K; ● 323.15 K; ▲ 303.15 K; ▼ 298.15 K;293.15 K

    The temperature dependence of theof NaB(OH)4, shown in Fig. 5, can be expressed by the equation

    Table 3Least-squares parameters of Eq.for aqueous NaB(OH) solutions4

    Table 3Least-squares parameters of Eq.for aqueous NaB(OH) solutions4

    T/K A1(v∞) A2A3R20Eφ 2??( )/vT 2 2 2∞293.15 20.50 8.7662 ?0.6211 0.9965 0.2250 ?0.00461 298.15 21.63 9.2237 ?0.9703 0.9986 0.2020 ?0.00696 303.15 22.53 8.3561 ?0.6493 0.9984 0.1555 ?0.00616 313.15 23.85 8.5864 ?0.9613 0.9900 0.1253 ?0.00185 323.15 25.03 10.037 ?1.8221 0.9661 0.1185 ?0.000673

    Figure 5Partial molar volumes at infinite dilution of NaB(OH)4as a function of temperature■ present work; ● Ward et al.; ▲ Corit et al.

    As Fig. 5 shown, the agreement among the different data sources is satisfactory. Using Hepler’s [26] reasoning,would be classified as a “structure breaking” solute between 298.15 and 323.15 Kute has the hydrophilic character, while if the behaviorsolute has hydrophobic character) , this may due to the unique structure ofanion (four tetrahedrons OH groups) [27].

    3.3Transport properties

    3.3.1Viscosity

    Measured viscosities for aqueous NaB(OH)4solutions were collected in Table 4. The viscosity data are plotted in Fig. 6 at two temperatures. A semi-empirical equation [28-30]:

    has been shown to be useful for data fi tting over wide concentration range, where a0, b0, and c0are the adjustable temperature dependent parameters. Theleast-squares fitted parameters in Eq. (6) are summarized in Table 5.

    Table 4Viscosity of aqueous NaB(OH)4solutions at as functions of concentration at 298.15 and 323.15 K

    The viscosity data of concentration less than 0.1 mol·L?1were analyzed in terms of the extended Jones-Dole viscosity equation:

    Figure 6(a) Viscosity vs. concentration plots for solutions at 298.15 K and 333.15K and (b) relative viscosity vs. concentration (<0.01 mol·L?1)● experimental values at 298.15 K; ■ experimental values at 333.15 K

    Table 5Coefficients for Eqs. (6) and (7) and the hydration number

    where ηr=η/η0·ηr, η and η0are the relative viscosity, viscosity of the solution and viscosity of the solvent, respectively, and c is the molar concentration. Coefficient (Aη) is a measure of ion-ion interactions and may be calculated from equilibrium theory, as summed by Jenkins and Marcus [31]. Coefficient (Bη), also called the Jones-Dole coefficient, is an empirical constant, qualitatively correlating on the size of solute particle and on ion-solvent interaction characteristic for electrolyte and solvent [31]. Bηof B(OH)?4were calculated by subtracting the Bηof Na+ion [25] from the values of NaB(OH)4at 298.15 and 323.15 K, respectively, that is Bη,B(OH)?4,298.15=?0.452 L?mol?1and Bη,B(OH)?4,323.15=?0.339 L·mol?1, which are well consistent with the literature values of dilute aqueous NaB(OH)4solutions at 298.15 K [32]. The calculated Bηof B(OH)?4(Bη<0) indicated it behaves as a structure disordering ion between 298.15 to 323.15 K, which is consistent with our study on volumetric properties of aqueous NaB(OH)4solution.

    For a dilute solution of spherical colloidal suspensions, Einstein derived the relation

    where φ is the volume fraction of the solute. For 1︰1 type electrolyte, Eq. (9) becomes

    where Vhis the hydrodynamic volume. Where Vhisthe partial molar volumeof the unsolvated solute particle in a continuum solvent. Thus, the value of the hydration number (Hn) can be calculated as

    Hnlies between 0 and 2.5 for unsolvated species and has higher valu?es for solvated species. The calculated Hnof B(OH)4are 20.9 and?13.5 at 298.15 and 323.15 K indicated the B(OH)4are solvated in aqueous solution [33]. It’s maybe another evidence?for a tight hydration sphere is formed around B(OH)4in aqueous solutions.

    3.3.2Electrical conductivity

    The experimental electrical conductivities of aqueous NaB(OH)4solutions are listed in Table 6.

