• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    2012-12-21 06:34:10馬麗娟王劍鋒賈建峰武海順
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:劍鋒儲氫物理化學(xué)

    馬麗娟 王劍鋒 賈建峰 武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    馬麗娟 王劍鋒 賈建峰*武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    提出了兩個穩(wěn)定的團簇B12Sc4和B12Ti4,基于理論計算,研究了它們的結(jié)構(gòu)與儲氫性質(zhì).結(jié)果發(fā)現(xiàn),在這兩個穩(wěn)定的團簇中,過渡金屬原子不會聚合在一起而影響它們對氫氣的吸附.B12Sc4最多可以吸附12個氫分子,達到7.25%(質(zhì)量分數(shù))的儲氫量,它的平均每氫分子吸附能量為-10.5 kJ·mol-1.B12Ti4最多只能吸附8個氫分子,儲氫量為4.78%,但其平均每氫分子吸附能量可達-50.2 kJ·mol-1.進一步計算表明,即使在77 K,也需要很高的氫氣壓力才能使12個氫分子都吸附到B12Sc4上.電子結(jié)構(gòu)分析表明,B12Ti4-nH2吸附結(jié)構(gòu)中的Kubas作用要大于相應(yīng)B12Sc4-nH2結(jié)構(gòu)中的Kubas作用.

    硼團簇;金屬摻雜;儲氫;吸附;從頭算

    1 Introduction

    Hydrogen is widely viewed as the next generation of energy carrier to replace the fossil fuels due to its abundance,high chemical energy,and pollution-free burning.1-3However,hydrogen storage is a“bottleneck”for the on-board application of hydrogen as energy carrier.Several ways have been investigated and developed to store hydrogen gas,involving its compression,liquefaction,and adsorption in several metals and metal alloys and so on.Unfortunately,none of these technologies are good enough to satisfy the on-board application of hydrogen energy,even though each way possesses desirable characteristics in certain areas.4-7For example,very high pressure vessels are capable of storing hydrogen about 9%(mass fraction),however,so high pressure will bring serious security problem.The hydrogen storage capacities of many complex hydrides,such as Li3Be2H7,8NaAlH49and so on,10-12in which hydrogen atoms are chemical bonded to metals,are beyond about 6%.However they can not be easily,quickly recovered when exhausted.Highly porous carbon materials13-15and metal organic frameworks(MOF)16,17represent another type of hydrogen storage material,which interact with hydrogen physically,and are kineticly favorable for recharge of hydrogen.However, they can achieve high storage capacity only under very low temperature.At ambient temperature,these materials barely adsorb hydrogen due to weak interaction between hydrogen and the solid materials.

    Zhao et al.18proposed that the fullerene decorated by transition metal may be a good candidate for hydrogen storage. Based on theoretical calculations,they found that Sc decorated C60and C48B12are capable of storing hydrogen about 7%and 8.77%at ambient condition.At the same time,Yildirim and Ciraci19showed that Ti decorated carbon nanotube can approach about 8%hydrogen storage capacity.In both Sc decorated C60and Ti decorated carbon nanotube,the transition metal atoms scatter on the surface of carbon nanomaterials,and bind with hydrogen molecules through Kubas interaction.20

    Unfortunately,Sun?s theoretical investigation21indicated that transition metal atoms on C60will be clustered rather than scattered,and the clustering of the transition metal atoms will significantly reduce the mass percentage of hydrogen storage.Sun et al.22,23found that the clustering problem can be resolved by replacing the transition metal atoms with alkali metal atoms or alkaline-earth metal atoms.However,alkali or alkaline-earth metal doped fullerene can only be used in low temperature due to the small binding energy of hydrogen molecule to them.24,25Moreover,the recent theoretical study shows some alkali metal atoms,such as Na,also will be aggregated on the surface of C60.26

    Meng et al.27found that the Ti atoms on the boron nanotube, contrary to on carbon nanostructure,will keep in isolation from each other.Theoretical calculations showed that metal doped icosahedral B80also does not suffer the clustering problem,being a promising hydrogen storage candidate.28-31

    However,more recent theoretical calculations indicated that the most stable B80and other medium-sized boron clusters have core-shell rather than hollow cage structure.32Zhao and his coworkers33have designed a new type of hydrogen storage media,chained TiBx.They found that the most stable TiB5chain can reach 7.3%hydrogen storage capacity with the average binding energy per H2of 43.7 kJ·mol-1.

    In this work,we propose a Sc doped B12cluster and a Ti doped B12cluster,inspired by our previous foundation of a B12core in B12CO12.34The structures of B12Sc4and B12Ti4,as well as their interactions with H2are discussed in detail.

    2 Computational methods

    All the isomers were optimized at the level of density functional theory(DFT)with Becke?s three-parameter exchange35and Lee-Yang-Parr correlation functional36by using Gaussian 03 program.37The standard split valence basis set 6-31G(d,p) was employed to describe the orbitals of all atoms involved. Geometry optimizations were done with no symmetry restriction.All the reported isomers were characterized at the same level as energy minima by frequency calculations.All the population analyses were based on the data obtained at the B3LYP/ 6-31G(d,p)level.Many investigations demonstrated that MP2 method was more reliable for calculating the weak interaction.38,39So,to obtain accurate average binding energy of H2to B12Sc4or B12Ti4,the single point energy calculations for all B12X4-nH2(X=Sc,Ti),the most stable B12X4and H2were performed at the MP2/6-311G(d,p)level.The average binding energy per H2(ABE/H2)was defined as

    where,E[B12X4],E[H2],and E[B12X4-nH2]are the electronic energies of relaxed B12X4,H2,and B12X4-nH2,respectively;and n is the number of H2molecules.The basis set superposition error(BSSE)has been corrected using the full counterpoise method for all the B12X4-nH2complexes at the MP2/6-311G(d, p)level.

