鄭翔宇朱杰王藝芳劉純青劉奔楊春輝劉丹丹孟秀香
1.大連醫(yī)科大學(xué)檢驗(yàn)醫(yī)學(xué)院,遼寧 大連 116044;
2.河南省中醫(yī)院檢驗(yàn)科,河南 鄭州450002;
3.大連醫(yī)科大學(xué)第二臨床學(xué)院檢驗(yàn)科,遼寧 大連 116027
Bmi-1-siRNA對(duì)肺腺癌A549細(xì)胞體內(nèi)外增殖能力的影響
鄭翔宇1,2朱杰3王藝芳1劉純青1劉奔1楊春輝1劉丹丹1孟秀香1
1.大連醫(yī)科大學(xué)檢驗(yàn)醫(yī)學(xué)院,遼寧 大連 116044;
2.河南省中醫(yī)院檢驗(yàn)科,河南 鄭州450002;
3.大連醫(yī)科大學(xué)第二臨床學(xué)院檢驗(yàn)科,遼寧 大連 116027
背景與目的:原癌基因Bmi-1是多梳基因家族中的一員,能調(diào)節(jié)正常干細(xì)胞和腫瘤干細(xì)胞的自我更新能力。近年來發(fā)現(xiàn)其在多種惡性腫瘤中表達(dá)上調(diào)。本文旨在觀察Bmi-1基因沉默對(duì)肺腺癌A549細(xì)胞體內(nèi)外增殖的影響,并初步探討其機(jī)制。方法:根據(jù)本實(shí)驗(yàn)室設(shè)計(jì)的4條針對(duì)Bmi-1的小干擾RNA(siRNA)序列,選擇一條已經(jīng)證實(shí)最有效的序列作為靶序列和一條隨機(jī)序列作為陰性對(duì)照,構(gòu)建重組逆轉(zhuǎn)錄病毒siRNA表達(dá)載體并將其轉(zhuǎn)染入A549細(xì)胞中;應(yīng)用RT-PCR和蛋白質(zhì)印跡法(Western blot)檢測對(duì)Bmi-1基因的沉默效果;應(yīng)用MTT比色法、臺(tái)盼藍(lán)拒染法及平板克隆形成實(shí)驗(yàn)檢測Bmi-1-siRNA對(duì)A549細(xì)胞體外增殖的影響;利用流式細(xì)胞儀分析各組細(xì)胞的細(xì)胞周期;通過裸鼠腋窩皮下接種各組細(xì)胞,觀察Bmi-1-siRNA對(duì)A549細(xì)胞在裸鼠體內(nèi)的致瘤能力的影響;Western blot檢測PTEN、p-AKT、cyclin D1、P21、P27蛋白表達(dá)。結(jié)果:Bmi-1-siRNA有效地沉默了Bmi-1基因mRNA和蛋白的表達(dá);沉默Bmi-1基因的表達(dá)能夠抑制A549細(xì)胞的體內(nèi)外增殖能力,使干擾組細(xì)胞的細(xì)胞周期阻滯于G1期;沉默Bmi-1基因的表達(dá)后,干擾組細(xì)胞中PTEN、P21、P27蛋白增加,p-AKT、cyclin D1蛋白表達(dá)降低。結(jié)論:Bmi-1-siRNA通過使細(xì)胞周期阻滯于G1期來抑制肺腺癌A549的體內(nèi)外增殖能力,這種抑制作用涉及cyclin D1和p-AKT表達(dá)下降以及P21/P27和PTEN的表達(dá)上調(diào)。
肺腺癌;小干擾RNA;Bmi-1基因
約85%的肺癌是非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC),肺腺癌是NSCLC未吸煙病人中最常見的類型。腫瘤的形成往往是由于基因的突變包括原癌基因的激活和抑癌基因的失活或者缺失引起的。比如INK4a/ARF分別編碼兩種抑制蛋白,p16INK4a 和p14ARF。在肺腺癌中往往缺失INK4a/ARF位點(diǎn)[1]。INK4a/ ARF位點(diǎn)位于9號(hào)染色體短臂2區(qū)1帶,是周期素依賴性蛋白激酶(cyclin dependent kinase,CDK)抑制劑。p16INK4a 和p14ARF是細(xì)胞周期調(diào)節(jié)蛋白,在Rb和p53通路中起重要作用。
Bmi-1基因是多梳基因家族的重要成員之一[2],最初是在鼠淋巴瘤模型中作為一個(gè)原癌基因分離出來的[3]。在調(diào)控細(xì)胞增殖和轉(zhuǎn)移中起著重要作用[4]。研究發(fā)現(xiàn)Bmi-1基因在乳腺癌、NSCLC、胃癌及鼻咽癌等多種腫瘤細(xì)胞中呈高表達(dá)[5-9],在腫瘤的發(fā)生、發(fā)展中起著非常重要的作用。Bmi-1基因通過INK4a位點(diǎn)能夠調(diào)節(jié)細(xì)胞的增殖和衰老[10]。反義Bmi-1表達(dá)質(zhì)粒能夠抑制A549細(xì)胞的生長[11],眾所周知,A549細(xì)胞中INK4a/ARF位點(diǎn)是缺失的。因此我們推測,非依賴INK4a信號(hào)通路參與了Bmi-1調(diào)節(jié)A549細(xì)胞的增殖。
