• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    2012-12-21 06:34:10馬麗娟王劍鋒賈建峰武海順
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:劍鋒儲氫物理化學(xué)

    馬麗娟 王劍鋒 賈建峰 武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    馬麗娟 王劍鋒 賈建峰*武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    提出了兩個穩(wěn)定的團簇B12Sc4和B12Ti4,基于理論計算,研究了它們的結(jié)構(gòu)與儲氫性質(zhì).結(jié)果發(fā)現(xiàn),在這兩個穩(wěn)定的團簇中,過渡金屬原子不會聚合在一起而影響它們對氫氣的吸附.B12Sc4最多可以吸附12個氫分子,達到7.25%(質(zhì)量分數(shù))的儲氫量,它的平均每氫分子吸附能量為-10.5 kJ·mol-1.B12Ti4最多只能吸附8個氫分子,儲氫量為4.78%,但其平均每氫分子吸附能量可達-50.2 kJ·mol-1.進一步計算表明,即使在77 K,也需要很高的氫氣壓力才能使12個氫分子都吸附到B12Sc4上.電子結(jié)構(gòu)分析表明,B12Ti4-nH2吸附結(jié)構(gòu)中的Kubas作用要大于相應(yīng)B12Sc4-nH2結(jié)構(gòu)中的Kubas作用.

    硼團簇;金屬摻雜;儲氫;吸附;從頭算

    1 Introduction

    Hydrogen is widely viewed as the next generation of energy carrier to replace the fossil fuels due to its abundance,high chemical energy,and pollution-free burning.1-3However,hydrogen storage is a“bottleneck”for the on-board application of hydrogen as energy carrier.Several ways have been investigated and developed to store hydrogen gas,involving its compression,liquefaction,and adsorption in several metals and metal alloys and so on.Unfortunately,none of these technologies are good enough to satisfy the on-board application of hydrogen energy,even though each way possesses desirable characteristics in certain areas.4-7For example,very high pressure vessels are capable of storing hydrogen about 9%(mass fraction),however,so high pressure will bring serious security problem.The hydrogen storage capacities of many complex hydrides,such as Li3Be2H7,8NaAlH49and so on,10-12in which hydrogen atoms are chemical bonded to metals,are beyond about 6%.However they can not be easily,quickly recovered when exhausted.Highly porous carbon materials13-15and metal organic frameworks(MOF)16,17represent another type of hydrogen storage material,which interact with hydrogen physically,and are kineticly favorable for recharge of hydrogen.However, they can achieve high storage capacity only under very low temperature.At ambient temperature,these materials barely adsorb hydrogen due to weak interaction between hydrogen and the solid materials.

    Zhao et al.18proposed that the fullerene decorated by transition metal may be a good candidate for hydrogen storage. Based on theoretical calculations,they found that Sc decorated C60and C48B12are capable of storing hydrogen about 7%and 8.77%at ambient condition.At the same time,Yildirim and Ciraci19showed that Ti decorated carbon nanotube can approach about 8%hydrogen storage capacity.In both Sc decorated C60and Ti decorated carbon nanotube,the transition metal atoms scatter on the surface of carbon nanomaterials,and bind with hydrogen molecules through Kubas interaction.20

    Unfortunately,Sun?s theoretical investigation21indicated that transition metal atoms on C60will be clustered rather than scattered,and the clustering of the transition metal atoms will significantly reduce the mass percentage of hydrogen storage.Sun et al.22,23found that the clustering problem can be resolved by replacing the transition metal atoms with alkali metal atoms or alkaline-earth metal atoms.However,alkali or alkaline-earth metal doped fullerene can only be used in low temperature due to the small binding energy of hydrogen molecule to them.24,25Moreover,the recent theoretical study shows some alkali metal atoms,such as Na,also will be aggregated on the surface of C60.26

    Meng et al.27found that the Ti atoms on the boron nanotube, contrary to on carbon nanostructure,will keep in isolation from each other.Theoretical calculations showed that metal doped icosahedral B80also does not suffer the clustering problem,being a promising hydrogen storage candidate.28-31

    However,more recent theoretical calculations indicated that the most stable B80and other medium-sized boron clusters have core-shell rather than hollow cage structure.32Zhao and his coworkers33have designed a new type of hydrogen storage media,chained TiBx.They found that the most stable TiB5chain can reach 7.3%hydrogen storage capacity with the average binding energy per H2of 43.7 kJ·mol-1.

    In this work,we propose a Sc doped B12cluster and a Ti doped B12cluster,inspired by our previous foundation of a B12core in B12CO12.34The structures of B12Sc4and B12Ti4,as well as their interactions with H2are discussed in detail.

    2 Computational methods

    All the isomers were optimized at the level of density functional theory(DFT)with Becke?s three-parameter exchange35and Lee-Yang-Parr correlation functional36by using Gaussian 03 program.37The standard split valence basis set 6-31G(d,p) was employed to describe the orbitals of all atoms involved. Geometry optimizations were done with no symmetry restriction.All the reported isomers were characterized at the same level as energy minima by frequency calculations.All the population analyses were based on the data obtained at the B3LYP/ 6-31G(d,p)level.Many investigations demonstrated that MP2 method was more reliable for calculating the weak interaction.38,39So,to obtain accurate average binding energy of H2to B12Sc4or B12Ti4,the single point energy calculations for all B12X4-nH2(X=Sc,Ti),the most stable B12X4and H2were performed at the MP2/6-311G(d,p)level.The average binding energy per H2(ABE/H2)was defined as

    where,E[B12X4],E[H2],and E[B12X4-nH2]are the electronic energies of relaxed B12X4,H2,and B12X4-nH2,respectively;and n is the number of H2molecules.The basis set superposition error(BSSE)has been corrected using the full counterpoise method for all the B12X4-nH2complexes at the MP2/6-311G(d, p)level.