    3 Results and discussion

    3.1 Structures of B12Sc4and B12Ti4

    Our proposed B12Sc4cluster is shown as isomer 2 in Fig.1, which has D2dsymmetry,and was optimized from an initio structure,isomer 1.Isomer 1 is originated from a stable(BCO)12boron carbonyl compound.29The multiplicity of isomer 2 is 1.To confirm that it is the favorable structure for B12Sc4,other B12Sc4isomers are considered in our work.Isomer 3 in Fig.1 is constructed from the most stable B12and Sc4clusters.The geometry optimization of isomer 3 gives out the isomer 4,which is less stable than 2 about 703.4 kJ·mol-1at the B3LYP/6-31G(d, p)level.Based on the most stable quasiplanar B12and icosahedral B12,40we put four Sc atoms on it in all possible patterns,all these structures were optimized to amorphous structure with higher energy than isomer 2(see Fig.S1 in Supporting Information for their structures and energies).In isomer 2,it is clear that the Sc atoms do not cluster together.

    Fig.1 Initio and optimized structures of two B12Sc4isomers

    Ab initio molecular dynamic(MD)simulation also confirmed that our proposed B12Sc4is stable.The isomer 2 was simulated using 0.5 fs time step in a 14×14×14 simple cubic supercell with Born-Oppenheimer MD implemented in CP2k code.41First,the system was equilibrated at 1000 K in a NVE ensemble with a temperature tolerance of 500 K within 10000 steps.When it achieved equilibrium,we continued the MD at the same condition for another 5000 steps(see Supporting Information for more detail information about the MD calculation configurations).The result shows that our proposed B12Sc4is intact throughout the whole simulation.A similar MD simulation shows that the IhB80Sc12will collapse to a core-shell structure.We expect that our proposed B12Sc4is stable enough at their possible operation temperatures about 300 K.

    Fig.2 Electronic difference density(in×103nm-3)map of a B3ring in B12Sc4

    Fig.3 Occupied valance orbitals of B12Sc4

    To understand the stability of B12Sc4more foundationally,we has performed a detail inspect about the structure of B12Sc4. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMO-LUMO) of B12Sc4is 2.17 eV.In B12Sc4,12 boron atoms form four three-membered rings(B3).The electronic density difference map(Fig.2)of B3ring shows that electrons mainly shift to the center of the ring.It is clear that an open three-center bond is formed other than a strained‘banana bond’.So,B3rings are non-strained rings in B12Sc4.

    Fig.3 lists all the valance orbitals of B12Sc4,which clearly shows that every B3ring,can be considered as a unit,possesses s-like,p-like,and d-like orbitals,when interacting with Sc atoms.Orbitals 49-52 of B12Sc4are formed by the s-like orbitals of B3units,without any node among the electronic cloud within B3rings.Orbitals 53-61,65,66,and 68 are originated from the p-like orbitals,with only one node among the electronic cloud within every B3ring.Moreover,the p-like orbitals of B3can be classified into px-,py-,and pz-like orbitals.In pz-like orbitals(58,65,66,68),the nodal plane is substantially parallel to the B3ring,while in px-and py-like orbitals,the nodal plane is nearly vertical to the B3ring.It should be noticed that some d-like components hybridize into the orbitals 65 and 66 when it interacts with Sc atoms.Orbitals 62-64,67,and 69-72 are mainly formed by the d-like orbital of B3units with some p-like components hybridizing into orbitals 62-64 significantly.

    The B12Ti4has the same topological structure as isomer 2, and has D2dsymmetry and no unpaired electron.The other isomers constructed based on the most stable quasiplanar B12and icosahedral B12as for B12Sc4are also considered(see Fig.S2 in Supporting Information).They are all higher in energy than isomer 2.The same MD simulation as for B12Sc4was performed for it,which also demonstrates that B12Ti4are stable around 1000 K.The most obvious distinction between B12Sc4and B12Ti4is their metal-metal(M-M)distances.The adjacent Sc-Sc distance in B12Sc4is 0.315 nm while Ti-Ti distance in B12Ti4is only 0.294 nm.Too short M-M distance is unfavorable for hydrogen storage.The HOMO-LUMO energy gap of B12Ti4is only 1.21 eV,nearly the half of B12Sc4.

    3.2 Hydrogen molecule adsorption on B12Sc4and

    B12Ti4

    We now turn to the discussion on the adsorption of hydrogen molecules on the B12Sc4and B12Ti4clusters mentioned above. The optimized adsorbing structures with 1,2,and 3 hydrogen molecules on each Sc atom of B12Sc4are shown in Fig.4 as isomer 5(B12Sc4-4H2),6(B12Sc4-8H2),7(B12Sc4-12H2).The adsorbing structure of B12Ti4with one H2on each Ti atom(B12Ti4-4H2) is the same as the corresponding B12Sc4-4H2.B12Ti4can adsorb 8 hydrogen molecules at most.The optimized B12Ti4-8H2is presented in Fig.4 as isomer 8,which is slightly different from B12Sc4-8H2.The average binding energies per hydrogen molecule(ABE/H2),the largest and shortest Sc-H(Ti-H)distances,the bond lengths of hydrogen molecules for both B12Sc4-nH2and B12Ti4-nH2(n=4,8,12 for B12Sc4;n=4,8 for B12Ti4)are listed in Table 1.

