• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水+甲烷系統(tǒng)的氣液相邊界曲線和臨界線

    2012-12-12 02:42:30田玉芹田宜靈朱榮嬌
    物理化學學報 2012年8期
    關鍵詞:天津大學物理化學學報

    田玉芹 田宜靈 趙 林 朱榮嬌,* 馬 超

    (1長江大學石油工程學院,湖北荊州434023; 1§天津大學理學院化學系,天津300072; 2中國石油化工股份有限公司勝利油田采油工藝研究院,山東東營257000)

    1 Introduction

    The modern abiotic-origin theory of methane and numerical modeling show that new resources are most likely to be located at deep subsurface levels and characterized as high temperature and high pressure gas reservoirs.1-4This abiotic theory,if true,could affect estimates of the potential future oil and gas reserves.Determining the thermodynamic properties of systems containing methane at high temperature and pressure is key in understanding carbon-reservoir fluxes within the deep Earth.Deep hydrocarbon gas reservoirs would produce huge amounts of water(liquid or vapor)during their production periods.Hence,many studies have been done on water-methane mixtures.3-16For example,Mohammadi et al.17performed low-pressure(ca 0.1-34 MPa)and low-temperature(273-340 K)measurements.Yarrison et al.18published data at a pressure of 110 MPa.As oil and gas exploration moves to wider depths, both on-and off-shore,reservoir pressures are frequently about 150 MPa,beyond the range of reasonable extrapolation from existing data.To gain a better understanding of the phase behavior of these industrially-important,highly-non-ideal systems at all relevant conditions,the thermodynamic properties at higher pressures over a wide range of temperatures are needed.Knowledge of the location of the critical curve and of the two-phase equilibrium,binodal surface in the p-T-x diagram is also desirable to determine the extent of the homogeneous one-phase region.

    In the present paper,we report on measurements of a series of isothermal gas-liquid boundary lines of water+methane system over a wider range of temperature(from 433.0 to 633.0 K) and pressures up to 300.00 MPa.The critical curve was also determined.The equilibrium gas-liquid ratios,the partial molar solution enthalpy,and partial molar solution entropy of methane in water were calculated.These data will be useful for natural gas recovery in the near future.

    2 Experimental

    2.1 Materials

    Methane(99.99%purity)was supplied by Tianjin Special Gas Company(Tianjin)and used without further purification. Three-time distilled water was repeatedly melted and frozen in vacuum to degas the water.The conductance of the water was found to be 0.1 μS·cm-1.

    2.2 Experimental apparatus

    The setup of the experimental apparatus used has been described in detail elsewhere19-22;a schematic diagram is given in Fig.1.The main part of the apparatus was a high-pressure viewing cell constructed from a high-strength corrosion-resistant nickel-based superalloy;it had a length of 30 cm,an outer diameter of 8 cm,and an inner diameter of 2 cm.A moveable piston was situated inside the cylinder autoclave.The piston separated the contents in the cell from the pressure medium(silicon oil).At one end of the autoclave was a sapphire(Al2O3)window.Both window and piston were sealed by a pair of O-rings (made of Perfluoroelastomer).The front side of the piston had a platinum-plating mirror to aid visual observation.The pressure within the system was generated manually with an operated screw-driven pump and measured with a pressure sensor (CYB-20 S)calibrated against a dead-weight gauge.Pressure uncertainties were within±0.01 MPa at pressures below 100.00 MPa and within±0.05 MPa at pressures from 100.00 MPa to 350.00 MPa.Outside the autoclave,independent heating and cooling jackets controlled the temperature of the system.

    Fig.1 Schematic diagram of the high-pressure apparatus1:screw-driven pump,2:pressure meter,3:hall probe,4:heat jacket,5:cell, 6:position,7:O-ring,8:stirrer,9:sapphire window,10:sampling valve, 11:pressure sensor,12:thermocouple,13:small steel vessel, 14:thermometer,15:vacuum meter,16:steel bulb

    Homogeneity in mixing and temperature was achieved by magnetic stirring and the temperature measured with a calibrated chromel-alumel thermocouple inside the autoclave.The thermocouple was calibrated against precision mercury thermometry or with the melting points of tin(Sn),lead(Pb),and zinc(Zn).Temperature uncertainties were±0.1°C at temperatures below 250.0°C and about±0.3°C at temperatures above 250.0°C.The accuracy of the weighted mass was 0.1 mg.The estimated total uncertainty for the mole fraction of each substance was 0.1%.