    3 Results and discussion

    3.1 Structures of B12Sc4and B12Ti4

    Our proposed B12Sc4cluster is shown as isomer 2 in Fig.1, which has D2dsymmetry,and was optimized from an initio structure,isomer 1.Isomer 1 is originated from a stable(BCO)12boron carbonyl compound.29The multiplicity of isomer 2 is 1.To confirm that it is the favorable structure for B12Sc4,other B12Sc4isomers are considered in our work.Isomer 3 in Fig.1 is constructed from the most stable B12and Sc4clusters.The geometry optimization of isomer 3 gives out the isomer 4,which is less stable than 2 about 703.4 kJ·mol-1at the B3LYP/6-31G(d, p)level.Based on the most stable quasiplanar B12and icosahedral B12,40we put four Sc atoms on it in all possible patterns,all these structures were optimized to amorphous structure with higher energy than isomer 2(see Fig.S1 in Supporting Information for their structures and energies).In isomer 2,it is clear that the Sc atoms do not cluster together.

    Fig.1 Initio and optimized structures of two B12Sc4isomers

    Ab initio molecular dynamic(MD)simulation also confirmed that our proposed B12Sc4is stable.The isomer 2 was simulated using 0.5 fs time step in a 14×14×14 simple cubic supercell with Born-Oppenheimer MD implemented in CP2k code.41First,the system was equilibrated at 1000 K in a NVE ensemble with a temperature tolerance of 500 K within 10000 steps.When it achieved equilibrium,we continued the MD at the same condition for another 5000 steps(see Supporting Information for more detail information about the MD calculation configurations).The result shows that our proposed B12Sc4is intact throughout the whole simulation.A similar MD simulation shows that the IhB80Sc12will collapse to a core-shell structure.We expect that our proposed B12Sc4is stable enough at their possible operation temperatures about 300 K.

    Fig.2 Electronic difference density(in×103nm-3)map of a B3ring in B12Sc4

    Fig.3 Occupied valance orbitals of B12Sc4

    To understand the stability of B12Sc4more foundationally,we has performed a detail inspect about the structure of B12Sc4. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMO-LUMO) of B12Sc4is 2.17 eV.In B12Sc4,12 boron atoms form four three-membered rings(B3).The electronic density difference map(Fig.2)of B3ring shows that electrons mainly shift to the center of the ring.It is clear that an open three-center bond is formed other than a strained‘banana bond’.So,B3rings are non-strained rings in B12Sc4.

    Fig.3 lists all the valance orbitals of B12Sc4,which clearly shows that every B3ring,can be considered as a unit,possesses s-like,p-like,and d-like orbitals,when interacting with Sc atoms.Orbitals 49-52 of B12Sc4are formed by the s-like orbitals of B3units,without any node among the electronic cloud within B3rings.Orbitals 53-61,65,66,and 68 are originated from the p-like orbitals,with only one node among the electronic cloud within every B3ring.Moreover,the p-like orbitals of B3can be classified into px-,py-,and pz-like orbitals.In pz-like orbitals(58,65,66,68),the nodal plane is substantially parallel to the B3ring,while in px-and py-like orbitals,the nodal plane is nearly vertical to the B3ring.It should be noticed that some d-like components hybridize into the orbitals 65 and 66 when it interacts with Sc atoms.Orbitals 62-64,67,and 69-72 are mainly formed by the d-like orbital of B3units with some p-like components hybridizing into orbitals 62-64 significantly.

    The B12Ti4has the same topological structure as isomer 2, and has D2dsymmetry and no unpaired electron.The other isomers constructed based on the most stable quasiplanar B12and icosahedral B12as for B12Sc4are also considered(see Fig.S2 in Supporting Information).They are all higher in energy than isomer 2.The same MD simulation as for B12Sc4was performed for it,which also demonstrates that B12Ti4are stable around 1000 K.The most obvious distinction between B12Sc4and B12Ti4is their metal-metal(M-M)distances.The adjacent Sc-Sc distance in B12Sc4is 0.315 nm while Ti-Ti distance in B12Ti4is only 0.294 nm.Too short M-M distance is unfavorable for hydrogen storage.The HOMO-LUMO energy gap of B12Ti4is only 1.21 eV,nearly the half of B12Sc4.

    3.2 Hydrogen molecule adsorption on B12Sc4and

    B12Ti4

    We now turn to the discussion on the adsorption of hydrogen molecules on the B12Sc4and B12Ti4clusters mentioned above. The optimized adsorbing structures with 1,2,and 3 hydrogen molecules on each Sc atom of B12Sc4are shown in Fig.4 as isomer 5(B12Sc4-4H2),6(B12Sc4-8H2),7(B12Sc4-12H2).The adsorbing structure of B12Ti4with one H2on each Ti atom(B12Ti4-4H2) is the same as the corresponding B12Sc4-4H2.B12Ti4can adsorb 8 hydrogen molecules at most.The optimized B12Ti4-8H2is presented in Fig.4 as isomer 8,which is slightly different from B12Sc4-8H2.The average binding energies per hydrogen molecule(ABE/H2),the largest and shortest Sc-H(Ti-H)distances,the bond lengths of hydrogen molecules for both B12Sc4-nH2and B12Ti4-nH2(n=4,8,12 for B12Sc4;n=4,8 for B12Ti4)are listed in Table 1.