1.1 細(xì)胞培養(yǎng)和穩(wěn)定轉(zhuǎn)染
A549細(xì)胞用含10%胎牛血清的RPMI-1640培養(yǎng)基在37 ℃、CO2體積分?jǐn)?shù)為5%的培養(yǎng)箱中培養(yǎng)。重組載體及穩(wěn)定轉(zhuǎn)染細(xì)胞的構(gòu)建交由廣州博川公司操作。未轉(zhuǎn)染的細(xì)胞命名為A549-wt,轉(zhuǎn)染PSUPER-retro-Neo-Bmi-1和自由序列的分別命名為A549-siRNA-Bmi-1和A549-ctr。
1.2 RT-PCR
總RNA用TRIzol試劑提取,然后用RT-PCR試劑盒反轉(zhuǎn)錄成cDNA。其操作步驟如下:94 ℃1 min,94 ℃ 30 s,35個(gè)循環(huán),60 ℃ 30 s,72 ℃ 2 min。所用的引物序列如下:Bmi-1上游引物序列:5’-TCATCCTTCTGCTGATGCTG-3’ 下游序列:5’-GCATCACAGTCATTGCTGCT-3’。GAPDH上游序列5’-GAAGGTGAAGGTCGGAGTC-3’,下游序列:5’-GAAGATGGTGATGGGATTTC-3’。擴(kuò)增產(chǎn)物在含0.5%溴化乙錠的1%瓊脂糖凝膠電泳中分離。
1.3 蛋白印跡法(Western blot)檢測
用南京凱基總蛋白提取試劑盒提取細(xì)胞總蛋白,蛋白濃度用BCA蛋白濃度測定試劑盒(Pierce)測定。加60 μg蛋白在SDS-PAGE進(jìn)行分離,然后轉(zhuǎn)移到PVDF膜上,用5%脫脂奶粉封閉,TBST清洗,加上一抗4 ℃溫育過夜。信號(hào)用ECL+TM Western Blot系統(tǒng)檢測(Amersham, Buckinghamshire,UK)。所用的一抗如下:Bmi-1 (Abcam ab54897)、PTEN、Akt、p-Akt、cyclinD1 (Cell Signaling Technology)、p21、p27、p53、β-actin (Santa Cruz Biotechnology)。
秀容月明派使者去見梨友。使者來往三次,雙方就談妥了,只要秀容月明投降,梨友入城之后,一人不殺。秀容月明可站著投降,見了單于,也無須下跪。
1.4 細(xì)胞存活率檢測
分別將3組細(xì)胞消化后用0.4%臺(tái)盼藍(lán)進(jìn)行染色,普通光鏡下用血球計(jì)數(shù)板計(jì)數(shù),其中著色細(xì)胞為死細(xì)胞,分別計(jì)數(shù)100個(gè)細(xì)胞中的死亡細(xì)胞數(shù),計(jì)算存活率,每個(gè)樣品計(jì)數(shù)3次。
1.5 MTT法檢測細(xì)胞增殖能力
取對(duì)數(shù)生長期的3組細(xì)胞消化后按每孔細(xì)胞數(shù)為2×103單細(xì)胞懸液接種于96孔板中,培養(yǎng)基總量為200 μL,每組細(xì)胞設(shè)5個(gè)復(fù)孔,以后每天各組分別取5孔進(jìn)行實(shí)驗(yàn),連續(xù)測5 d。檢測時(shí)每孔加入MTT 10 μL,繼續(xù)培養(yǎng)4 h后小心吸去小孔內(nèi)的液體,加入150 μL DMSO,將培養(yǎng)板放在微孔板振蕩器上震蕩15 min,使結(jié)晶物完全溶解,酶標(biāo)儀測定吸光度,所用波長為490 nm。以時(shí)間為橫軸,以吸光度為縱軸繪制生長曲線。
1.6 克隆形成能力檢測
將各組細(xì)胞用胰酶-EDTA消化后,吹打成單個(gè)細(xì)胞,調(diào)整細(xì)胞濃度。在6孔板的每個(gè)孔中加入300個(gè)細(xì)胞,每組細(xì)胞做3個(gè)復(fù)孔。培養(yǎng)10 d待細(xì)胞形成克隆后,用PBS洗3次,加入10%甲醛固定20 min,用PBS洗后,加入結(jié)晶紫染液染15 min,棄掉染色液后,用水沖洗干凈。用數(shù)碼相機(jī)拍照。計(jì)數(shù)肉眼可見的集落數(shù)。
1.7 細(xì)胞周期測定