    2.3 Experimental procedure

    Methane and water were introduced separately into the cell. Initially,a weighed quantity of methane was introduced into a dried,evacuated autoclave.If more gas was required the autoclave was first cooled with refrigerated glycerin.According to the desired mole fraction,the needed quantity of degassed water was injected with a calibrated screw press.The temperature was increased slowly(2-3 K·min-1)to the desired temperature.During this process,each sample was stirred continuously.The filled sample at constant temperature was carefully compressed or decompressed.The transition from two-phase to single-phase or vice versa could be visually observed and found with a light beam mirror.As is well-known,phase equilibria can be affected by temperature and pressure;the system will create many micro-drops when a new phase just appears. At this moment,one can observe through the sapphire window that the system became thick,then gradually darken;i.e.,the dark hole effect.Pressure and temperature were then recorded. Each recording was repeated three times to determine reproducibility of data.

    The mole fraction was determined by the desorption method.Samples were taken from the autoclave into an evacuated and weighted small steel vessel.The cooled sample vessel was connected to a glass bulb of known volume.The temperature of the bulb was measured with a thermometer to a precision of 0.1 K.The pressure inside the bulb was measured with an absolute-pressure meter with a precision of 10 Pa.Because the pressure of the desorbed methane gas was very low(about 10 to 20 kPa),the amount of methane was easily calculated using the ideal-gas state equation from which the mole fraction can be obtained.The procedure has been described in more detail elsewhere.19-22The critical-point data were obtained by successive approximations.Nearly the same fractions of gas and liquid at a fixed temperature were obtained through slight adjustments of pressure.

    3 Results and discussion

    3.1 Phase boundary lines and critical curve

    The measurements were performed at temperatures from 433.0 to 633.0 K and for pressures up to 300.00 MPa.Table 1 gives the p,T,x data on the gas-liquid phase boundary lines for water+methane system.Fig.2 shows the projections of thirteen isopleths(p-T)and the estimated critical curve.These isopleths are the boundary lines between the two-phase and single-phase regions.The two-phase region is always on the left of each isopleth;the critical curve is the envelope of the isopleths in the pT-plane.

    The isothermal p-x curves obtained from experimental data are shown in Fig.3.The form(shape)of the critical curve for this system is demonstrated also in the p-x projection of the phase diagram,where the isotherms between the critical temperature minimum(625.0 K)and the critical temperature of water are divided into two branches.The lines on the left of the critical curve are gas-phase lines;the lines on the right are liquid-phase lines.Between the lines is the two-phase region. This study provides a complete description of the gas-liquid behavior.

    At very high pressure(or high phase density),the repulsive force between water and methane molecules becomes important,as density(or pressure)rises.Methane in water or water in methane is“squeezed out”of the solution.At elevated temperatures and pressures,an important fact has been found:the mutual solubilities of water in the dense methane gas phase and those of methane in water are consistent.The same phenomena has been observed in H2O+N2and H2O+CO2systems examined by Tabasinejad et al.23

    The critical pressures,temperatures,and mole fractions for this system are compiled in Table 2.Fig.4 shows its criticalcurve in the p-T plane as well as the critical data in references.5,24Experimental results and results from the literature show good agreement.The behavior of the critical curve indicates that,in common with other(water+alkane)systems,the water+ methane mixture is a type III system.The critical curve begins at the critical point of pure water(22.05 MPa,647.3 K),then proceeds to lower temperatures with increasing pressure;the curve has a minimum at temperature of 625.0 K after which it proceeds upwards.

    Table 1 Experimental data of the phase equilibrium boundary surface for water+methane system

    Fig.2 Curves of constant composition(isopleths)along the liquidgas two-phase boundary surface for water+methane system■,x=0.100;●,x=0.200;▲,x=0.300;▼,x=0.400;?,x=0.500; ,x=0.600;★,x=0.700;□,x=0.780;○,x=0.800;△,x=0.810;▽,x=0.840;?,x=0.900;☆,x=0.950;?,the critical point of water.The dashed line is the estimated critical curve of the mixture; the dotted line is the saturation pressure curve of water;the solid lines are aids to better visualize the curves.

    Fig.3 Isothermal two-phase boundary curves in the pressure-composition projection for water+methane system□,433.0 K;○,553.0 K;△,573.0 K;▽,603.0 K;◇,623.0 K;?,626.0 K;?,628.0 K;☆,633.0 K.The broken line is the critical curve of the mixture.The solid lines are only for better visibility of the data curves.