    Fig.4 Structures of B12Sc4-nH2and B12Ti4-nH25:B12Sc4-4H2,6:B12Sc4-8H2,7:B12Sc4-12H2,8:B12Ti4-8H2

    Table 1 Average binding energies of H2molecule(in kJ·mol-1per H2),M-H distances(M=Sc,Ti),and bond lengths of H2in B12Sc4-nH2and B12Ti4-nH2(in nm)

    Now,we begin to discuss the interaction between B12Sc4and H2molecules.In B12Sc4-4H2(5),the shortest Sc-H distance is 0.223 nm,and the average Sc-H distance is 0.229 nm.These Sc-H distances are longer than the normal Sc―H bond length (about 0.18 nm in ScH2molecule42,43).The ABE/H2of B12Sc4-4H2(5)is only-11.6 kJ·mol-1,whereas we have noted that in B80Sc-H2,the binding energy of H2to B80Sc is-42.5 kJ·mol-1.25The large difference of ABE/H2between B12Sc4-4H2and B80Sc-H2indicates that the structure of the BxScydoped cluster has a significant effect on the binding energy of H2adsorbed on it.In B12Sc4-4H2(5),the H―H bond length is 0.077 nm,which is longer than the bond length of an isolated hydrogen molecule (0.074 nm optimized at the B3LYP/6-31G(d,p)level).On C60Sc12,the first H2will dissociate when binding to a Sc atom.13The elongation of the H-H bond length is caused both by the Kubas interaction and induced interaction.We have calculated the K+-H2and Ca2+-H2systems at the B3LYP/6-31G(d,p)level to estimate the effect of the induced interaction to the H-H bond.The result shows that the H-H bond lengths of K+-H2and Ca2+-H2are 0.075 and 0.076 nm,respectively,which both are slightly longer than 0.074 nm of a free H2molecule,and smaller than that of B12Sc4-4H2.The ABE/H2of B12Sc4-8H2(6) and B12Sc4-12H2(7)are-11.9 and-10.4 kJ·mol-1,respectively. With three hydrogen atoms on each Sc atom,the hydrogen storage capacity of B12Sc4-12H2can reach to 7.25%.

    As regards B12Ti4,it can accommodate for 8 hydrogen molecules at most,and reach to 4.78%hydrogen storage capacity only.However,the ABE/H2of B12Ti4-nH2is significantly greater than that of corresponding B12Sc4-nH2,as shown in Table 1. In B12Ti4-4H2,the Ti-H distances range from 0.201 to 0.209 nm,and have an average value of 0.205 nm,being longer than the normal Ti―H bond.The calculated Ti―H bond length in TiH4is about 0.170 nm,44and the experimental values range from 0.169 to 0.184 nm in different compounds.45,46The H-H distance of B12Ti4-4H2is 0.079 nm,which is 0.005 nm longer than thatoffree hydrogen molecule. The ABE/H2of B12Ti4-4H2is-67.5 kJ·mol-1,which is remarkably larger than that of B12Sc4-4H2.The large ABE/H2of B12Ti4-4H2may raise a doubt that the hydrogen molecule will dissociate to atoms in B12Ti4-H2.So,additional calculation about B12Ti4-H2is performed.As a comparison,B12Sc4-H2is also considered.Natural bond orbital(NBO)analysis indicates that the H―H bond is hold in B12Ti4-H2,with a bond length of 0.079 nm.However, the ABE/H2of B12Ti4-H2reaches to-201.0 kJ·mol-1,making it difficult to release the H2molecule.Considered that B12Ti4can adsorb 8 hydrogen molecules at most,it can conclude that B12Ti4is not a good candidate for hydrogen storage.The ABE/ H2of B12Sc4-H2is-12.3 kJ·mol-1,which being similar to that of other B12Sc4-nH2.

    A detail analysis about the orbitals of B12Sc4-4H2and B12Ti4-4H2can account for why the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2.Given that the charge of Ti atoms (NBO charge:1.26|e|)in B12Ti4is smaller than that of Sc atoms (NBO charge:0.95|e|)in B12Sc4,It is rational to conclude that the Kubas interaction in B12Ti4-nH2is more strong than that in B12Sc4-nH2.In B12Sc4-nH2and B12Ti4-nH2,the Kubas interaction involves the interaction of the σ-bonds of H2molecules to unoccupied orbitals of Sc and Ti atoms,as well as the σ*-bonds of H2molecules to occupied orbitals of Sc and Ti atoms.

    In Fig.5,we give out the orbitals mainly located on hydrogen molecules both of B12Sc4-4H2and B12Ti4-4H2.For B12Sc4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 87%to 91%.The contributions from Sc atoms are all below 10%.However,for B12Ti4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 78%to 85%.The contributions from Ti atoms are in a range of 12%to 15%.The components of these orbitals clearly indicate that there are more electrons in σ-bonds of H2molecules transferred to the d orbital of metal atoms in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.5 Orbitals mainly located on hydrogen molecules in B12Sc4-4H2and B12Ti4-4H2 for B12Sc4-4H2,a:HOMO-22,b:HOMO-21,c:HOMO-20,d:HOMO-19;for B12Ti4-4H2,e:HOMO-24,f:HOMO-23,g:HOMO-22,h:HOMO-21

    Nearby the HOMO orbital,there are five orbitals involving the σ*-bonds of H2molecules and more than 5%contributions from hydrogen molecules are found for B12Ti4-4H4.They are HOMO,HOMO-1,HOMO-2,HOMO-4,and HOMO-5,as listed in Fig.6.The components from H2molecules in these five orbitals are 5.6%,14.0%,5.2%,9.0%,and 9.2%,respectively.For B12Sc4-4H4,only two similar types of orbitals are found.They are HOMO-1 and HOMO-2.The components from H2molecules in these two orbitals are 6.4%and 8.6%,respectively.The components of these orbitals indicate that there are more electrons from the d orbital of metal atoms donated back to the σ*-bonds of H2molecules in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.6 Orbitals involving the σ*-bonds of H2molecules in B12Sc4-4H2and B12Ti4-4H2for B12Sc4-4H2,a:HOMO-2,b:HOMO-1;for B12Ti4-4H2,c:HOMO-5,d:HOMO-4,e:HOMO-2,f:HOMO-1,g:HOMO

    Above discussion clearly indicates that the Kubas interaction in B12Ti4-4H2is much stronger than that in B12Sc4-4H2.So, it is not surprising that the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2due to the stronger Kubas interaction.The strong Kubas interaction in B12Ti4-nH2also is implied by the longer H―H bond length.As listed in Table 1,the H―H bond lengths are 0.079 and 0.078 nm in B12Ti4-4H2and B12Ti4-8H2, respectively,being longer than those in B12Sc4-4H2(0.077 nm) and B12Sc4-8H2(0.076 nm).