    Figure 7 (a) shows that a break can be found, the conductivity increases as concentration and temperature. The conductivity data over the whole concentration range studied were fi tted to the Casteel-Amisequation [30, 34]:

    Table 6 Electrical conductivity of aqueous NaB(OH)4solutions at as functions of concentration at 298.15 and 323.15 K

    where μ is the concentration corresponding to the maximum conductivity κmaxat a given temperature; a and b are empirical parameters; m is molality in units of mol·kg?1. In all the concentration range a function between conductivity and concentration can be given though nonlinear fitting.

    The decrease of molar conductivity with increasing concentration must be due to the increase of viscosity of the aqueous solution and polymerization. The polymerization makes charge carriers in unit volume decrease, and higher polyborate anions and their hydration also means the charge carriers are large in size, and the increasing viscosity make migration rateslower.In extremely dilute solution (smaller than 0.01to any significant e?xtent polymerization so the main species are B(OH)4and B(OH)3with an equilibrium as follows:

    Figure 7(a) Conductivity vs. concentration plots for solutions at 298.15 and 323.15 K and (b) molar conductivity vs. concentration (<0.01 mol·L?1) to zero● experimental values at 298.15 K; ■ experimental values at 323.15 K; calculated data from nonlinear fitting

    Table 7Values of kmax, u, a and b coefficients for Eq. (11) and the transport properties of aqueous NaB(OH)4solutions

    Limiting molar conductivity (mΛ∞) of NaB(OH)4can be gotten by extrapolate to c=0 mol·L?1through the Kohlrausch correlations. As Fig. 7 (b) shown, the plot ofmΛ against c1/2is a line withmΛ∞as intercept to slope A at concentration (c<0.01 mol·L?1) where Λ∞,298.15=86.02 and Λ∞,323.15=136.05 S·cm2·mol?1. The limiting ionic conductivities for the B(OH)?4ion were calculated by+subtracting the limiting ionic conductivities of Na ion [25] from the limiting molar conductivity of NaB(OH)4,well consistent with Corti’s conclusion at 298.15 K [15].

    4CONCLUSIONS

    pH of aqueous NaB(OH)4solutions were precisely measured as functions of concentration from dilute to saturation at 298.15 and 323.15 K. Coupling with Raman spectra of some concentrated samples, polyborate distribution calculated using measured pH values and literature equilibrium constants of aqueousNaB(OH)4solutions shows?that covering all the concentration range, B(OH)4is the most dominant species, other polyborate anions are less than 5.0%. Densities of aqueous sodium borate solutions as functions of concentration (from diluted to saturate) and temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) were summed, and semi-empirical equations for those properties vs. concentration were also suggested. Apparent molar volumes (φv), limit partial molar volumesand apparent molar expansibilitiesof sodium metaborate have been determined from those precision density. Conductivity data were analyzed with a semi-empirical equation over range concentration, and the limiting molar conductivity of298.15 and 323.15 K by the Kohlrausch correlations. From those values, the ionic mobility, diffusion coefficients and transference number for the4B(OH)?anion were given. Viscosity data were analyzed with a semi-empirical equation over range concentration, and the ion-solvent and ion-ion interactions were analyzed with an extended Jones-Dole type correlation at the extremely dilute concentration. Values of ?0.452 and?0.339 L·mol?1were estimated for the4B(OH)?B-coefficient at 298.15 and 323.15 K, respectively. Both of the volumetric and transport properties of aqueous NaB(OH)4solutions indicate that the B(OH)?4behaves like “structure breakers” between 293.15 and 323.15 K.

    NOMENCLATURE

    m molality, mol·kg?1

    R universal gas constant, 8.314 J·mol?1·K?1rsstokes radius, m

    T absolute temperature, K

    t temperature, °C

    ηrrelative viscosity

    ρ density of solution, g·cm?3

    ρ0density of pure water, g·cm?3

    φvapparent molar volumes, cm3·mol?1

    REFERENCES

    1 Periasamy, M., Thirumalaikumar, P., “Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis”, J. Organomet. Chem.,609(1-2), 137-151 (2000).

    2 Li, H.W., Yan, Y.G., Orimo, S., Zuttel, A., Jensen, C.M., “Recent progress in metal borohydrides for hydrogen storage”, Energies,4(1), 185-214 (2011).