    Fig.4 Structures of B12Sc4-nH2and B12Ti4-nH25:B12Sc4-4H2,6:B12Sc4-8H2,7:B12Sc4-12H2,8:B12Ti4-8H2

    Table 1 Average binding energies of H2molecule(in kJ·mol-1per H2),M-H distances(M=Sc,Ti),and bond lengths of H2in B12Sc4-nH2and B12Ti4-nH2(in nm)

    Now,we begin to discuss the interaction between B12Sc4and H2molecules.In B12Sc4-4H2(5),the shortest Sc-H distance is 0.223 nm,and the average Sc-H distance is 0.229 nm.These Sc-H distances are longer than the normal Sc―H bond length (about 0.18 nm in ScH2molecule42,43).The ABE/H2of B12Sc4-4H2(5)is only-11.6 kJ·mol-1,whereas we have noted that in B80Sc-H2,the binding energy of H2to B80Sc is-42.5 kJ·mol-1.25The large difference of ABE/H2between B12Sc4-4H2and B80Sc-H2indicates that the structure of the BxScydoped cluster has a significant effect on the binding energy of H2adsorbed on it.In B12Sc4-4H2(5),the H―H bond length is 0.077 nm,which is longer than the bond length of an isolated hydrogen molecule (0.074 nm optimized at the B3LYP/6-31G(d,p)level).On C60Sc12,the first H2will dissociate when binding to a Sc atom.13The elongation of the H-H bond length is caused both by the Kubas interaction and induced interaction.We have calculated the K+-H2and Ca2+-H2systems at the B3LYP/6-31G(d,p)level to estimate the effect of the induced interaction to the H-H bond.The result shows that the H-H bond lengths of K+-H2and Ca2+-H2are 0.075 and 0.076 nm,respectively,which both are slightly longer than 0.074 nm of a free H2molecule,and smaller than that of B12Sc4-4H2.The ABE/H2of B12Sc4-8H2(6) and B12Sc4-12H2(7)are-11.9 and-10.4 kJ·mol-1,respectively. With three hydrogen atoms on each Sc atom,the hydrogen storage capacity of B12Sc4-12H2can reach to 7.25%.

    As regards B12Ti4,it can accommodate for 8 hydrogen molecules at most,and reach to 4.78%hydrogen storage capacity only.However,the ABE/H2of B12Ti4-nH2is significantly greater than that of corresponding B12Sc4-nH2,as shown in Table 1. In B12Ti4-4H2,the Ti-H distances range from 0.201 to 0.209 nm,and have an average value of 0.205 nm,being longer than the normal Ti―H bond.The calculated Ti―H bond length in TiH4is about 0.170 nm,44and the experimental values range from 0.169 to 0.184 nm in different compounds.45,46The H-H distance of B12Ti4-4H2is 0.079 nm,which is 0.005 nm longer than thatoffree hydrogen molecule. The ABE/H2of B12Ti4-4H2is-67.5 kJ·mol-1,which is remarkably larger than that of B12Sc4-4H2.The large ABE/H2of B12Ti4-4H2may raise a doubt that the hydrogen molecule will dissociate to atoms in B12Ti4-H2.So,additional calculation about B12Ti4-H2is performed.As a comparison,B12Sc4-H2is also considered.Natural bond orbital(NBO)analysis indicates that the H―H bond is hold in B12Ti4-H2,with a bond length of 0.079 nm.However, the ABE/H2of B12Ti4-H2reaches to-201.0 kJ·mol-1,making it difficult to release the H2molecule.Considered that B12Ti4can adsorb 8 hydrogen molecules at most,it can conclude that B12Ti4is not a good candidate for hydrogen storage.The ABE/ H2of B12Sc4-H2is-12.3 kJ·mol-1,which being similar to that of other B12Sc4-nH2.

    A detail analysis about the orbitals of B12Sc4-4H2and B12Ti4-4H2can account for why the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2.Given that the charge of Ti atoms (NBO charge:1.26|e|)in B12Ti4is smaller than that of Sc atoms (NBO charge:0.95|e|)in B12Sc4,It is rational to conclude that the Kubas interaction in B12Ti4-nH2is more strong than that in B12Sc4-nH2.In B12Sc4-nH2and B12Ti4-nH2,the Kubas interaction involves the interaction of the σ-bonds of H2molecules to unoccupied orbitals of Sc and Ti atoms,as well as the σ*-bonds of H2molecules to occupied orbitals of Sc and Ti atoms.

    In Fig.5,we give out the orbitals mainly located on hydrogen molecules both of B12Sc4-4H2and B12Ti4-4H2.For B12Sc4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 87%to 91%.The contributions from Sc atoms are all below 10%.However,for B12Ti4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 78%to 85%.The contributions from Ti atoms are in a range of 12%to 15%.The components of these orbitals clearly indicate that there are more electrons in σ-bonds of H2molecules transferred to the d orbital of metal atoms in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.5 Orbitals mainly located on hydrogen molecules in B12Sc4-4H2and B12Ti4-4H2 for B12Sc4-4H2,a:HOMO-22,b:HOMO-21,c:HOMO-20,d:HOMO-19;for B12Ti4-4H2,e:HOMO-24,f:HOMO-23,g:HOMO-22,h:HOMO-21

    Nearby the HOMO orbital,there are five orbitals involving the σ*-bonds of H2molecules and more than 5%contributions from hydrogen molecules are found for B12Ti4-4H4.They are HOMO,HOMO-1,HOMO-2,HOMO-4,and HOMO-5,as listed in Fig.6.The components from H2molecules in these five orbitals are 5.6%,14.0%,5.2%,9.0%,and 9.2%,respectively.For B12Sc4-4H4,only two similar types of orbitals are found.They are HOMO-1 and HOMO-2.The components from H2molecules in these two orbitals are 6.4%and 8.6%,respectively.The components of these orbitals indicate that there are more electrons from the d orbital of metal atoms donated back to the σ*-bonds of H2molecules in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.6 Orbitals involving the σ*-bonds of H2molecules in B12Sc4-4H2and B12Ti4-4H2for B12Sc4-4H2,a:HOMO-2,b:HOMO-1;for B12Ti4-4H2,c:HOMO-5,d:HOMO-4,e:HOMO-2,f:HOMO-1,g:HOMO

    Above discussion clearly indicates that the Kubas interaction in B12Ti4-4H2is much stronger than that in B12Sc4-4H2.So, it is not surprising that the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2due to the stronger Kubas interaction.The strong Kubas interaction in B12Ti4-nH2also is implied by the longer H―H bond length.As listed in Table 1,the H―H bond lengths are 0.079 and 0.078 nm in B12Ti4-4H2and B12Ti4-8H2, respectively,being longer than those in B12Sc4-4H2(0.077 nm) and B12Sc4-8H2(0.076 nm).