    Now,it is necessary to consider the influences of the temperature and the pressure of hydrogen on the process of the hydrogen storage and release.The changes of Gibbs free energy (ΔG)for the process of B12Sc4+12H2→B12Sc4-12H2were calculated at 77 and 300 K with the hydrogen pressure of 1.013×105Pa.The ΔG at 77 and 300 K are 37.3 and 301.5 kJ·mol-1,respectively.The positive ΔG indicates that high hydrogen pressure is necessary to make hydrogen hold on B12Sc4.As done by Zhao et al.6,the influence of hydrogen pressure can be estimated with ideal gas model for hydrogen.Our calculation shows that B12Sc4-12H2will release hydrogen when the hydrogen pressure drops back below 129.696×105Pa at 77 K.At 300 K,it needs a drastically high pressure to hold the hydrogen on B12Sc4.It should be noted that the ideal gas model can only give a gross estimation,especially at high pressure.So,the real pressure of hydrogen should be lower than that estimated by ideal gas model.For B12Ti4-8H2,at 300 K it will release hydrogen when the hydrogen pressure drops back below 0.02×105Pa.However,it is difficult to release the last hydrogen molecule.It is also hard to release the hydrogen at 77 K.

    4 Conclusions

    In the present work,the structures and hydrogen adsorption properties of B12Sc4and B12Ti4clusters were investigated with the first-principles calculations.Both in B12Sc4and B12Ti4,metal atoms prefer binding to B atoms other than clustering together.The B12Sc4can bind up to 12 H2molecules with an ABE/H2of-10.4 kJ·mol-1,while B12Ti4can only host 8 H2molecules at most with an ABE/H2of-50.3 kJ·mol-1.Indeed,the hydrogen adsorption capacities of B12Sc4and B12Ti4clusters we proposed here are not more excellent than a chained B5Ti structure suggested by other stuffs.However,our works would be useful for guiding the design of the hydrogen storage materials based on transition metal-boron clusters.It is very interesting that we find that in B12Sc4,B3rings have s-,p-,and d-like orbitals when interacting with Sc atom.We also find that the Kubas interaction in B12Ti4-nH2complex is much stronger than that in B12Sc4-nH2complex.

    Supporting Information Available: The geometries of some calculated B12Sc4and B12Ti4isomers and their relative energies have been included.The detail configures for molecular dynamic(MD)calculation also have been listed.Two pieces of movies demonstrating the MD trajectory of B12Sc4and B12Ti4have been provided.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/ 35104634

    (2) Coontz,R.;Hanson,B.Science 2004,305,957.doi:10.1126/ science.305.5686.957

    (3) Crabtree,G.W.;Dresselhaus,M.S.;Buchanan,M.V.Phys. Today 2004,57,39.doi:10.1063/1.1878333

    (4) Tao,Z.L.;Peng,B.;Liang,J.;Cheng,F.Y.;Chen,J.Meter. China 2009,28,7. [陶占良,彭 博,梁 靜,程方益,陳 軍.中國材料進展,2009,28,7.]

    (5) Xu,W.;Tao,Z.L.;Chen,J.Prog.Chem.2006,18,2.[許 煒,陶占良,陳 軍.化學(xué)進展,2006,18,2.]

    (6) Zhao,X.B.;Xiao,B.;Fletcher,A.J.;Thomas,K.M.J.Phys. Chem.B 2005,109,8880.

    (7) Qu,D.Chem.Eur.J.2008,14,1040.doi:10.1002/chem. 200701042

    (8) Zaluska,A.;Zaluski,L.;Str?m-Olsen,J.O.Appl.Phys.A 2001, 72,157.doi:10.1007/s003390100783

    (9) Bogdanovic,B.;Schwickardi,M.J.Alloy.Compd.1997,253,1. doi:10.1016/S0925-8388(96)03049-6

    (10) Orimo,S.;Nakamori,Y.;Eliseo,J.R.;Zuttel,A.;Jensen,C.M. Chem.Rev.2007,107,4111.doi:10.1021/cr0501846

    (11)Ning,H.;Tao,X.M.;Wang,M.M.;Cai,J.Q.;Tan,M.Q.Acta Phys.-Chim.Sin.2010,26,2267.[寧 華,陶向明,王芒芒,蔡建秋,譚明秋.物理化學(xué)學(xué)報,2010,26,2267.]doi:10.3866/ PKU.WHXB20100828

    (12) Li,G.X.;Chen,X.W.;Bai,J.D.;Lan,Z.Q.;Guo,J.Acta Phys.-Chim.Sin.2010,26,1448.[黎光旭,陳曉偉,白加棟,藍志強,郭 進.物理化學(xué)學(xué)報,2010,26,1448.]doi:10.3866/ PKU.WHXB20100540

    (13)Wang,H.;Gao,Q.;Hu,J.J.Am.Chem.Soc.2009,131,7016. doi:10.1021/ja8083225

    (14) Miao,Y.L.;Sun,H.;Wang,L.;Sun,Y.X.Acta Phys.-Chim. Sin.2012,28,547.[苗延霖,孫 淮,王 琳,孫迎新.物理化學(xué)學(xué)報,2012,28,547.]doi:10.3866/PKU.WHXB201112301

    (15)Yang,Z.;Xia,Y.;Robert,M.J.Am.Chem.Soc.2007,129, 1673.doi:10.1021/ja067149g

    (16)Koh,K.;Wong-Foy,A.G.;Matzger,A.J.J.Am.Chem.Soc. 2009,131,4184.doi:10.1021/ja809985t