    3 Jain, I.P., Jain, P., Jain, A., “Novel hydrogen storage materials: A review of lightweight complex hydrides”, J. Alloys Compd.,503(2), 303-339 (2010).

    4 Ved, A.S., Miley, G.H., Seetaraman, T.S., “Recycling sodium metaborate to sodium borohydride using wind-solar energy system for direct borohydride fuel cell”, In: Proceedings of the ASME 8th International Conference on Fuel Cell Science, Engineering and Technology, USA, 139-141 (2010).

    5 Kong, L.Y., Cui, X.Y., Jin, H.Z., Wu, J., Du, H., Xiong, T.Y.,“Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate”, Energy Fuels,23(10), 5049-5054 (2009).

    6 Kojima, Y., Haga, T., “Recycling process of sodium metaborate to sodium borohydride”, Int. J. Hydrogen Energy,28(9), 989-993 (2003).

    7 Cakanyildirim, C., Guru, M., “Processing of NaBH4from NaBO2with MgH2by ball milling and usage as hydrogen carrier”, Renew. Energy,35(9), 1895-1899 (2010).

    8 Amendola, S., “Borohydride ion generation/consumption system for electric vehicle, has electrochemical cell to electrochemically reduce aqueous solution of oxidized form of borohydride ions, at alkaline pH to form borohydride ions”, U.S. Pat., 6497973-B1 (2002)

    9 Sharifian, H., Dutcher, J. S. , “Quat. ammonium and quat. phosphonium borohydride(s) prepn. by electrolysis, useful in paper prodn., fuel cells, detection and tracing of organic cpds. in biological systems”, U.S. Pat., 4904357-A (1990).

    10 Jia, Y.Z., Li, J., Gao, S.Y., Xia, S.P., “Thermochemistry of dipotassium calcium octaborate dodecahydrate”, Thermochim. Acta,335(1-2), 1-4 (1999).

    11 Gyenge, E. L., Oloman, C. W., “Electrosynthesis attempts of tetrahydridoborates”, J. Appl. Electroch em.,28(10), 1147-1151 (1998).

    12 Ward, G.K., Millero, F.J., “The effect of pressure on the ionization of boric acid in aqueous solutions from molal volume data”, J. Solution Chem.,3(6), 417-430 (1974).

    13 Corti, H., Crovetto, R., Fernandezprini, R., “Properties of the borate ion in dilute aqueous-solutions”, J. Chem. Soc. Faraday Trans.,76, 2179-2186 (1980).

    14 Ganopolsky, J.G., Bianchi, H.L., Corti, H.R., “Volumetric properties of aqueous electrolytes at high temperature: II. B(OH)3and B(OH)3-NaB(OH)4-NaOH mixtures up to 523 K”, J. Solution Chem.,25(4), 377-389 (1996).

    15 Corti, H., Crovetto, R., Fernández-Prini, R., “Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4aqueous solutions: A conductivity study”, J. Solution Chem.,9(8), 617-625 (1980).

    16 Cloutier, C.R., Alfantazi, A., Gyenge, E., “Physicochemical properties of alkaline aqueous sodium metaborate solutions”, J. Fuel Cell Sci. Tech.,4(1), 88-98 (2007).

    17 Nies, N.P., Hulbert, R.W., “Solubility isotherms in the system sodium oxide-boric oxide-water. Revised solubility temperature curves of boric acid, borax, sodium pentaborate, and sodium metaborate”, J. Chem. Eng. Data,12(3), 303-313 (1967).

    18 Zhou, Y.Q., Fang, C.H., Fang, Y., Zhu, F.Y., “Polyborates in aqueous borate solution: A Raman and DFT theory investigation”, Spectrochim. Acta A,83(1), 82-87 (2011).

    19 Hirao, T., Kotaka, M., Kakihana, H., “Raman spectra of polyborate ions in aqueous solution”, J. Inorg. Nucl. Chem.,41(8), 1217-1220 (1979).

    20 Liu, Z.H., Gao, B., Hu, M.C., Li, S.N., Xia, S.P., “FT-IR and Raman spectroscopic analysis of hydrated cesium borates and their saturated aqueous solution”, Spectrochim. Acta. A,59(12), 2741-2745 (2003).

    21 Liu, Z.H., Gao, B., Li, S.N., Hu, M.C., Xia, S.P., “Raman spectroscopic analysis of supersaturated aqueous solution of MgO-B2O3-32%MgCl2-H2O during acidification and dilution”, Spectrochim. Acta. A,60(13),3125-3128 (2004).