    Table 2 Estimated critical pressure(pc)and critical mole fraction(xc(H2O))at critical temperatures(Tc)

    Fig.4 Critical curve in the pressure-temperature projection for water+methane system●,experimental data;○,reference5;▲,reference24;★,the critical point of water

    For a binary mixture,a liquid(L)phase with mole fractions x1and x2(subscript 1 refers to water and 2 refers methane)is in equilibrium with the gas(G)phase with mole fractions y1and y2.The equality of the equilibrium is

    where f and?are the fugacity and fugacity coefficient,respectively.

    The equilibrium gas-liquid ratios(K)for the two components are given by

    The K values for the pressures of 75.00 to 225.00 MPa and temperatures from 603.0 to 628.0 K were calculated and plotted in Fig.5.

    3.2 Henry coefficient of methane in water

    From Table 1 and Fig.3,solubility of methane in water is observed to increase slightly with increasing pressure at constant temperature,and the relationship of the pressure and mole fraction of methane in water is nearly linear;thus,Henry law can be applied.We calculated the Henry coefficients(H)of methane in water at different temperatures.

    From thermodynamics,Henry law is given by

    where p is the total pressure of system,Hiis Henry coefficient of methane in water,a and γare activity and activity coefficient of methane in water,respectively,yiis the mole fraction of methane in gas phase,?iis its fugacity coefficient,and xiis the mole fraction of methane in liquid phase.Since the solubility of methane in dilute solutions is very small{x(CH4)<<1},we can set γ(CH4)≈1;therefore,

    Fig.5 K-p plots for the water+methane system at various temperatures■and□,573.0 K;●and○,603.0 K;▲and△,623.0 K;▼and▽,626.0 K;◆and◇,628.0 K;★and☆,633.0 K.Solid points represent the liquid phase, and unfilled symbols represent the gas phase;solid lines are only to provide a visual guide to the data.

    where methane fugacity coefficients were obtained from the webpage.25The calculated Henry coefficients at different temperatures are listed in Table 3;in the temperature range we studied,coefficient values decrease with increasing temperature.That trend can be observed in similar systems containing water.26

    3.3 Solution properties of methane in water

    The temperature derivation of the solubility,as calculated from the Gibbs-Helmholtz equation,is directly related to either the partial molar enthalpy or partial molar entropy of the gaseous solute in the liquid phase.If there is no specific chemical interaction between solute and solvent,it can be obtained by the thermodynamics equations:

    where xidenotes the mole fraction of methane(solute)in water (solvent)at saturation for the investigated system,and ΔsolHiand ΔsolSiare respectively the partial molar solution enthalpy and partial molar solution entropy of methane during dissolution.The calculated values of ΔsolH and ΔsolS are listed Table 4; slight changes are seen for ΔsolH and ΔsolS at different pressures.

    To understand the significance of the solution enthalpy andsolution entropy,the dissolution process is conveniently divided into two parts:condensation and mixing.Usually,the first term is negative and its absolute value is very small.Since the temperature coefficient of solubility is positive and large in quantity,the enthalpy of mixing dominates the dissolution process.Thus,the difference in the cohesive energy density between methane and water is very large.

    Table 3 Henry coefficient of methane in water at temperatures

    Table 4 Partial molar solution enthalpy(ΔsolH)and entropy (ΔsolS)of methane in water

    4 Conclusions

    To gain a better understanding of the phase behavior of methane reservoirs of fluxes in the deep earth,the critical curve and a series of isothermal gas-liquid boundary lines of water+methane system in a wider range of temperature(from 433.0 to 633.0 K)and pressures up to 300.00 MPa were determined.Measurements were obtained using the static method with a high-pressure volume-variable autoclave.The experimental results showed that at elevated temperatures and pressures the mutual solubilities,namely,those of water in the dense methane gas phase and methane in water,were consistent.Henry coefficients of methane in dilute solutions,partial molar solution enthalpy,and partial molar solution entropy were also calculated.The results showed that mixing dominates the dissolution process compared with condensation and the difference in the cohesive energy density of methane and water is very larger.These data and results will be useful in near-future natural gas recovery.

    (1) Juske,H.;Michael,E.B.Science 1999,285,1055.doi:10.1126/ science.285.5430.1055

    (2)Anton,K.;Vladimir,G.K.;Alexander,F.G.Nature Geoscience 2009,2,566.doi:10.1038/ngeo591

    (3) Committee to Review theActivitiesAuthorized Under the Methane Hydrate Research and DevelopmentAct of 2000. Charting the Further of Methane Hydrate Research in the Untied States;Washington,D.C.:The NationalAcademies Press,2004.