    (17) Zhao,D.;Daren,J.T.;Yuan,D.;Zhou,H.C.Accounts Chem. Res.2011,44,123 and references therein.doi:10.1021/ ar100112y

    (18)Zhao,Y.;Kim,Y.H.;Dillon,A.C.;Heben,M.J.;Zhang,S.B. Phys.Rev.Lett.2005,94,155504.doi:10.1103/PhysRevLett. 94.155504

    (19) Yildirim,T.;Ciraci,S.Phys.Rev.Lett.2005,94,175501.doi: 10.1103/PhysRevLett.94.175501

    (20) Kubas,G.J.J.Organomet.Chem.2001,635,37.doi:10.1016/ S0022-328X(01)01066-X

    (21) Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.J.Am.Chem.Soc. 2005,127,14582.doi:10.1021/ja0550125

    (22) Sun,Q.;Jena,P.;Wang,Q.;Marquez,M.J.Am.Chem.Soc. 2006,128,9741.doi:10.1021/ja058330c

    (23) Wang,Q.;Sun,Q.;Jena,P.;Kawazoe,Y.J.Chem.Theory Comput.2009,5,374.doi:10.1021/ct800373g

    (24) Chandrakumar,K.R.S.;Ghosh,S.K.Nano Lett.2008,8,13. doi:10.1021/nl071456i

    (25) Liu,W.;Zhao,Y.H.;Li,Y.;Jiang,Q.;Lavernia,E.J.J.Phys. Chem.C 2009,113,2028.doi:10.1021/jp8091418

    (26) Rabilloud,F.J.Phys.Chem.A 2010,114,7241.doi:10.1021/ jp103124w

    (27) Meng,S.;Kaxiras,E.;Zhang,Z.Nano Lett.2007,7,663.doi: 10.1021/nl062692g

    (28) Zhao,Y.F.;Lusk,M.T.;Dillon,A.C.;Heben,M.J.;Zhang,S. B.Nano Lett.2008,8,157.doi:10.1021/nl072321f

    (29) Li,Y.C.;Zhou,G.;Li,J.;Gu,B.L.;Duan,W.H.J.Phys.Chem. C 2008,112,19268.doi:10.1021/jp807156g

    (30) Wu,G.;Wang,J.L.;Zhang,X.;Zhu,L.J.Phys.Chem.C 2009, 113,7052.doi:10.1021/jp8113732

    (31) Li,M.;Li,Y.;Zhou,Z.;Shen,P.;Chen,Z.Nano Lett.2009,9, 1944.doi:10.1021/nl900116q

    (32) Zhao,J.;Wang,L.;Li,F.;Chen,Z.J.Phys.Chem.A 2010,114, 9969.doi:10.1021/jp1018873

    (33) Li,F.;Zhao,J.;Chen,Z.Nanotechnology 2010,21,134006. doi:10.1088/0957-4484/21/13/134006

    (34) Wu,H.S.;Qin,X.F.;Xu,X.H.;Jiao,H.;Schelyer,P.v.R. J.Am.Chem.Soc.2005,127,2334.doi:10.1021/ja046740f

    (35) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/ 1.464913

    (36) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (37) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.01;Gaussian Inc.:Pittsburgh,PA,2004.

    (38) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2005,1,415. doi:10.1021/ct049851d

    (39) Mohan,N.;VIjayalakshmi,K.P.;Koga,N.;Suresh,C.H. J.Comput.Chem.2010,31,2874.

    (40) Boustani,I.Phys.Rev.B 1997,55,16426.doi:10.1103/ PhysRevB.55.16426

    (41) http:/cp2k.berlios.de.

    (42) Balasubramanina,K.Chem.Phys.Lett.1987,135,288.doi: 10.1016/0009-2614(87)85158-8

    (43) Bauschlicher,C.W.,Jr.;Walch,S.P.J.Chem.Phys.1982,76, 4560.doi:10.1063/1.443532

    (44) Thomas,J.R.;Quelch,G.E.;Seidl,E.T.;Schaefer,H.F.,III. J.Chem.Phys.1992,96,6857.doi:10.1063/1.462575

    (45) Lukens,W.W.,Jr.;Matsunaga,P.T.;Andersen,R.A. Organometallics 1998,17,5240.doi:10.1021/om980601n

    (46) Pattiasina,J.W.;Bolhuis,F.;Teuben,J.H.Angew.Chem.Int. Edit.1987,26,330.doi:10.1002/anie.198703301

    January 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Hydrogen Storage Properties of B12Sc4and B12Ti4Clusters

    MALi-Juan WANG Jian-Feng JIAJian-Feng*WU Hai-Shun
    (School of Chemistry and Materials Science,Shanxi Normal University,Linfen 041004,Shanxi Province,P.R.China)

    The structures and hydrogen storage properties of two stable B12Sc4and B12Ti4clusters have been investigated using ab initio calculations.No metal atom clustering occurs in the clusters.The B12Sc4hosts 12 H2to achieve 7.25%(mass fraction)hydrogen storage capacity with an average binding energy (ABE)of-10.4 kJ·mol-1per H2,while the B12Ti4can only host 8 H2(4.78%,mass fraction)with a higher ABE (-50.2 kJ·mol-1per H2).High hydrogen pressure is needed for B12Sc4to hold 12 H2,even at 77 K. Electronic structure analysis indicates that the Kubas interaction in the B12Ti4-nH2complex is much stronger than that in the B12Sc4-nH2complex.

    Boron cluster;Metal doping;Hydrogen storage;Adsorption;Ab initio calculation

    10.3866/PKU.WHXB201205151

    ?Corresponding author.Email:jjf_sxtu@yahoo.com.cn;Tel:+86-357-2051375.

    The project was supported by the National Basic Research 973 Pre-research Program of China(2010CB635110)and Natural Science Foundation of Shanxi Province,China(2010011012-2).