用胰酶-EDTA將3組細(xì)胞消化成單個(gè)細(xì)胞,加入70%乙醇輕輕混勻固定,4 ℃過夜。檢測之前用PBS洗3次,再加入RNase A處理15 min,然后加入PI溶液,避光反應(yīng)1 h后,流式細(xì)胞儀上機(jī)檢測。
1.8 體內(nèi)成瘤實(shí)驗(yàn)
裸鼠(Balb/c Nu/Nu)來自于大連醫(yī)科大學(xué)動(dòng)物中心。18只裸鼠隨機(jī)分為3組,每組各6只,將3組細(xì)胞分別消化制成單細(xì)胞懸液,用PBS調(diào)整細(xì)胞濃度為5×107/mL。按無菌操作要求,每只裸鼠單側(cè)腋窩皮下注射細(xì)胞懸液200 μL (1×107個(gè)細(xì)胞)。
1.9 統(tǒng)計(jì)學(xué)處理
2.1 Bmi-1 siRNA成功轉(zhuǎn)染至A549細(xì)胞中并抑制了Bmi-1 mRNA和蛋白的表達(dá)
在熒光顯微鏡下觀察轉(zhuǎn)染效果,A549-wt組無熒光細(xì)胞,而A549-ctr和A549-siRNA-Bmi-1組全部為熒光細(xì)胞,轉(zhuǎn)染效率達(dá)到100%。RTPCR和Western Blot分別檢測3組細(xì)胞中Bmi-1 mRNA和蛋白的表達(dá)。與A549-wt和A549-ctr組相比,A549-siRNA-Bmi-1組中Bmi-1 mRNA和蛋白的表達(dá)明顯下降,差異有統(tǒng)計(jì)學(xué)意義(P<0.05 ),A549-wt組和549-ctr組相比,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。表明Bmi-1 siRNA能有效沉默A549細(xì)胞中Bmi-1的表達(dá)(圖1)。
2.2 Bmi-1 siRNA抑制A549細(xì)胞的體內(nèi)外增殖能力
MTT法檢測A549細(xì)胞每天的吸光度值(A),繪制的生長曲線(圖2A)。A549 -siRNA -Bmi-1細(xì)胞在第3天及以后的時(shí)間,OD值明顯低于A549-ctr 和A549-wt組細(xì)胞,生長速度明顯緩慢(P<0.05);而后兩組細(xì)胞的生長數(shù)值差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。臺(tái)盼藍(lán)實(shí)驗(yàn)結(jié)果顯示,3組細(xì)胞的存活率差異無統(tǒng)計(jì)學(xué)意義(P>0.05,圖2B)。集落形成實(shí)驗(yàn)結(jié)果表明,與A549-wt組(152±8)、A549-ctr組(147±5)細(xì)胞相比,A549-siRNA-Bmi-1組(20±3)細(xì)胞集落形成數(shù)目明顯減少(P<0.05,圖2C)。體內(nèi)成瘤實(shí)驗(yàn)表明,接種腫瘤細(xì)胞后第28天,與A549-wt組(1.28±0.28 g)、A549-ctr組(1.06±0.24 g)相比,A549-siRNA-Bmi-1組(0.19±0.07 g)細(xì)胞形成的腫瘤平均重量明顯降低(P<0.05,圖2D)。
圖 1 沉默Bmi-1基因?qū)549細(xì)胞Bmi-1基因表達(dá)的影響Fig. 1 Effects of Bmi-1-siRNA on Bmi-1 mRNA and protein expression in A549 cells
圖 2 沉默Bmi-1基因?qū)549細(xì)胞體內(nèi)外增殖能力的影響Fig. 2 Effects of Bmi-1-siRNA on proliferation of A549 cells
2.3 Bmi-1 siRNA阻滯細(xì)胞周期在G1期
流式細(xì)胞儀檢測結(jié)果顯示,與A549-wt組[(50.9±2.8)%]、A549-ctr組[(49.4±4.2)%]相比,A549-siRNA-Bmi-1組[(78.2±5.6)%]G1期細(xì)胞所占比例明顯增加,而3組S期細(xì)胞所占比例分別為(17.1±1.3)%、(17.8±2.1)%和(7.6±1.1)%,A549-siRNA-Bmi-1組明顯低于其他兩組 (P<0.05)。
2.4 沉默Bmi-1表達(dá)下調(diào)cyclin D1的表達(dá),上調(diào)P21和P27的表達(dá)