    (4) Sloan,E.D.;Koh,C.A.Clathrate Hydrates of Natural Gas,3rd ed.;CRC Press:Boca Raton,Fla,USA,2008;pp 58-125.

    (5) Neichel,M.;Frank,E.U.J.Supercritical Fluids 1996,9,69. doi:10.1016/S0896-8446(96)90000-5

    (6) Tian,Y.L.;Zhao,X.F.;Chen,L.J.Supercritical Fluids 2004, 30,145.doi:10.1016/j.supflu.2003.09.002

    (7)Geng,C.Y.;Ding,L.Y.;Han,Q.Z.;Wen,H.Acta Phys.-Chim. Sin.2008,24,595.[耿春宇,丁麗穎,韓清珍,溫 浩.物理化學學報,2008,24,595.]doi:10.3866/PKU.WHXB20080409

    (8) Zhu,R.J.;Li,H.L.;Hao,J.S.;Li,H.S.;Tian,Y.L.Trans. Tianjin Univ.2009,15,276.[朱榮嬌,李洪玲,郝紀雙,李賀松,田宜靈.天津大學學報,2009,15,276.]doi:10.1007/ s12209-009-0049-7

    (9)Wan,L.H.;Yan,K.F.;Li,X.S.;Fan,S.S.Acta Phys.-Chim. Sin.2009,25,486.[萬麗華,顏克鳳,李小森,樊栓獅.物理化學學報,2009,25,486.]doi:10.3866/PKU.WHXB20090315

    (10) Olds,R.H.;Sage,B.H.;Lacey,W.N.Ind.Eng.Chem.1942, 34,1223.doi:10.1021/ie50394a018

    (11) He,J.P.Analytical Instrumentation 2011,No.5,52.[何繼平.分析儀器,2011,5,52.]

    (12)Yarrison,M.;Song,K.Y.;Cox,K.R.;Chronister,D.;Chapman, W.Water Content of High Pressure,High Temperature Methane,Ethane and Methane+CO2,Ethane+CO2;GPA RR-200;Gas ProcessorsAssociation:Tulsa,OK,2008.

    (13) Sun,S.C.;Liu,C.L.;Ye,Y.G.;Jiang,Q.Acta Phys.-Chim. Sin.2011,27,2773.[孫始財,劉昌嶺,業(yè)渝光,姜 倩.物理化學學報,2011,27,2773.]doi:10.3866/PKU.WHXB20112773

    (14)Shu,J.F.;Chen,X.J.;Chou,L.M.;Yang,W.G.;Hu,J.Z.; Hemley,R.J.;Mao,H.K.Geoscience Frontiers 2011,2,93. doi:10.1016/j.gsf.2010.12.001

    (15)Lang,X.M.;Fan,S.S.;Wang,Y.L.J.Nat.Gas Chem.2010, 19,203.doi:10.1016/S1003-9953(09)60079-7

    (16)Song,Y.C.;Yang,M.J.;Chen,Y.J.;Li,Q.P.J.Nat.Gas Chem. 2010,19,241.doi:10.1016/S1003-9953(09)60065-7

    (17)Mohammadi,A.H.;Chapoy,A.;Richon,D.;Tohidi,B.Ind. Eng.Chem.Res.2004,43,7148.doi:10.1021/ie049843f

    (18)Yarrison,M.;Cox,K.R.;Chapman,W.G.Ind.Eng.Chem.Res. 2006,45,6770.doi:10.1021/ie0513752

    (19) Zhu,R.J.;Zhou,J.G.;Liu,S.C.;Ji,J.;Tian,Y.L.Fluid Phase Equilibria 2010,291,1.doi:10.1016/j.fluid.2009.12.011

    (20) Li,H.L.;Zhu,R.J.;Xu,W.;Li,Y.F.;Su,Y.J.;Tian,Y.L. J.Chem.Eng.Data 2011,56,1148.doi:10.1021/je101086r

    (21) Zhou,J.G.;Zhu,R.J.;Xu,H.F.;Tian,Y.L.J.Chem. Thermodynamics 2010,42,1429.doi:10.1016/j.jct.2010.06.011

    (22) Zhou,J.G.;Zhu,R.J.;Xu,H.F.;Tian,Y.L.J.Chem.Eng. Data 2010,55,5569.doi:10.1021/je100353j

    (23)Tabasinejad,F.;Moore,R.G.;Mehta,A.S.;Van Fraassen,K. C.;BarzinKees,Y.Ind.Eng.Chem.Res.2011,50,4029.doi: 10.1021/ie101218k

    (24) Brunner,E.J.Chem.Thermodyn.1990,22,335.doi:10.1016/ 0021-9614(90)90120-F

    (25) http://www3.geosc.psu.edu/Courses/Geosc202/MethaneFugacity. htm.