    Now,it is necessary to consider the influences of the temperature and the pressure of hydrogen on the process of the hydrogen storage and release.The changes of Gibbs free energy (ΔG)for the process of B12Sc4+12H2→B12Sc4-12H2were calculated at 77 and 300 K with the hydrogen pressure of 1.013×105Pa.The ΔG at 77 and 300 K are 37.3 and 301.5 kJ·mol-1,respectively.The positive ΔG indicates that high hydrogen pressure is necessary to make hydrogen hold on B12Sc4.As done by Zhao et al.6,the influence of hydrogen pressure can be estimated with ideal gas model for hydrogen.Our calculation shows that B12Sc4-12H2will release hydrogen when the hydrogen pressure drops back below 129.696×105Pa at 77 K.At 300 K,it needs a drastically high pressure to hold the hydrogen on B12Sc4.It should be noted that the ideal gas model can only give a gross estimation,especially at high pressure.So,the real pressure of hydrogen should be lower than that estimated by ideal gas model.For B12Ti4-8H2,at 300 K it will release hydrogen when the hydrogen pressure drops back below 0.02×105Pa.However,it is difficult to release the last hydrogen molecule.It is also hard to release the hydrogen at 77 K.

    4 Conclusions

    In the present work,the structures and hydrogen adsorption properties of B12Sc4and B12Ti4clusters were investigated with the first-principles calculations.Both in B12Sc4and B12Ti4,metal atoms prefer binding to B atoms other than clustering together.The B12Sc4can bind up to 12 H2molecules with an ABE/H2of-10.4 kJ·mol-1,while B12Ti4can only host 8 H2molecules at most with an ABE/H2of-50.3 kJ·mol-1.Indeed,the hydrogen adsorption capacities of B12Sc4and B12Ti4clusters we proposed here are not more excellent than a chained B5Ti structure suggested by other stuffs.However,our works would be useful for guiding the design of the hydrogen storage materials based on transition metal-boron clusters.It is very interesting that we find that in B12Sc4,B3rings have s-,p-,and d-like orbitals when interacting with Sc atom.We also find that the Kubas interaction in B12Ti4-nH2complex is much stronger than that in B12Sc4-nH2complex.

    Supporting Information Available: The geometries of some calculated B12Sc4and B12Ti4isomers and their relative energies have been included.The detail configures for molecular dynamic(MD)calculation also have been listed.Two pieces of movies demonstrating the MD trajectory of B12Sc4and B12Ti4have been provided.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/ 35104634

    (2) Coontz,R.;Hanson,B.Science 2004,305,957.doi:10.1126/ science.305.5686.957

    (3) Crabtree,G.W.;Dresselhaus,M.S.;Buchanan,M.V.Phys. Today 2004,57,39.doi:10.1063/1.1878333

    (4) Tao,Z.L.;Peng,B.;Liang,J.;Cheng,F.Y.;Chen,J.Meter. China 2009,28,7. [陶占良,彭 博,梁 靜,程方益,陳 軍.中國材料進展,2009,28,7.]

    (5) Xu,W.;Tao,Z.L.;Chen,J.Prog.Chem.2006,18,2.[許 煒,陶占良,陳 軍.化學(xué)進展,2006,18,2.]

    (6) Zhao,X.B.;Xiao,B.;Fletcher,A.J.;Thomas,K.M.J.Phys. Chem.B 2005,109,8880.

    (7) Qu,D.Chem.Eur.J.2008,14,1040.doi:10.1002/chem. 200701042

    (8) Zaluska,A.;Zaluski,L.;Str?m-Olsen,J.O.Appl.Phys.A 2001, 72,157.doi:10.1007/s003390100783

    (9) Bogdanovic,B.;Schwickardi,M.J.Alloy.Compd.1997,253,1. doi:10.1016/S0925-8388(96)03049-6

    (10) Orimo,S.;Nakamori,Y.;Eliseo,J.R.;Zuttel,A.;Jensen,C.M. Chem.Rev.2007,107,4111.doi:10.1021/cr0501846

    (11)Ning,H.;Tao,X.M.;Wang,M.M.;Cai,J.Q.;Tan,M.Q.Acta Phys.-Chim.Sin.2010,26,2267.[寧 華,陶向明,王芒芒,蔡建秋,譚明秋.物理化學(xué)學(xué)報,2010,26,2267.]doi:10.3866/ PKU.WHXB20100828

    (12) Li,G.X.;Chen,X.W.;Bai,J.D.;Lan,Z.Q.;Guo,J.Acta Phys.-Chim.Sin.2010,26,1448.[黎光旭,陳曉偉,白加棟,藍志強,郭 進.物理化學(xué)學(xué)報,2010,26,1448.]doi:10.3866/ PKU.WHXB20100540