    973計劃前期研究專項課題(2010CB635110)與山西省自然科學(xué)基金(2010011012-2)資助項目

    O641

    猜你喜歡
    劍鋒儲氫物理化學(xué)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    站用儲氫瓶式容器組缺陷及檢測方法
    我國固定式儲氫壓力容器發(fā)展現(xiàn)狀綜述
    蛼螯燒賣
    美食(2022年5期)2022-05-07 22:27:35
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    張劍鋒書畫作品選登
    Chemical Concepts from Density Functional Theory
    篆刻
    對聯(lián)(2018年11期)2018-02-22 07:04:14
    儲氫合金La0.74Mg0.26Ni2.55Co0.55Al0.2Fe0.1的制備與電化學(xué)性能
    亚洲 国产 在线| 丝瓜视频免费看黄片| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久 | 丁香六月欧美| 亚洲国产成人一精品久久久| 黄片小视频在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 大陆偷拍与自拍| 最新的欧美精品一区二区| 中文字幕色久视频| 久久精品亚洲熟妇少妇任你| 国产精品香港三级国产av潘金莲| 久久久久久久久久久久大奶| 色尼玛亚洲综合影院| 国产精品国产高清国产av | 日韩免费高清中文字幕av| 欧美精品高潮呻吟av久久| 国产精品久久久久久精品古装| 亚洲专区中文字幕在线| 99re在线观看精品视频| avwww免费| 亚洲久久久国产精品| 久久国产精品大桥未久av| 午夜福利在线观看吧| 在线看a的网站| a在线观看视频网站| 俄罗斯特黄特色一大片| 黄色视频不卡| 亚洲第一青青草原| 在线观看免费视频网站a站| 18禁国产床啪视频网站| 人妻一区二区av| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 久久亚洲真实| 欧美大码av| 曰老女人黄片| 亚洲第一青青草原| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 90打野战视频偷拍视频| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 日本黄色视频三级网站网址 | 大香蕉久久网| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 在线观看一区二区三区激情| 欧美黑人欧美精品刺激| 黄色视频,在线免费观看| 在线亚洲精品国产二区图片欧美| av天堂久久9| 法律面前人人平等表现在哪些方面| 国产高清国产精品国产三级| 午夜激情久久久久久久| 黑人猛操日本美女一级片| 亚洲国产av新网站| 国产aⅴ精品一区二区三区波| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 午夜福利,免费看| 大香蕉久久成人网| 一区二区三区国产精品乱码| 国产日韩欧美在线精品| 夜夜爽天天搞| 桃花免费在线播放| 日韩大片免费观看网站| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 欧美激情极品国产一区二区三区| 90打野战视频偷拍视频| av网站免费在线观看视频| 久久99一区二区三区| 国产区一区二久久| 一级毛片女人18水好多| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 国产精品久久久av美女十八| 亚洲av欧美aⅴ国产| 男女下面插进去视频免费观看| a级毛片在线看网站| 免费人妻精品一区二区三区视频| 亚洲国产中文字幕在线视频| 亚洲欧美日韩高清在线视频 | 极品人妻少妇av视频| 宅男免费午夜| 日韩视频一区二区在线观看| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 两个人看的免费小视频| 久久精品亚洲精品国产色婷小说| 亚洲国产成人一精品久久久| 一个人免费看片子| 国产精品久久久人人做人人爽| 99精国产麻豆久久婷婷| 肉色欧美久久久久久久蜜桃| 成人国语在线视频| 一区二区三区乱码不卡18| 另类精品久久| 欧美黄色片欧美黄色片| 成在线人永久免费视频| 色94色欧美一区二区| 国产1区2区3区精品| 久久久久精品国产欧美久久久| 国产日韩一区二区三区精品不卡| 99久久99久久久精品蜜桃| 老司机在亚洲福利影院| 亚洲中文字幕日韩| 精品亚洲乱码少妇综合久久| 18禁国产床啪视频网站| 欧美日韩中文字幕国产精品一区二区三区 | 女人精品久久久久毛片| 色视频在线一区二区三区| 香蕉久久夜色| a级毛片黄视频| 国产极品粉嫩免费观看在线| 天堂中文最新版在线下载| 桃红色精品国产亚洲av| 久久性视频一级片| 欧美人与性动交α欧美精品济南到| 国产精品亚洲av一区麻豆| 国产aⅴ精品一区二区三区波| 激情在线观看视频在线高清 | 捣出白浆h1v1| 少妇的丰满在线观看| 下体分泌物呈黄色| 啦啦啦 在线观看视频| 亚洲国产av新网站| 少妇 在线观看| 日韩欧美三级三区| 午夜老司机福利片| 一级a爱视频在线免费观看| 日韩欧美三级三区| 夜夜夜夜夜久久久久| a级毛片黄视频| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 国产一卡二卡三卡精品| e午夜精品久久久久久久| 成年人午夜在线观看视频| 久久久欧美国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 国产xxxxx性猛交| 亚洲人成电影观看| 精品久久久精品久久久| a级片在线免费高清观看视频| 后天国语完整版免费观看| 精品国产国语对白av| 国产一区有黄有色的免费视频| 一边摸一边抽搐一进一小说 | 国产精品98久久久久久宅男小说| 在线观看一区二区三区激情| 悠悠久久av| 丰满少妇做爰视频| 国产成+人综合+亚洲专区| 精品少妇久久久久久888优播| 精品国产国语对白av| 搡老熟女国产l中国老女人| 麻豆乱淫一区二区| 巨乳人妻的诱惑在线观看| 久久久久精品人妻al黑| 久久精品国产亚洲av高清一级| 精品少妇内射三级| 精品卡一卡二卡四卡免费| 国产精品熟女久久久久浪| 免费看a级黄色片| av有码第一页| av福利片在线| 亚洲国产欧美网| 在线观看人妻少妇| 国产伦人伦偷精品视频| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 免费在线观看影片大全网站| 99国产精品免费福利视频| 