    22 Mesmer, R.E., Baes, C.F., Sweeton, F.H., “Acidity measurements at elevated temperatures. VI. Boric acid equilibriums”, Inorg. Chem.,11(3), 537-543 (1972).

    23 Spessard, J.E., “Investigations of borate equilibria in neutral salt solutions”, J. Inorg. Nucl. Chem.,32(8), 2607-2613 (1970).

    24 Weres, O., “Vapor pressure, speciation, and chemical activities in highly concentrated sodium borate solutions at 277 and 317 °C”, J. Solution Ch em.,24(5), 409-438 (1995).

    25 Horvath, A.L., Handbook of Aquous Electralyte Solution: Pysical Properties, Estimation and Correlation Methods, Ellis Horwood, New York (1985).

    26 Hepler, L.G., “Thermal expansion and structure in water and aqueous solutions”, Can. J. Chem.,47(24), 4613-4617 (1969).

    27 Rajagopal, K., Jayabalakrishnan, S.S., “Volumetric and viscometric studies of 4-aminobutyric acid in aqueous solutions of salbutamol sulphate at 308.15, 313.15 and 318.15 K”, Chin. J. Chem. Eng.,17(5), 796-804 (2009).

    28 Mahiuddin, S., Ismail, K., “Concentration dependence of viscosity of aqueous electrolytes. A probe into the higher concentration”, J. Phys. Chem. A,87(25), 5241-5244 (1983).

    29 Wahab, A., Mahiuddin, S., Hefter, G., Kunz, W., “densities, ultrasonic velocities, viscosities, and electrical conductivities of aqueous solutions of Mg(OAc)2and Mg(NO3)2”, J. Chem. Eng. Data,51(5), 1609-1616 (2006).

    30 Wahab, A., Mahiuddin, S., “Density, ultrasonic velocity, electrical conductivity, viscosity, and raman spectra of methanolic Mg(ClO4)2, Mg(NO3)2, and Mg(OAc)2solutions”, J. Chem. Eng. Data,54(2), 436-443 (2009).

    31 Jenkins, H.D.B., Marcus, Y., “Viscosity B-coefficients of ions in solution”, Chem. Rev.,95(8), 2695-2724 (1995).

    32 Cloutier, C.R., Alfantazi, A., Gyenge, E., “Physicochemical transport properties of aqueous sodium metaborate solutions for sodium borohydride hydrogen generation and storage and fuel cell applications”, In: 5th International Conference on Processing and Manufacturing of Advanced Materials, Chandra, 267-274 (2007).

    33 Ali, A., Sabir, S., Shahjahan, H.S., “Physicochemical properties of amino acids in aqueous caffeine solution at 25, 30, 35 and 40 degrees °C”, Chin. J. Chem.,24(11), 1547-1553 (2006).

    34 Casteel, J.F., Amis, E.S., “Specific conductance of concentrated solutions of magnesium salts in water-ethanol system”, J. Ch em. En g. Data,17(1), 55-59 (1972).

    35 Mauerhofer, E., Zhernosekov, K., Rosch, F., “Limiting transport properties of lanthanide and actinide ions in pure water”, Radiochimica Acta,91(8), 473-477 (2003).

    36 Mauerhofer, E., Rosch, F., “Dependence of the mobility of tracer ions in aqueous perchlorate solutions on the hydrogen ion concentration”, Phys. Chem. Chem. Phys.,5(1), 117-126 (2003).

    10.1016/S1004-9541(13)60561-3

    2012-05-07, accepted 2012-09-13.

    * Supported by the National Natural Science Foundation of China (20873172) and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-EW-307).