    (13)Wang,H.;Gao,Q.;Hu,J.J.Am.Chem.Soc.2009,131,7016. doi:10.1021/ja8083225

    (14) Miao,Y.L.;Sun,H.;Wang,L.;Sun,Y.X.Acta Phys.-Chim. Sin.2012,28,547.[苗延霖,孫 淮,王 琳,孫迎新.物理化學(xué)學(xué)報,2012,28,547.]doi:10.3866/PKU.WHXB201112301

    (15)Yang,Z.;Xia,Y.;Robert,M.J.Am.Chem.Soc.2007,129, 1673.doi:10.1021/ja067149g

    (16)Koh,K.;Wong-Foy,A.G.;Matzger,A.J.J.Am.Chem.Soc. 2009,131,4184.doi:10.1021/ja809985t

    (17) Zhao,D.;Daren,J.T.;Yuan,D.;Zhou,H.C.Accounts Chem. Res.2011,44,123 and references therein.doi:10.1021/ ar100112y

    (18)Zhao,Y.;Kim,Y.H.;Dillon,A.C.;Heben,M.J.;Zhang,S.B. Phys.Rev.Lett.2005,94,155504.doi:10.1103/PhysRevLett. 94.155504

    (19) Yildirim,T.;Ciraci,S.Phys.Rev.Lett.2005,94,175501.doi: 10.1103/PhysRevLett.94.175501

    (20) Kubas,G.J.J.Organomet.Chem.2001,635,37.doi:10.1016/ S0022-328X(01)01066-X

    (21) Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.J.Am.Chem.Soc. 2005,127,14582.doi:10.1021/ja0550125

    (22) Sun,Q.;Jena,P.;Wang,Q.;Marquez,M.J.Am.Chem.Soc. 2006,128,9741.doi:10.1021/ja058330c

    (23) Wang,Q.;Sun,Q.;Jena,P.;Kawazoe,Y.J.Chem.Theory Comput.2009,5,374.doi:10.1021/ct800373g

    (24) Chandrakumar,K.R.S.;Ghosh,S.K.Nano Lett.2008,8,13. doi:10.1021/nl071456i

    (25) Liu,W.;Zhao,Y.H.;Li,Y.;Jiang,Q.;Lavernia,E.J.J.Phys. Chem.C 2009,113,2028.doi:10.1021/jp8091418

    (26) Rabilloud,F.J.Phys.Chem.A 2010,114,7241.doi:10.1021/ jp103124w

    (27) Meng,S.;Kaxiras,E.;Zhang,Z.Nano Lett.2007,7,663.doi: 10.1021/nl062692g

    (28) Zhao,Y.F.;Lusk,M.T.;Dillon,A.C.;Heben,M.J.;Zhang,S. B.Nano Lett.2008,8,157.doi:10.1021/nl072321f

    (29) Li,Y.C.;Zhou,G.;Li,J.;Gu,B.L.;Duan,W.H.J.Phys.Chem. C 2008,112,19268.doi:10.1021/jp807156g

    (30) Wu,G.;Wang,J.L.;Zhang,X.;Zhu,L.J.Phys.Chem.C 2009, 113,7052.doi:10.1021/jp8113732

    (31) Li,M.;Li,Y.;Zhou,Z.;Shen,P.;Chen,Z.Nano Lett.2009,9, 1944.doi:10.1021/nl900116q

    (32) Zhao,J.;Wang,L.;Li,F.;Chen,Z.J.Phys.Chem.A 2010,114, 9969.doi:10.1021/jp1018873

    (33) Li,F.;Zhao,J.;Chen,Z.Nanotechnology 2010,21,134006. doi:10.1088/0957-4484/21/13/134006

    (34) Wu,H.S.;Qin,X.F.;Xu,X.H.;Jiao,H.;Schelyer,P.v.R. J.Am.Chem.Soc.2005,127,2334.doi:10.1021/ja046740f

    (35) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/ 1.464913

    (36) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (37) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.01;Gaussian Inc.:Pittsburgh,PA,2004.

    (38) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2005,1,415. doi:10.1021/ct049851d

    (39) Mohan,N.;VIjayalakshmi,K.P.;Koga,N.;Suresh,C.H. J.Comput.Chem.2010,31,2874.

    (40) Boustani,I.Phys.Rev.B 1997,55,16426.doi:10.1103/ PhysRevB.55.16426

    (41) http:/cp2k.berlios.de.

    (42) Balasubramanina,K.Chem.Phys.Lett.1987,135,288.doi: 10.1016/0009-2614(87)85158-8

    (43) Bauschlicher,C.W.,Jr.;Walch,S.P.J.Chem.Phys.1982,76, 4560.doi:10.1063/1.443532

    (44) Thomas,J.R.;Quelch,G.E.;Seidl,E.T.;Schaefer,H.F.,III. J.Chem.Phys.1992,96,6857.doi:10.1063/1.462575

    (45) Lukens,W.W.,Jr.;Matsunaga,P.T.;Andersen,R.A. Organometallics 1998,17,5240.doi:10.1021/om980601n

    (46) Pattiasina,J.W.;Bolhuis,F.;Teuben,J.H.Angew.Chem.Int. Edit.1987,26,330.doi:10.1002/anie.198703301

    January 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Hydrogen Storage Properties of B12Sc4and B12Ti4Clusters

    MALi-Juan WANG Jian-Feng JIAJian-Feng*WU Hai-Shun
    (School of Chemistry and Materials Science,Shanxi Normal University,Linfen 041004,Shanxi Province,P.R.China)

    The structures and hydrogen storage properties of two stable B12Sc4and B12Ti4clusters have been investigated using ab initio calculations.No metal atom clustering occurs in the clusters.The B12Sc4hosts 12 H2to achieve 7.25%(mass fraction)hydrogen storage capacity with an average binding energy (ABE)of-10.4 kJ·mol-1per H2,while the B12Ti4can only host 8 H2(4.78%,mass fraction)with a higher ABE (-50.2 kJ·mol-1per H2).High hydrogen pressure is needed for B12Sc4to hold 12 H2,even at 77 K. Electronic structure analysis indicates that the Kubas interaction in the B12Ti4-nH2complex is much stronger than that in the B12Sc4-nH2complex.