精品福利永久在线观看| 亚洲av日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 成在线人永久免费视频| 69av精品久久久久久 | 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 丝袜人妻中文字幕| 超碰成人久久| 亚洲久久久国产精品| 亚洲国产av影院在线观看| 老司机亚洲免费影院| 国产91精品成人一区二区三区 | 国产精品麻豆人妻色哟哟久久| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 日韩成人在线观看一区二区三区| 国产精品成人在线| av不卡在线播放| av视频免费观看在线观看| 99精品久久久久人妻精品| 女人爽到高潮嗷嗷叫在线视频| 精品人妻在线不人妻| 麻豆国产av国片精品| 9191精品国产免费久久| 国产不卡av网站在线观看| 69精品国产乱码久久久| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 黑人猛操日本美女一级片| 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 怎么达到女性高潮| avwww免费| 亚洲色图 男人天堂 中文字幕| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 黄色片一级片一级黄色片| 久久精品亚洲熟妇少妇任你| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲午夜理论影院| 黄片小视频在线播放| 国产一区二区在线观看av| 侵犯人妻中文字幕一二三四区| 老司机影院毛片| 午夜久久久在线观看| 久久婷婷成人综合色麻豆| 少妇裸体淫交视频免费看高清 | 丝袜人妻中文字幕| 中文字幕高清在线视频| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 一边摸一边抽搐一进一出视频| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看| 日韩大码丰满熟妇| 国产精品熟女久久久久浪| 欧美黑人欧美精品刺激| 久久久精品94久久精品| 丁香欧美五月| 亚洲国产av新网站| 超碰97精品在线观看| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看 | 日本wwww免费看| 老熟妇乱子伦视频在线观看| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频 | 久久人人爽av亚洲精品天堂| 精品国产一区二区三区四区第35| 亚洲国产av新网站| 欧美 日韩 精品 国产| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 国产免费av片在线观看野外av| 性少妇av在线| 亚洲欧美日韩另类电影网站| 91av网站免费观看| 窝窝影院91人妻| 久热这里只有精品99| 国产区一区二久久| 久久久久久久国产电影| 亚洲国产精品一区二区三区在线| 91精品国产国语对白视频| av在线播放免费不卡| 久9热在线精品视频| 热99国产精品久久久久久7| 啦啦啦 在线观看视频| 搡老乐熟女国产| 欧美+亚洲+日韩+国产| 亚洲精品自拍成人| 两性午夜刺激爽爽歪歪视频在线观看 | av免费在线观看网站| 五月开心婷婷网| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 极品教师在线免费播放| 亚洲av成人一区二区三| www.999成人在线观看| 精品欧美一区二区三区在线| 国产精品影院久久| 国产国语露脸激情在线看| 亚洲中文字幕日韩| 麻豆av在线久日| 国产成+人综合+亚洲专区| 91精品三级在线观看| 老司机午夜十八禁免费视频| 中文字幕精品免费在线观看视频| 国产不卡一卡二| 看免费av毛片| 免费日韩欧美在线观看| 飞空精品影院首页| 久久人妻福利社区极品人妻图片| 法律面前人人平等表现在哪些方面| 色播在线永久视频| 九色亚洲精品在线播放| 国产又色又爽无遮挡免费看| 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 1024视频免费在线观看| 一边摸一边抽搐一进一出视频| 极品教师在线免费播放| av国产精品久久久久影院| 在线观看人妻少妇| 69av精品久久久久久 | 丁香六月天网| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 精品久久久久久久毛片微露脸| 日韩中文字幕欧美一区二区| 一级黄色大片毛片| h视频一区二区三区| 亚洲精华国产精华精| 国产人伦9x9x在线观看| 少妇 在线观看| 国产又爽黄色视频| 欧美激情高清一区二区三区| 国产区一区二久久| 妹子高潮喷水视频| 欧美日韩亚洲高清精品| 欧美黑人欧美精品刺激| 91字幕亚洲| 日本精品一区二区三区蜜桃| 亚洲精品自拍成人| 精品欧美一区二区三区在线| 欧美 亚洲 国产 日韩一| 天天躁狠狠躁夜夜躁狠狠躁| 黄频高清免费视频| 99久久精品国产亚洲精品| 一本久久精品| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 91麻豆精品激情在线观看国产 | 亚洲av第一区精品v没综合| 丝袜美足系列| 19禁男女啪啪无遮挡网站| 最新美女视频免费是黄的| 日本欧美视频一区| 操美女的视频在线观看| 精品亚洲乱码少妇综合久久| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 免费观看a级毛片全部| 国产亚洲av高清不卡| 大型av网站在线播放| av电影中文网址| 久久国产精品大桥未久av| 91精品国产国语对白视频| 男女床上黄色一级片免费看| 日本av手机在线免费观看| 久久天堂一区二区三区四区| 在线播放国产精品三级| 久久久欧美国产精品| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 欧美日韩一级在线毛片| 飞空精品影院首页| 亚洲熟女精品中文字幕| 91字幕亚洲| 女警被强在线播放| 亚洲 国产 在线| 午夜精品久久久久久毛片777| 激情视频va一区二区三区| 色精品久久人妻99蜜桃| 国产视频一区二区在线看| 丝袜人妻中文字幕| 亚洲欧美激情在线| 在线观看免费日韩欧美大片| 在线观看66精品国产| 满18在线观看网站| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 女同久久另类99精品国产91| 十八禁人妻一区二区| 亚洲欧美激情在线| 大香蕉久久成人网| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| tocl精华| 