我們用Western blot技術(shù)檢測了cyclin D1、P21、P53和P27蛋白的表達(dá),結(jié)果表明沉默Bmi-1表達(dá)后導(dǎo)致cyclin D1蛋白下降,而P21和P27蛋白表達(dá)上調(diào),與對(duì)照組相比差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖3),而P53蛋白的表達(dá)差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
2.5 沉默Bmi-1使p-AKT表達(dá)下降而P TEN的表達(dá)上調(diào)
與A549-wt、A549-ctr組相比,A549-siRNA-Bmi-1組中p-AKT表達(dá)明顯下降(P<0.05),PTEN的表達(dá)明顯升高(P<0.05),但各組之間總AKT表達(dá)差異無統(tǒng)計(jì)學(xué)意義(P>0.05,圖4)。
圖 3 沉默Bmi-1基因?qū)53、P21、P27和cyclin D1蛋白表達(dá)的影響Fig. 3 Effects of Bmi-1-siRNA on P53, P27, P21 and cyclin D1 levels
圖 4 沉默Bmi-1基因?qū)TEN、total-AKT和p-AKT蛋白表達(dá)水平的影響Fig. 4 Effects of Bmi-1-siRNA on PTEN, total-Akt and p-Akt levels
細(xì)胞周期分為4期:即G1、S、G2和M期,其與細(xì)胞增殖密切相關(guān)。細(xì)胞周期異常調(diào)節(jié)是腫瘤發(fā)生的重要機(jī)制。細(xì)胞周期進(jìn)程受許多因素的調(diào)節(jié),主要包括細(xì)胞周期調(diào)節(jié)蛋白、CDK、周期素依賴蛋白激酶抑制劑(cyclin dependent kinase inhibitor,CDKI)[13]。研究表明90%以上的人類腫瘤中,腫瘤基因或者腫瘤抑制基因和細(xì)胞周期改變有關(guān)。其中,G1期相關(guān)的腫瘤基因發(fā)生改變的頻率更高[14]。
Bmi-1基因能調(diào)節(jié)正常細(xì)胞的增殖和抑制Bmi-1-/-白血病細(xì)胞增殖[15]。一般而言,Bmi-1主要是通過p16INK4a這個(gè)獨(dú)立的通路在腫瘤形成的進(jìn)程中調(diào)節(jié)細(xì)胞增殖[16-17]。然而,Bmi-1也能以不依賴p16INK4a通路的方式調(diào)節(jié)尤文肉瘤的腫瘤形成[18]。Bmi-1基因沉默對(duì)細(xì)胞改變的影響在不同類型的細(xì)胞中是不同的。Bmi-1-/-白血病細(xì)胞顯示在G1期細(xì)胞堆積S期細(xì)胞減少[15]。但Cui等[19]在對(duì)人神經(jīng)母細(xì)胞瘤細(xì)胞中研究發(fā)現(xiàn),通過小RNA干擾沉默Bmi-1基因的表達(dá)對(duì)細(xì)胞周期沒有影響。本研究結(jié)果表明,在A549細(xì)胞中沉默Bmi-1基因的表達(dá)能夠抑制其體內(nèi)外增殖能力。一般而言,細(xì)胞生長抑制可能是由于細(xì)胞壞死、凋亡或者細(xì)胞周期阻滯導(dǎo)致的。為了研究在A549細(xì)胞中的這種影響是否由細(xì)胞壞死引起,我們利用臺(tái)盼藍(lán)拒染實(shí)驗(yàn)證實(shí)了3組細(xì)胞存活率沒有變化。流式細(xì)胞檢測儀結(jié)果表明,Bmi-1-siRNA抑制A549細(xì)胞的增殖能力是通過將細(xì)胞阻滯在G0/G1期引起的。
細(xì)胞周期與細(xì)胞的增殖密切相關(guān)。細(xì)胞周期調(diào)控因子主要有3大類:cyclin、CDK、CDKI。Cyclin表達(dá)上調(diào)或CDKI表達(dá)缺失都會(huì)引起細(xì)胞增殖失控產(chǎn)生癌癥,其中較具代表性的是在G1期發(fā)揮作用的cyclinD1及p21/p27蛋白[20-22]。Cyclin D是G1期細(xì)胞增殖信號(hào)的關(guān)鍵蛋白,cyclinD1和CDK4/6結(jié)合形成復(fù)合物,引起下游蛋白的磷酸化,進(jìn)一步釋放轉(zhuǎn)錄因子,促使細(xì)胞從G1期向S期轉(zhuǎn)化。Bmi-1調(diào)控細(xì)胞增殖的經(jīng)典下游靶位是INK4a/ARF,但在A549細(xì)胞中缺失INK4a/ARF位點(diǎn),我們感興趣的是,Bmi-1是通過怎樣的方式來調(diào)控缺失INK4a位點(diǎn)的A549等腫瘤細(xì)胞的增殖的。