    Boron cluster;Metal doping;Hydrogen storage;Adsorption;Ab initio calculation

    10.3866/PKU.WHXB201205151

    ?Corresponding author.Email:jjf_sxtu@yahoo.com.cn;Tel:+86-357-2051375.

    The project was supported by the National Basic Research 973 Pre-research Program of China(2010CB635110)and Natural Science Foundation of Shanxi Province,China(2010011012-2).

    973計劃前期研究專項課題(2010CB635110)與山西省自然科學(xué)基金(2010011012-2)資助項目

    O641

    猜你喜歡
    劍鋒儲氫物理化學(xué)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    站用儲氫瓶式容器組缺陷及檢測方法
    我國固定式儲氫壓力容器發(fā)展現(xiàn)狀綜述
    蛼螯燒賣
    美食(2022年5期)2022-05-07 22:27:35
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    張劍鋒書畫作品選登
    Chemical Concepts from Density Functional Theory
    篆刻
    對聯(lián)(2018年11期)2018-02-22 07:04:14
    儲氫合金La0.74Mg0.26Ni2.55Co0.55Al0.2Fe0.1的制備與電化學(xué)性能
    91麻豆精品激情在线观看国产| 最近2019中文字幕mv第一页| 欧美最黄视频在线播放免费| 好男人视频免费观看在线| 久久久久国产网址| 国产在视频线在精品| 51国产日韩欧美| 人妻久久中文字幕网| 99热这里只有是精品50| 天天一区二区日本电影三级| 只有这里有精品99| 一边亲一边摸免费视频| 一区二区三区免费毛片| 国产v大片淫在线免费观看| 成人美女网站在线观看视频| 成人亚洲欧美一区二区av| 日日啪夜夜撸| a级毛片免费高清观看在线播放| 99riav亚洲国产免费| 特大巨黑吊av在线直播| 久久鲁丝午夜福利片| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免| 国产精品不卡视频一区二区| 精品久久久久久久久久久久久| АⅤ资源中文在线天堂| 成人毛片a级毛片在线播放| 国产亚洲av片在线观看秒播厂 | 国产av不卡久久| 免费人成视频x8x8入口观看| 婷婷色av中文字幕| 国产探花极品一区二区| 黄片无遮挡物在线观看| 免费观看人在逋| 在线免费观看不下载黄p国产| 99热这里只有是精品50| 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 免费人成视频x8x8入口观看| 人妻久久中文字幕网| 人人妻人人看人人澡| 久久精品91蜜桃| 九九久久精品国产亚洲av麻豆| 69人妻影院| 久久99热6这里只有精品| 校园春色视频在线观看| 狠狠狠狠99中文字幕| 91av网一区二区| 亚洲久久久久久中文字幕| 亚洲精品粉嫩美女一区| 2021天堂中文幕一二区在线观| 亚洲欧美日韩东京热| 尤物成人国产欧美一区二区三区| 青春草国产在线视频 | 国产色爽女视频免费观看| 国产一级毛片在线| av女优亚洲男人天堂| 精品久久久久久久末码| 99久久无色码亚洲精品果冻| 观看美女的网站| 搡老妇女老女人老熟妇| 91精品国产九色| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线 | 99久久九九国产精品国产免费| 99国产极品粉嫩在线观看| 亚洲欧洲日产国产| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 免费看a级黄色片| 我要看日韩黄色一级片| 一级av片app| 亚洲,欧美,日韩| 免费看a级黄色片| 中国国产av一级| 久久精品国产亚洲网站| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| av卡一久久| 校园春色视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久成人av| 国产成人aa在线观看| 亚洲五月天丁香| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| 久久九九热精品免费| 成人二区视频| 老女人水多毛片| 国产精品国产高清国产av| 久久久久久九九精品二区国产| 国产私拍福利视频在线观看| 日韩三级伦理在线观看| 国产不卡一卡二| 日日撸夜夜添| 日韩中字成人| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 国产乱人视频| 最近中文字幕高清免费大全6| 欧美另类亚洲清纯唯美| 伊人久久精品亚洲午夜| 欧美三级亚洲精品| av.在线天堂| 国产日韩欧美在线精品| 久久人妻av系列| 内射极品少妇av片p| 悠悠久久av| 免费av毛片视频| 亚洲av不卡在线观看| 日韩视频在线欧美| 欧美最新免费一区二区三区| 国产午夜精品久久久久久一区二区三区| 五月玫瑰六月丁香| 好男人视频免费观看在线| 性欧美人与动物交配| 免费一级毛片在线播放高清视频| 亚洲国产高清在线一区二区三| 搡女人真爽免费视频火全软件| 日本av手机在线免费观看| 高清毛片免费看| 你懂的网址亚洲精品在线观看 | 老司机影院成人| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 亚洲精品影视一区二区三区av| 中文字幕人妻熟人妻熟丝袜美| 国内精品美女久久久久久| 久久精品综合一区二区三区| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 色哟哟·www| 非洲黑人性xxxx精品又粗又长| 免费看光身美女| 男女做爰动态图高潮gif福利片| 国产亚洲av嫩草精品影院| 国产av麻豆久久久久久久| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区成人| 午夜久久久久精精品| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 久久精品国产鲁丝片午夜精品| 精品一区二区三区人妻视频| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 22中文网久久字幕| av卡一久久| 日韩视频在线欧美| 村上凉子中文字幕在线| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 免费电影在线观看免费观看| 久久久久性生活片| 你懂的网址亚洲精品在线观看 | 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 哪里可以看免费的av片| 啦啦啦啦在线视频资源| 免费观看在线日韩| 国产黄片视频在线免费观看| 国产成人a区在线观看| 国产三级中文精品| 