    (26) Prausnitz,J.;Lichtenthaler,R.;Azevedo,E.Molecular Thermodynamics of Fluid-Phase equilibria,3rd ed.;Prentice Hall PTR:Upper Saddle River,N.J.,1999;pp 583-596.

    猜你喜歡
    天津大學物理化學學報
    《天津大學學報(社會科學版)》簡介
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學報40年
    Chemical Concepts from Density Functional Theory
    學生寫話
    學報簡介
    學報簡介
    天津大學學報(社會科學版)2014年總目次
    《深空探測學報》
    亚洲av成人一区二区三| 亚洲自偷自拍图片 自拍| av女优亚洲男人天堂 | 成人特级黄色片久久久久久久| 日韩欧美 国产精品| 亚洲成人免费电影在线观看| 亚洲成人免费电影在线观看| 精品电影一区二区在线| 99久久久亚洲精品蜜臀av| 国内少妇人妻偷人精品xxx网站 | 很黄的视频免费| 国产69精品久久久久777片 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品999在线| 国产私拍福利视频在线观看| 国产精品一区二区三区四区久久| 国产一区二区三区在线臀色熟女| 久久亚洲真实| 美女cb高潮喷水在线观看 | 亚洲一区二区三区色噜噜| 国产高清视频在线播放一区| 日韩人妻高清精品专区| 午夜福利18| 在线观看一区二区三区| 1024香蕉在线观看| 国产精品日韩av在线免费观看| 国产高清视频在线观看网站| 亚洲国产欧美人成| 一夜夜www| 黄片大片在线免费观看| 精品一区二区三区视频在线 | 在线免费观看不下载黄p国产 | 99精品在免费线老司机午夜| 久久久久久久久中文| 99国产精品一区二区三区| 亚洲色图av天堂| 精品不卡国产一区二区三区| 亚洲国产欧美网| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲在线观看片| 日韩欧美在线乱码| 成年版毛片免费区| 人妻夜夜爽99麻豆av| 亚洲专区中文字幕在线| 亚洲乱码一区二区免费版| 久久亚洲精品不卡| 亚洲精品美女久久av网站| 亚洲精品中文字幕一二三四区| 十八禁人妻一区二区| 日韩有码中文字幕| www国产在线视频色| 伦理电影免费视频| 久久久精品大字幕| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 国产亚洲av高清不卡| 亚洲成人精品中文字幕电影| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 亚洲18禁久久av| 制服丝袜大香蕉在线| 丝袜人妻中文字幕| 在线免费观看不下载黄p国产 | 久久久久久久久中文| 婷婷亚洲欧美| 不卡一级毛片| 久久人人精品亚洲av| 国产蜜桃级精品一区二区三区| 久久天堂一区二区三区四区| 成年女人永久免费观看视频| 我要搜黄色片| 国产亚洲av嫩草精品影院| 两人在一起打扑克的视频| 国内久久婷婷六月综合欲色啪| 亚洲人成网站高清观看| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 国产精品影院久久| 精品乱码久久久久久99久播| av在线天堂中文字幕| 亚洲国产欧美一区二区综合| 久99久视频精品免费| 亚洲精品456在线播放app | av天堂中文字幕网| 国产精品久久久久久亚洲av鲁大| 日韩欧美一区二区三区在线观看| 九色成人免费人妻av| 日本a在线网址| 一本一本综合久久| 美女高潮的动态| 看免费av毛片| 日韩精品中文字幕看吧| 老熟妇乱子伦视频在线观看| 身体一侧抽搐| 国产一区在线观看成人免费| 亚洲av成人av| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 一卡2卡三卡四卡精品乱码亚洲| 免费观看精品视频网站| 成人高潮视频无遮挡免费网站| 黄色成人免费大全| 999久久久国产精品视频| 国产精品久久久人人做人人爽| a级毛片a级免费在线| 久久久久国内视频| 国产美女午夜福利| 国产久久久一区二区三区| 国产成人精品久久二区二区免费| 亚洲专区国产一区二区| 免费看a级黄色片| 精品乱码久久久久久99久播| 精品免费久久久久久久清纯| av女优亚洲男人天堂 | 18禁黄网站禁片免费观看直播| 天堂动漫精品| 亚洲av熟女| 很黄的视频免费| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影| 男人舔奶头视频| 婷婷六月久久综合丁香| 久久久久久大精品| 又大又爽又粗| 久久精品国产99精品国产亚洲性色| 人妻丰满熟妇av一区二区三区| 狠狠狠狠99中文字幕| 精品久久久久久久毛片微露脸| 日本 欧美在线| www国产在线视频色| 天堂av国产一区二区熟女人妻| 