自线自在国产av| 精品国产一区二区久久| 国产精品久久久av美女十八| 黑人猛操日本美女一级片| 亚洲精品一二三| 淫妇啪啪啪对白视频| 热99久久久久精品小说推荐| 91老司机精品| 国产三级黄色录像| 在线观看舔阴道视频| 亚洲人成77777在线视频| 丝袜美足系列| 在线看a的网站| 亚洲午夜精品一区,二区,三区| 最近最新中文字幕大全免费视频| 女性被躁到高潮视频| 精品福利永久在线观看| 一边摸一边做爽爽视频免费| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 飞空精品影院首页| 国产一区二区在线观看av| 精品国产超薄肉色丝袜足j| 久久人妻福利社区极品人妻图片| 肉色欧美久久久久久久蜜桃| e午夜精品久久久久久久| 9热在线视频观看99| 成人免费观看视频高清| 久久久久视频综合| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看的高清视频| 人妻久久中文字幕网| 超碰97精品在线观看| 国产亚洲精品久久久久5区| 搡老乐熟女国产| 日本欧美视频一区| 亚洲欧洲日产国产| 久久久欧美国产精品| 久久影院123| 美女高潮喷水抽搐中文字幕| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 天堂动漫精品| 免费一级毛片在线播放高清视频 | 亚洲avbb在线观看| 黄色 视频免费看| 国产精品 国内视频| 夜夜夜夜夜久久久久| 欧美日韩亚洲国产一区二区在线观看 | 91精品国产国语对白视频| 欧美精品高潮呻吟av久久| 高清毛片免费观看视频网站 | 日韩欧美国产一区二区入口| 亚洲国产精品一区二区三区在线| 成人精品一区二区免费| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 韩国精品一区二区三区| 久久精品成人免费网站| 欧美大码av| 久久久久久久久免费视频了| 纯流量卡能插随身wifi吗| a在线观看视频网站| 欧美精品亚洲一区二区| 成人免费观看视频高清| 日本av手机在线免费观看| 国产精品免费一区二区三区在线 | 最近最新中文字幕大全免费视频| 国产成+人综合+亚洲专区| 91成年电影在线观看| 天堂8中文在线网| 久久狼人影院| 亚洲成a人片在线一区二区| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 午夜91福利影院| 欧美黄色片欧美黄色片| 欧美成人免费av一区二区三区 | 中文字幕精品免费在线观看视频| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 欧美日韩国产mv在线观看视频| 午夜福利乱码中文字幕| 精品熟女少妇八av免费久了| 97人妻天天添夜夜摸| 男女之事视频高清在线观看| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品亚洲av| 久久国产精品人妻蜜桃| 亚洲精品一二三| 一级毛片电影观看| 精品视频人人做人人爽| 法律面前人人平等表现在哪些方面| 国产伦理片在线播放av一区| 大片免费播放器 马上看| 亚洲七黄色美女视频| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 极品教师在线免费播放| 亚洲精品一卡2卡三卡4卡5卡| 成人黄色视频免费在线看| 日韩欧美国产一区二区入口| 免费av中文字幕在线| 亚洲精品美女久久久久99蜜臀| av电影中文网址| 男女边摸边吃奶| 天天躁夜夜躁狠狠躁躁| 亚洲精品乱久久久久久| 亚洲第一青青草原| 一本久久精品| 亚洲人成电影观看| 精品亚洲成a人片在线观看| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 老司机亚洲免费影院| 国产av又大| 色在线成人网| 成人影院久久| 国产男女超爽视频在线观看| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久小说| 亚洲第一av免费看| 国产成人av激情在线播放| 免费观看人在逋| 中文亚洲av片在线观看爽 | 精品卡一卡二卡四卡免费| cao死你这个sao货| 国产成人欧美| 精品久久蜜臀av无| 国产伦理片在线播放av一区| 无限看片的www在线观看| 十八禁人妻一区二区| 国产在线一区二区三区精| 国产片内射在线| 国产免费现黄频在线看| 亚洲欧美精品综合一区二区三区| 国产极品粉嫩免费观看在线| 久热这里只有精品99| 久久国产亚洲av麻豆专区| av超薄肉色丝袜交足视频| 少妇粗大呻吟视频| 少妇的丰满在线观看| 精品少妇黑人巨大在线播放| 一本综合久久免费| 制服诱惑二区| 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| 满18在线观看网站| 久久久久久久国产电影| 一级毛片电影观看| 国产成人精品在线电影| 亚洲熟女毛片儿| 99久久精品国产亚洲精品| a级片在线免费高清观看视频| 99九九在线精品视频| 亚洲五月婷婷丁香| 一个人免费看片子| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 好男人电影高清在线观看| 久久久久精品国产欧美久久久| 国产成人精品在线电影| 一区二区三区激情视频| 国产单亲对白刺激| 99re6热这里在线精品视频| 99国产精品一区二区三区| 中文字幕人妻熟女乱码| 久久亚洲精品不卡| 王馨瑶露胸无遮挡在线观看| 又大又爽又粗| 天天躁狠狠躁夜夜躁狠狠躁| 精品少妇久久久久久888优播| 天天操日日干夜夜撸| 91字幕亚洲| 欧美大码av| 欧美激情高清一区二区三区| 久久婷婷成人综合色麻豆| av网站在线播放免费| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 少妇的丰满在线观看| 老汉色av国产亚洲站长工具| 国产精品98久久久久久宅男小说| 亚洲国产av新网站| 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 女警被强在线播放| 久久毛片免费看一区二区三区| 亚洲专区字幕在线| 亚洲天堂av无毛| 日韩精品免费视频一区二区三区| 午夜福利视频精品| 免费人妻精品一区二区三区视频| 欧美精品高潮呻吟av久久| 国产成人免费无遮挡视频| 午夜福利在线观看吧| tube8黄色片| 啦啦啦中文免费视频观看日本| 久久亚洲真实| 日本五十路高清| 看免费av毛片| 亚洲精华国产精华精| 丝袜喷水一区| 亚洲色图综合在线观看| 又大又爽又粗| 国产精品久久久av美女十八| 亚洲精品av麻豆狂野| 十八禁人妻一区二区| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区黑人| 天天躁夜夜躁狠狠躁躁| 制服人妻中文乱码|