因此為了進(jìn)一步探討沉默Bmi-1基因的表達(dá)抑制A549細(xì)胞增殖的機(jī)制,我們應(yīng)用Western blot技術(shù)首先檢測了cyclin D1以及p21/p27蛋白的表達(dá),發(fā)現(xiàn)A549-siRNA-Bmi-1組cyclin D1蛋白表達(dá)下降,而p21/ p27表達(dá)上調(diào)。以前的研究發(fā)現(xiàn)AKT調(diào)節(jié)G1/S期細(xì)胞周期進(jìn)程是通過下游靶點(diǎn)cyclin D1增加和p21/p27的下降來實(shí)現(xiàn)的[23]。有報(bào)道稱Bmi-1基因和PI3K/AKT信號(hào)通路有關(guān)[24]。因此我們應(yīng)用Western blot技術(shù)檢測了3組細(xì)胞中總-AKT和p-AKT蛋白的表達(dá),發(fā)現(xiàn)A549-siRNA-Bmi-1組細(xì)胞p-AKT蛋白的表達(dá)降低。所以我們推測Bmi-1基因有可能通過PI3K/AKT信號(hào)通路調(diào)節(jié)cyclin D1及p21/p27的表達(dá)來調(diào)節(jié)A549細(xì)胞周期的。但Bmi-1基因是一個(gè)轉(zhuǎn)錄抑制因子,不能直接激活PI3K/AKT通路。Song等[25]在對(duì)鼻咽癌細(xì)胞的研究中發(fā)現(xiàn)沉默Bmi-1基因的表達(dá)能引起腫瘤抑制基因PTEN的表達(dá)上調(diào),而PTEN能負(fù)調(diào)控PI3K/AKT信號(hào)通路[26]。所以我們猜想是否在肺腺癌A549細(xì)胞中也存在這一現(xiàn)象,因而又檢測了PTEN蛋白的表達(dá),發(fā)現(xiàn)A549-siRNA -Bmi-1組PTEN的蛋白表達(dá)與對(duì)照組相比明顯增高。當(dāng)然,在Bmi-1調(diào)控A549細(xì)胞增殖的信號(hào)通路中是否存在著Bmi-1-PTEN-PI3K/AKT-cyclinD1/p21/p27的調(diào)節(jié)方式還需要以后進(jìn)一步的實(shí)驗(yàn)加以證實(shí)。
綜上所述,沉默Bmi-1基因的表達(dá)通過將A549細(xì)胞阻滯在G0/G1期而影響其增殖能力,同時(shí)伴有p-AKT 和 cyclinD1的表達(dá)的下降,p21/ p27和PTEN的表達(dá)水平的增高。因此我們推斷在缺乏INK4a/ARF位點(diǎn)的A549細(xì)胞中,PTEN/ AKT/cylinD1/p21/p27通路可能與Bmi-1調(diào)控細(xì)胞周期有關(guān)。但這還需要進(jìn)行大量的實(shí)驗(yàn)來證實(shí)。
[1] TOYOOKA S, TOKUMOM, SHIGEMATSU H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers [J]. Cancer Res, 2006, 66: 1371-1375.
[2] POMERANTZ J, SCHREIBER-AGUS N, LIE’GEOIS N J, et al. The INK4a tumor suppressor gene product p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53 [J]. Cell, 1998, 92(6): 713-723.
[3] VAN LOHUIZEN M, VERBEEK S, SCHEIJEN B, et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging [J]. Cell, 1991, 65: 737-752.
[4] LIU, S, DONTU G, MANTLE I D, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells [J]. Cancer Res, 2006, 66: 6063-6071.
[5] BECKER M, KORN C, SIENERTH A R, et al. Polycomb group protein Bmi-1 is required for growth of RAF driven non-small-cell lung cancer [J]. PLoS ONE, 2009, 4: e4230.