    ** To whom correspondence should be addressed. E-mail: fangch@isl.ac.cn; fangy8@isl.ac.cn

    猜你喜歡
    春暉
    香辣牛展面
    美食(2024年3期)2024-03-17 17:59:01
    水木榮春暉
    中老年保健(2022年2期)2022-08-24 03:20:24
    給炎炎夏日加點(diǎn)“苦”與“甜”
    美食(2022年8期)2022-08-04 13:05:06
    春暉
    鴨綠江(2021年17期)2021-11-11 13:03:41
    馬春暉老師輔導(dǎo)的日記畫(huà)
    黃易致李衍孫《春暉札》再考
    誰(shuí)言寸草心,報(bào)得三春暉——唱給父母的贊歌
    郭春暉作品
    藝術(shù)家(2019年9期)2019-12-17 08:28:19
    謝自潔、陸春暉設(shè)計(jì)作品
    Special Focus(2018年8期)2018-08-31 05:58:00
    十八禁高潮呻吟视频| 亚洲精品粉嫩美女一区| 女人被躁到高潮嗷嗷叫费观| 精品高清国产在线一区| 成年女人毛片免费观看观看9 | 国产精品一区二区在线不卡| 欧美日韩福利视频一区二区| 午夜老司机福利片| 桃红色精品国产亚洲av| 巨乳人妻的诱惑在线观看| 女同久久另类99精品国产91| 精品国产国语对白av| 人人澡人人妻人| 高清av免费在线| 人人妻人人澡人人看| 日韩人妻精品一区2区三区| 黄色视频,在线免费观看| 国产精品久久久人人做人人爽| 女人高潮潮喷娇喘18禁视频| 中文亚洲av片在线观看爽 | 制服人妻中文乱码| 亚洲国产中文字幕在线视频| 别揉我奶头~嗯~啊~动态视频| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看| avwww免费| 国产又色又爽无遮挡免费看| 亚洲 国产 在线| 老司机在亚洲福利影院| 在线观看免费高清a一片| 丰满迷人的少妇在线观看| e午夜精品久久久久久久| 国产一区二区在线观看av| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 亚洲性夜色夜夜综合| 99精品欧美一区二区三区四区| 国产av一区二区精品久久| 日韩免费av在线播放| 午夜两性在线视频| 欧美精品亚洲一区二区| 日韩免费高清中文字幕av| 精品高清国产在线一区| 制服人妻中文乱码| 搡老乐熟女国产| 欧美中文综合在线视频| 777米奇影视久久| 菩萨蛮人人尽说江南好唐韦庄| 黄片大片在线免费观看| 成人免费观看视频高清| 久热这里只有精品99| 亚洲伊人色综图| 超碰97精品在线观看| 国产精品国产高清国产av | 亚洲综合色网址| 69精品国产乱码久久久| 亚洲人成电影观看| 18禁美女被吸乳视频| 人人妻人人爽人人添夜夜欢视频| 久久狼人影院| 99国产极品粉嫩在线观看| 一区二区三区激情视频| 国产精品99久久99久久久不卡| 亚洲色图av天堂| 日韩免费高清中文字幕av| 精品国产国语对白av| 看免费av毛片| 久久人人爽av亚洲精品天堂| 国产精品久久电影中文字幕 | 欧美老熟妇乱子伦牲交| 欧美av亚洲av综合av国产av| av线在线观看网站| 乱人伦中国视频| 老熟女久久久| 99国产极品粉嫩在线观看| 涩涩av久久男人的天堂| 国产深夜福利视频在线观看| 老汉色∧v一级毛片| 动漫黄色视频在线观看| 国产视频一区二区在线看| 欧美成人午夜精品| 国产视频一区二区在线看| 国产亚洲一区二区精品| 亚洲三区欧美一区| 亚洲精品成人av观看孕妇| 亚洲五月色婷婷综合| 黄色视频在线播放观看不卡| 一级黄色大片毛片| 亚洲欧美日韩另类电影网站| 精品国产亚洲在线| 亚洲专区国产一区二区| 亚洲色图av天堂| 女同久久另类99精品国产91| 亚洲五月色婷婷综合| 日韩一区二区三区影片| 日本黄色视频三级网站网址 | 不卡av一区二区三区| 午夜两性在线视频| 波多野结衣av一区二区av| 极品少妇高潮喷水抽搐| 亚洲国产看品久久| 日韩精品免费视频一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 巨乳人妻的诱惑在线观看| 精品人妻在线不人妻| 久久天堂一区二区三区四区| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产 | 两人在一起打扑克的视频| 操美女的视频在线观看| 天天操日日干夜夜撸| 美女高潮到喷水免费观看| 男女午夜视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 纯流量卡能插随身wifi吗| 久久久国产欧美日韩av| 91成人精品电影| 日本黄色日本黄色录像| 又大又爽又粗| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情久久久久久爽电影 | av不卡在线播放| 99久久99久久久精品蜜桃| 美国免费a级毛片| 无限看片的www在线观看| 岛国在线观看网站| 侵犯人妻中文字幕一二三四区| 婷婷成人精品国产| 日韩制服丝袜自拍偷拍| 亚洲全国av大片| 日本五十路高清| 久久精品aⅴ一区二区三区四区| 久久中文看片网| 