一区二区三区免费毛片| 亚洲性久久影院| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频| 日韩在线高清观看一区二区三区| 免费av毛片视频| 精品人妻熟女av久视频| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 别揉我奶头 嗯啊视频| 两个人的视频大全免费| 毛片一级片免费看久久久久| 欧美潮喷喷水| 精品一区二区免费观看| 一进一出抽搐动态| 女同久久另类99精品国产91| 嫩草影院精品99| 亚洲不卡免费看| 91久久精品电影网| 夜夜爽天天搞| 欧美高清成人免费视频www| 国产高清激情床上av| 精品人妻熟女av久视频| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 爱豆传媒免费全集在线观看| 岛国在线免费视频观看| 国产精品久久久久久精品电影小说 | 日韩精品有码人妻一区| 两个人视频免费观看高清| 国产69精品久久久久777片| 18+在线观看网站| 波多野结衣高清无吗| 色综合站精品国产| 久久久久网色| 黄色欧美视频在线观看| 天堂中文最新版在线下载 | 亚洲内射少妇av| 成人av在线播放网站| 国产乱人偷精品视频| 国产大屁股一区二区在线视频| 国产淫片久久久久久久久| 日本三级黄在线观看| 不卡一级毛片| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 国产老妇伦熟女老妇高清| 国产精品乱码一区二三区的特点| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 2022亚洲国产成人精品| 好男人在线观看高清免费视频| 免费看光身美女| 亚洲内射少妇av| 九九爱精品视频在线观看| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 久久这里有精品视频免费| 国产不卡一卡二| 午夜精品在线福利| 国产色爽女视频免费观看| 不卡视频在线观看欧美| 日本五十路高清| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 男插女下体视频免费在线播放| 中文资源天堂在线| 亚洲精品色激情综合| 中出人妻视频一区二区| 午夜福利在线在线| 成人性生交大片免费视频hd| 国语自产精品视频在线第100页| a级毛片a级免费在线| av黄色大香蕉| 午夜a级毛片| 一级黄片播放器| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 亚洲在线自拍视频| 国产私拍福利视频在线观看| 99热这里只有精品一区| 日韩欧美精品v在线| 亚洲欧美中文字幕日韩二区| av.在线天堂| 亚洲av熟女| 国产午夜精品一二区理论片| 九色成人免费人妻av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品亚洲一区二区| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 一级毛片aaaaaa免费看小| 丰满的人妻完整版| 欧美高清性xxxxhd video| 久久99精品国语久久久| 可以在线观看的亚洲视频| 日本成人三级电影网站| 毛片一级片免费看久久久久| 亚洲最大成人中文| 日本av手机在线免费观看| 午夜视频国产福利| 一边亲一边摸免费视频| 精品久久久噜噜| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 人妻夜夜爽99麻豆av| 性插视频无遮挡在线免费观看| 日韩成人伦理影院| 91久久精品国产一区二区三区| 久久久久久久亚洲中文字幕| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 中文字幕精品亚洲无线码一区| 99久久成人亚洲精品观看| 国产精品一区二区在线观看99 | 日本欧美国产在线视频| 成人综合一区亚洲| 日产精品乱码卡一卡2卡三| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 国内精品美女久久久久久| 激情 狠狠 欧美| 人妻久久中文字幕网| 国产午夜福利久久久久久| 成人特级av手机在线观看| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 九九热线精品视视频播放| 精品日产1卡2卡| 看十八女毛片水多多多| 一区二区三区四区激情视频 | 六月丁香七月| h日本视频在线播放| 欧美日韩乱码在线| 伦精品一区二区三区| 一级毛片电影观看 | 亚洲性久久影院| 久久久精品94久久精品| 免费一级毛片在线播放高清视频| 国产黄a三级三级三级人| 男女那种视频在线观看| 亚洲一级一片aⅴ在线观看| 亚洲图色成人| 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类| 人妻夜夜爽99麻豆av| 一级毛片我不卡| 婷婷亚洲欧美| 日韩av在线大香蕉| 看十八女毛片水多多多| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 尾随美女入室| 超碰av人人做人人爽久久| 看片在线看免费视频| АⅤ资源中文在线天堂| 美女被艹到高潮喷水动态| 波多野结衣高清作品| 观看免费一级毛片| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 日韩一区二区视频免费看| 一本精品99久久精品77| 99视频精品全部免费 在线| 亚洲av.av天堂| 1024手机看黄色片| 国产在线男女| 午夜a级毛片| 欧美色视频一区免费| 看黄色毛片网站| 精品久久久久久久久亚洲| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 亚洲精品久久国产高清桃花| 人人妻人人看人人澡| 久久99热这里只有精品18| 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看| 精品久久久久久久久av| 亚洲av不卡在线观看| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 黄色视频,在线免费观看| 国产日韩欧美在线精品| 久久久欧美国产精品| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 久久久久久国产a免费观看| 国产av麻豆久久久久久久| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 亚洲无线在线观看| 成人永久免费在线观看视频| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 能在线免费看毛片的网站| 精品不卡国产一区二区三区| 99久久精品国产国产毛片| 免费观看在线日韩| 国产精品一区www在线观看| 22中文网久久字幕| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 成年免费大片在线观看| 18禁黄网站禁片免费观看直播| 91精品国产九色| 黄片wwwwww| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 午夜久久久久精精品| 