[6] KIM J H, YOON S Y, KIM C N, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins [J]. Cancer Lett, 2004, 203: 217-224.
[7] SONG L B, ZENG M S, LIAO W T, et al. Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells [J]. Cancer Res, 2006, 66: 6225-6232.
[8] GLINSKY G V, BEREZOVSKA O, GLINSKII A B. Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer [J]. J Clin Invest, 2005, 115: 1503-1521.
[9] SAWA M, YAMAMOTO K, YOKOZAWA T, et al. Bmi-1 is highly expressed in M0-subtype acute myeloid leukemia[J]. Int J Hematol, 2005, 82: 42-47.
[10] JACOBS J J, KIEBOOM K, MARINO S, et al. The oncogene and Polycomb group gene Bmi-1 regulates cell proliferation and senescence through the INK4a locus [J]. Nature, 1999, 397: 164-168.
[11] YU Q, SU B, LIU D, et al. Antisense RNA-mediated suppression of Bmi-1 gene expression inhibits the proliferation of lung cancer cell line A549 [J]. Oligonucleotides, 2007, 17: 327-335.
[12] JIANG Y, SU B, MENG X, et al. Effect of siRNA-mediated silencing of Bmi-1 gene expression on Hela cells [J]. Cancer Sci, 2010, 101(2): 379-386.
[13] MALUMBRES M, BARBACID M. Cell cycle, CDKs and cancer: a changing paradigm [J]. Nat Rev Cancer, 2009, 9(3): 153-156.
[14] TASHIRO E, TSUCHIYA A, IMOTO M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression[J]. Cancer Sci, 2007, 98: 629-635.
[15] LESSARD J G. Bmi-1 determines the proliferative capacity of normal and leukemic stem cells [J]. Nature, 2003, 423: 255-260.
[16] KANG M K, KIM R H, KIM S J, et al. Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival [J]. Br J Cancer, 2006, 96: 126-133.
[17] WU J, HU D, YANG G, et al. Down-regulation of Bmi-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells [J]. J Cell Biochem, 2011, 112: 1938-1948.
[18] DOUGLAS D, HSU J H, HUNG L, et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression [J]. Cancer Res, 2008, 68: 6507-6515.