国产亚洲欧美在线一区二区| 久久国产精品大桥未久av| 久久人妻福利社区极品人妻图片| 黄频高清免费视频| 51午夜福利影视在线观看| 亚洲国产精品一区二区三区在线| 啪啪无遮挡十八禁网站| 亚洲人成电影观看| 国产色视频综合| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 制服人妻中文乱码| 午夜免费鲁丝| 一区二区三区乱码不卡18| 国产精品98久久久久久宅男小说| 日本黄色视频三级网站网址 | 热re99久久精品国产66热6| 亚洲 国产 在线| 国产淫语在线视频| 亚洲av美国av| 久久人妻福利社区极品人妻图片| 亚洲国产欧美一区二区综合| 免费在线观看黄色视频的| 夜夜夜夜夜久久久久| 久久影院123| 真人做人爱边吃奶动态| 免费日韩欧美在线观看| 亚洲欧美日韩另类电影网站| 男人舔女人的私密视频| 国产高清激情床上av| 国产在线视频一区二区| 午夜福利在线免费观看网站| 老司机影院毛片| 大型av网站在线播放| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 午夜成年电影在线免费观看| 精品第一国产精品| 精品国产国语对白av| 黄色视频在线播放观看不卡| 中文字幕制服av| h视频一区二区三区| 亚洲久久久国产精品| 狠狠婷婷综合久久久久久88av| 国产精品 国内视频| 人人妻人人澡人人看| √禁漫天堂资源中文www| 久久青草综合色| 岛国在线观看网站| 久久婷婷成人综合色麻豆| 飞空精品影院首页| 国产亚洲精品第一综合不卡| 欧美激情 高清一区二区三区| 俄罗斯特黄特色一大片| a级毛片在线看网站| 两人在一起打扑克的视频| 两人在一起打扑克的视频| 亚洲欧美一区二区三区黑人| 国产日韩一区二区三区精品不卡| av线在线观看网站| cao死你这个sao货| 无遮挡黄片免费观看| 少妇 在线观看| 国产日韩欧美亚洲二区| 日韩视频一区二区在线观看| e午夜精品久久久久久久| 在线观看舔阴道视频| 国产高清视频在线播放一区| 成年人免费黄色播放视频| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| 国产精品国产高清国产av | 一区福利在线观看| 国产成人精品无人区| 久久久久视频综合| 国产精品熟女久久久久浪| 搡老岳熟女国产| 国产免费福利视频在线观看| 久久久久视频综合| av不卡在线播放| 国产又爽黄色视频| 99国产精品一区二区蜜桃av | 精品一区二区三区av网在线观看 | 国产av又大| 又黄又粗又硬又大视频| 欧美黑人欧美精品刺激| 国产男女内射视频| 午夜福利视频在线观看免费| 国产欧美日韩综合在线一区二区| 中文亚洲av片在线观看爽 | 国产成人欧美在线观看 | 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 99久久人妻综合| 中国美女看黄片| 大片免费播放器 马上看| 久久精品国产亚洲av香蕉五月 | 精品高清国产在线一区| 亚洲久久久国产精品| 久久久国产一区二区| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 久久精品亚洲精品国产色婷小说| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美在线精品| 操美女的视频在线观看| 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 老司机福利观看| 国产精品熟女久久久久浪| 亚洲成人免费av在线播放| 岛国毛片在线播放| 两人在一起打扑克的视频| 日日爽夜夜爽网站| 国产亚洲一区二区精品| 国产在线视频一区二区| 日本av免费视频播放| 人人妻人人添人人爽欧美一区卜| 精品国产超薄肉色丝袜足j| 一本一本久久a久久精品综合妖精| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 97在线人人人人妻| 亚洲av第一区精品v没综合| 欧美另类亚洲清纯唯美| 国产精品一区二区精品视频观看| 欧美变态另类bdsm刘玥| 大香蕉久久成人网| 窝窝影院91人妻| 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 搡老乐熟女国产| 老熟妇仑乱视频hdxx| 亚洲精华国产精华精| 亚洲av成人一区二区三| 五月开心婷婷网| 91大片在线观看| 亚洲美女黄片视频| 国产国语露脸激情在线看| 日韩一区二区三区影片| 夜夜爽天天搞| 岛国在线观看网站| 精品免费久久久久久久清纯 | 每晚都被弄得嗷嗷叫到高潮| 一区二区三区精品91| 国产老妇伦熟女老妇高清| 90打野战视频偷拍视频| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 青青草视频在线视频观看| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 成人手机av| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲国产一区二区在线观看 | 成年版毛片免费区| 亚洲av日韩在线播放| 丝袜美足系列| 亚洲精品国产精品久久久不卡| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 亚洲第一欧美日韩一区二区三区 | 国产黄频视频在线观看| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 中文字幕av电影在线播放| 国产精品国产av在线观看| 狂野欧美激情性xxxx| 日韩制服丝袜自拍偷拍| 三级毛片av免费| 亚洲精品中文字幕在线视频| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 久久国产精品大桥未久av| 国精品久久久久久国模美| 亚洲男人天堂网一区| 一级毛片电影观看| 精品人妻在线不人妻| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 一本色道久久久久久精品综合| www.