美女黄网站色视频| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 精品久久久久久久末码| 国产一级毛片七仙女欲春2| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 最近的中文字幕免费完整| 国产av在哪里看| 干丝袜人妻中文字幕| 91av网一区二区| 校园春色视频在线观看| 99久久中文字幕三级久久日本| 丝袜喷水一区| 亚洲欧洲日产国产| 亚洲性久久影院| 一区二区三区四区激情视频 | 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 久久午夜福利片| 你懂的网址亚洲精品在线观看 | 欧美潮喷喷水| 欧美性感艳星| 婷婷亚洲欧美| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 久久久久性生活片| 国产不卡一卡二| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 美女被艹到高潮喷水动态| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 欧美xxxx黑人xx丫x性爽| 天堂中文最新版在线下载 | 身体一侧抽搐| 人妻系列 视频| 深夜a级毛片| 欧美高清性xxxxhd video| 国产私拍福利视频在线观看| 日韩一区二区视频免费看| 青春草亚洲视频在线观看| 国产精品乱码一区二三区的特点| 成人无遮挡网站| 寂寞人妻少妇视频99o| 国产黄色视频一区二区在线观看 | 国产黄片视频在线免费观看| 国产老妇女一区| 精品一区二区三区视频在线| 久久99蜜桃精品久久| 亚洲人成网站在线播| 色吧在线观看| 国产午夜精品一二区理论片| 久久6这里有精品| 熟女电影av网| 午夜激情欧美在线| 欧美bdsm另类| 亚洲av成人精品一区久久| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 全区人妻精品视频| 国产黄色视频一区二区在线观看 | 99国产精品一区二区蜜桃av| 免费观看在线日韩| 日本撒尿小便嘘嘘汇集6| av专区在线播放| 亚洲熟妇中文字幕五十中出| 91精品一卡2卡3卡4卡| 69av精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 日韩大尺度精品在线看网址| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 一本久久中文字幕| 久久欧美精品欧美久久欧美| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久影院| 在线国产一区二区在线| 欧美激情在线99| 天堂中文最新版在线下载 | 精品人妻偷拍中文字幕| 欧美成人精品欧美一级黄| 久久精品国产清高在天天线| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 精品一区二区三区人妻视频| 女人被狂操c到高潮| www.色视频.com| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 亚洲电影在线观看av| 99热6这里只有精品| 在线观看一区二区三区| 中文字幕久久专区| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 久久婷婷人人爽人人干人人爱| 免费人成在线观看视频色| 国产黄色小视频在线观看| 国产精品久久久久久久电影| 日本撒尿小便嘘嘘汇集6| 国产伦精品一区二区三区视频9| 日韩大尺度精品在线看网址| 精品免费久久久久久久清纯| 国产极品精品免费视频能看的| 麻豆精品久久久久久蜜桃| 日韩制服骚丝袜av| 国产午夜精品一二区理论片| 一个人观看的视频www高清免费观看| 国产免费一级a男人的天堂| 女人被狂操c到高潮| 色吧在线观看| 色5月婷婷丁香| 性色avwww在线观看| 欧美又色又爽又黄视频| 高清在线视频一区二区三区 | 亚洲精品影视一区二区三区av| 一进一出抽搐gif免费好疼| 91精品国产九色| 亚洲自偷自拍三级| 国产伦理片在线播放av一区 | 如何舔出高潮| 26uuu在线亚洲综合色| 欧美成人免费av一区二区三区| 欧美日韩在线观看h| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 男人狂女人下面高潮的视频| 热99在线观看视频| 久久人妻av系列| 国产国拍精品亚洲av在线观看| 99久久精品一区二区三区| 乱人视频在线观看| 国产午夜精品论理片| 精品免费久久久久久久清纯| 岛国毛片在线播放| 久久久久九九精品影院| 岛国毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 免费av不卡在线播放| 一区二区三区免费毛片| 国产精品.久久久| 中国美女看黄片| 在线a可以看的网站| 久久久久九九精品影院| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av二区三区四区| 国产极品天堂在线| 成人av在线播放网站| 亚洲中文字幕日韩| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 日本一二三区视频观看| 国产精品一区二区性色av| 久99久视频精品免费| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 国产亚洲5aaaaa淫片| 中出人妻视频一区二区| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| 亚州av有码| 日韩一区二区视频免费看| 最近视频中文字幕2019在线8| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 三级男女做爰猛烈吃奶摸视频| 久久九九热精品免费| 国产乱人视频| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 国产在线男女| 一夜夜www| 在线观看66精品国产| 在线免费十八禁| 成人国产麻豆网| 在线播放无遮挡| 亚洲最大成人手机在线| 看非洲黑人一级黄片| 亚洲人成网站在线观看播放| 一本久久中文字幕| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区四那| 97热精品久久久久久| 2022亚洲国产成人精品| 国产成人精品一,二区 | 中国美白少妇内射xxxbb| 日本欧美国产在线视频| 少妇丰满av| 97超碰精品成人国产| 国产精华一区二区三区| 26uuu在线亚洲综合色| kizo精华| 国产精品嫩草影院av在线观看| 国内揄拍国产精品人妻在线| 亚洲精华国产精华液的使用体验 | 91aial.com中文字幕在线观看| 精品久久久噜噜| av卡一久久| 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| videossex国产| 日本色播在线视频| 少妇的逼水好多| 久久国内精品自在自线图片| avwww免费| 亚洲无线观看免费| 成人av在线播放网站| 亚洲av男天堂| 日本熟妇午夜| 三级毛片av免费| 国产成年人精品一区二区| 免费无遮挡裸体视频| 久久精品久久久久久久性| 变态另类丝袜制服| 欧美日韩综合久久久久久| 特大巨黑吊av在线直播| 噜噜噜噜噜久久久久久91|