[19] CUI H, MA J, DING J, et al. Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner[J]. J Biol Chem, 2006, 281: 34696-34704.
[20] HE X T, CAO X F, JI L, et al. Association between Bmi1 and clinicopathological status of esophageal squamous cell carcinoma [J]. World J Gastroenterol, 2009, 15(19): 2389-2394.
[21] SONG W, TAO K, LI H, et al. Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer [J]. Cancer Sci, 2010, 101(7): 1754-1760.
[22] 馮艷, 宋立兵, 郭寶紅, 等. Bmi-1在乳腺癌組織中的表達(dá)及意義 [J]. 癌癥, 2007, 26(2): 154-155.
[23] GUO B H, FENG Y, ZHANG R, et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer [J]. Mol Cancer, 2011, 10(1): 10.
[24] KIM J H, YOON S Y, JEONG S H, et a1. Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer [J]. Breast, 2004, 13(5): 383-388.
[25] SONG L B, LI J, LIAO W T, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells [J]. J Clin Invest, 2009, 119: 3626-3636.
[26] BLANCO-APARICIO C, RENNER O, LEAL J F, et al. PTEN, more than the AKT pathway [J]. Carcinogenesis, 2007, 28: 1379-1386.
Effect of siRNA-mediated silencing Bmi-1 gene expression on the proliferation of lung cancer cell line A549 in vitro and in vivo
ZHENG Xiang-yu1,2, ZHU Jie3, WANG Yi-fang1, LIU Chun-qing1, LIU Ben1, YANG Chun-hui1, LIU Dan-dan1, MENG Xiu-xiang1(1.College of Laboratory Medicine of Dalian Medical University, Dalian Liaoning 116044, China; 2. Department of Laboratory Diagnosis, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou Henan 450002 , China; 3. Department of Laboratory Diagnosis, the Second Affiliated Hospital of Dalian Medical University, Dalian Liaoning 116027, China)
MENG Xiu-xiang E-mail: xiuxiang_meng@sina.com
Background and purpose: The pro-oncogene Bmi-1 is a member of the polycomb- group family, can regulation of the proliferation and self-renewal of normal and tumor stem cells. In recent years, Bmi-1 has been found that it is overexpressed in varieties of human malignant tumors. The study aimed to observe the effects of Bmi-1-siRNA on the growth capacity of lung cancer cell line A549 in vivo and in vivo, and explore its mechanism. Methods: The most effective one as a target sequence was chosen from four Bmi-1 siRNA sequences which were designed by our lab, and one random sequence was chosen as a negative control. In short, the chemically synthesized siRNA and control sequences were connected to a retrovirus expressing vector, pSUPERretro-Neo plasmid, and then transfected into A549 cells. The stably transfected cells were cultured and passed. The level of mRNA and protein of Bmi-1 in A549 cells were assessed by RT-PCR and Western blot respectively. The proliferations of A549 cells in vivo was analyzed with MTT, trypan blue exclusion and plate colony forming methods. Flow cytometry was used for cell cycle analysis. The potency of tumorigenesis was observed in nude mouse through hypodermic inoculation of A549 cells. The expressionsof cyclin D, p21/27, p-AKT and PTEN were analyzed by Western blot. Results: Compared to A549-ctr and A549-wt cells, Bmi-1 mRNA and protein levels all significantly reduced in A549-Bmi-1-siRNA cells. Bmi-1-siRNA inhibited the growth, colony formation in vitro and tumorigenesis in vitro of A549 cells, and the interference cells cell cycle arrested in G1phase. In A549-Bmi-1-siRNA cells, p-AKT and cyclinD1 expression were down-regulated while p21/p27 and PTEN were up-regulated. Conclusion: Silencing Bmi-1 gene inhibits the proliferation of A549 cells through G1phase arrest, which involves the downregulation of cyclin D/p-AKT and upregulation of p21/p27/PTEN.
Lung adenocarcinoma; Short interference RNA; Bmi-1 gene
10.3969/j.issn.1007-3969.2013.07.005
R734.2
:A
:1007-3639(2013)06-0505-07
2013-02-08
2013-05-06)
遼寧省自然科學(xué)基金(No: 20072169)。
孟秀香 E-mail:xiuxiang_meng@sina.com