自偷自拍.com| 精品国产一区二区久久| 好男人电影高清在线观看| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 汤姆久久久久久久影院中文字幕| 变态另类成人亚洲欧美熟女 | 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 国产亚洲av高清不卡| 夜夜爽天天搞| 黄色成人免费大全| 色精品久久人妻99蜜桃| 精品少妇一区二区三区视频日本电影| 中国美女看黄片| 精品福利观看| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 狠狠婷婷综合久久久久久88av| 99久久99久久久精品蜜桃| 一本一本久久a久久精品综合妖精| 亚洲精品国产一区二区精华液| 一级毛片电影观看| 国产av一区二区精品久久| 国产亚洲欧美精品永久| 久久久国产欧美日韩av| 老司机午夜十八禁免费视频| 乱人伦中国视频| 三级毛片av免费| 中文字幕制服av| 欧美人与性动交α欧美精品济南到| 丰满饥渴人妻一区二区三| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| 午夜两性在线视频| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐动态| 午夜免费成人在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 久久久久视频综合| 男女无遮挡免费网站观看| 色综合欧美亚洲国产小说| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 成人三级做爰电影| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 午夜福利一区二区在线看| svipshipincom国产片| 国产主播在线观看一区二区| 成人影院久久| 亚洲av美国av| 国精品久久久久久国模美| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 精品高清国产在线一区| 久久人妻福利社区极品人妻图片| 在线十欧美十亚洲十日本专区| 黄频高清免费视频| 欧美日韩精品网址| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 99久久国产精品久久久| 涩涩av久久男人的天堂| 老司机福利观看| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 午夜日韩欧美国产| 香蕉丝袜av| 夜夜骑夜夜射夜夜干| 男女之事视频高清在线观看| 欧美日韩av久久| 男女边摸边吃奶| 日韩一区二区三区影片| 欧美人与性动交α欧美精品济南到| 久久久久久人人人人人| av片东京热男人的天堂| 国产在线观看jvid| 法律面前人人平等表现在哪些方面| 午夜福利一区二区在线看| 久久午夜综合久久蜜桃| 十八禁网站网址无遮挡| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | av天堂在线播放| 日韩大片免费观看网站| 精品一品国产午夜福利视频| 最近最新中文字幕大全电影3 | 日韩视频一区二区在线观看| 久久精品亚洲熟妇少妇任你| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 日韩有码中文字幕| 男女午夜视频在线观看| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 人人澡人人妻人| 啦啦啦 在线观看视频| 亚洲成人手机| 亚洲精品中文字幕一二三四区 | 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔女人的私密视频| 中文字幕色久视频| 精品人妻在线不人妻| 最近最新中文字幕大全电影3 | 99精国产麻豆久久婷婷| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 免费不卡黄色视频| 一区福利在线观看| 国产成人av激情在线播放| 国产精品九九99| 咕卡用的链子| 电影成人av| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 最新美女视频免费是黄的| 久久久久精品人妻al黑| 一区二区三区乱码不卡18| 国产福利在线免费观看视频| 建设人人有责人人尽责人人享有的| 国精品久久久久久国模美| 亚洲av美国av| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 成人三级做爰电影| 精品乱码久久久久久99久播| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 亚洲va日本ⅴa欧美va伊人久久| a级毛片在线看网站| 999久久久精品免费观看国产| 日韩有码中文字幕| 国产又爽黄色视频| 两个人看的免费小视频| 视频区欧美日本亚洲| 欧美人与性动交α欧美软件| 这个男人来自地球电影免费观看| 午夜精品国产一区二区电影| 久久久久国产一级毛片高清牌| 在线永久观看黄色视频| 搡老乐熟女国产| 国产精品九九99| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 天天躁夜夜躁狠狠躁躁| av网站在线播放免费| 久久av网站| 午夜日韩欧美国产| 老鸭窝网址在线观看| 精品国产亚洲在线| 日韩一卡2卡3卡4卡2021年| 国产又爽黄色视频| 人人澡人人妻人| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 大香蕉久久成人网| 97在线人人人人妻| 高清在线国产一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 欧美午夜高清在线| 丝袜美足系列| 一级片免费观看大全| 丝袜在线中文字幕| 18禁裸乳无遮挡动漫免费视频| 久久毛片免费看一区二区三区| 亚洲精品久久午夜乱码| 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩综合在线一区二区| 国产不卡一卡二| 我的亚洲天堂| 性色av乱码一区二区三区2| 少妇粗大呻吟视频| 99热网站在线观看| 欧美午夜高清在线| 亚洲av片天天在线观看| 男女边摸边吃奶| 久久久久久久国产电影| 亚洲avbb在线观看| 啦啦啦 在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区精品91| av天堂在线播放| 在线播放国产精品三级| 女人久久www免费人成看片| 在线十欧美十亚洲十日本专区| 中文欧美无线码| 精品亚洲乱码少妇综合久久| 久久久久精品国产欧美久久久| 国产三级黄色录像| 下体分泌物呈黄色| av福利片在线| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 成年女人毛片免费观看观看9 | 日韩视频一区二区在线观看| 亚洲五月色婷婷综合| 菩萨蛮人人尽说江南好唐韦庄| 国产免费av片在线观看野外av| 在线观看免费高清a一片| 欧美精品人与动牲交sv欧美| 欧美 日韩 精品 国产| 欧美成人免费av一区二区三区 | 91av网站免费观看| 欧美日韩av久久| 99热国产这里只有精品6| 国产淫语在线视频| 国产免费视频播放在线视频| av超薄肉色丝袜交足视频| 91字幕亚洲| 黑人猛操日本美女一级片| 色94色欧美一区二区| 欧美激情久久久久久爽电影 | 夜夜骑夜夜射夜夜干| 国产精品成人在线| 在线亚洲精品国产二区图片欧美| 日本wwww免费看| 国产一区有黄有色的免费视频| svipshipincom国产片| 90打野战视频偷拍视频| 国产精品亚洲一级av第二区| 操美女的视频在线观看| 一本一本久久a久久精品综合妖精| 一本大道久久a久久精品| 久久午夜亚洲精品久久| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区 | 夫妻午夜视频| 免费高清在线观看日韩| 日本黄色视频三级网站网址 | 在线 av 中文字幕| 日韩有码中文字幕| 国产精品久久久人人做人人爽| 亚洲av成人一区二区三| 一区二区三区精品91| 国产一区有黄有色的免费视频| xxxhd国产人妻xxx| 久久久久久久久久久久大奶| 自线自在国产av| 久久ye,这里只有精品| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| 法律面前人人平等表现在哪些方面| videosex国产| 变态另类成人亚洲欧美熟女 | 日韩欧美一区视频在线观看| 亚洲午夜理论影院| 青草久久国产| 天天影视国产精品| 国产1区2区3区精品| 视频在线观看一区二区三区| 日本五十路高清| 亚洲情色 制服丝袜| 男女之事视频高清在线观看| 久久久久久久大尺度免费视频| 国产激情久久老熟女| 亚洲av电影在线进入| 亚洲精品在线美女| 国产亚洲欧美精品永久| 91成年电影在线观看| 丰满饥渴人妻一区二区三| 成人三级做爰电影| 亚洲av电影在线进入| 热re99久久精品国产66热6| 高清av免费在线| 亚洲人成77777在线视频| 热re99久久精品国产66热6| 欧美另类亚洲清纯唯美| 日韩视频一区二区在线观看| 欧美日韩黄片免| 亚洲欧洲日产国产| 国产av精品麻豆| 欧美亚洲日本最大视频资源| 多毛熟女@视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇粗大呻吟视频| 亚洲欧洲精品一区二区精品久久久| 免费观看人在逋| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 国产成人精品久久二区二区91| 亚洲精品在线观看二区| 黄片播放在线免费|