精品不卡国产一区二区三区| 男女午夜视频在线观看| 美女黄网站色视频| 男女之事视频高清在线观看| 久久这里只有精品19| 两个人看的免费小视频| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 国产精品免费一区二区三区在线| 国产高清有码在线观看视频| 老司机午夜十八禁免费视频| 欧美最黄视频在线播放免费| 变态另类成人亚洲欧美熟女| avwww免费| 一夜夜www| x7x7x7水蜜桃| 免费观看精品视频网站| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 亚洲av成人av| 久久性视频一级片| 成熟少妇高潮喷水视频| 一本综合久久免费| 国产一区二区三区视频了| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影| x7x7x7水蜜桃| 麻豆一二三区av精品| 午夜两性在线视频| 婷婷六月久久综合丁香| 我要搜黄色片| 欧美日韩福利视频一区二区| 日本一本二区三区精品| 白带黄色成豆腐渣| 久久久国产欧美日韩av| 国产精品日韩av在线免费观看| a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 国产熟女xx| 2021天堂中文幕一二区在线观| 国产成人福利小说| 十八禁人妻一区二区| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| 嫩草影视91久久| 亚洲熟妇熟女久久| 国产亚洲精品久久久com| 丰满人妻熟妇乱又伦精品不卡| av福利片在线观看| 国产蜜桃级精品一区二区三区| 国产精品久久视频播放| 法律面前人人平等表现在哪些方面| 国内精品一区二区在线观看| 少妇人妻一区二区三区视频| 最近视频中文字幕2019在线8| 别揉我奶头~嗯~啊~动态视频| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 在线免费观看的www视频| 在线观看午夜福利视频| 欧美极品一区二区三区四区| 欧美日韩国产亚洲二区| 午夜福利18| 国产成人精品久久二区二区91| 少妇的丰满在线观看| 一个人看视频在线观看www免费 | 此物有八面人人有两片| 久久香蕉国产精品| 欧美日韩福利视频一区二区| 国产欧美日韩精品一区二区| 色哟哟哟哟哟哟| 美女黄网站色视频| 亚洲五月婷婷丁香| 成人18禁在线播放| 免费无遮挡裸体视频| 啦啦啦免费观看视频1| 我要搜黄色片| 精品久久蜜臀av无| 国产精品乱码一区二三区的特点| 亚洲精品在线美女| 亚洲av美国av| tocl精华| 精品久久久久久久久久免费视频| 小说图片视频综合网站| 亚洲精品在线观看二区| 亚洲中文av在线| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| 精品久久久久久久末码| 真实男女啪啪啪动态图| 三级男女做爰猛烈吃奶摸视频| 男女下面进入的视频免费午夜| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 精品福利观看| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 日本黄大片高清| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 国产av麻豆久久久久久久| 欧美一区二区精品小视频在线| 变态另类丝袜制服| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 1000部很黄的大片| 97超视频在线观看视频| 黄片大片在线免费观看| 亚洲人成网站高清观看| 国产一级毛片七仙女欲春2| 美女高潮喷水抽搐中文字幕| 色精品久久人妻99蜜桃| 国产av一区在线观看免费| 亚洲色图av天堂| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看 | 国产高潮美女av| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 国产精品美女特级片免费视频播放器 | 精品无人区乱码1区二区| 国产精品电影一区二区三区| 我的老师免费观看完整版| 国产一区在线观看成人免费| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 一级黄色大片毛片| 国产精品久久久久久精品电影| 亚洲av成人av| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 国产毛片a区久久久久| 免费看光身美女| 久久国产乱子伦精品免费另类| 极品教师在线免费播放| 99久国产av精品| 免费无遮挡裸体视频| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 成年女人看的毛片在线观看| 国产av不卡久久| 欧美日韩一级在线毛片| 看片在线看免费视频| 亚洲 国产 在线| 久久中文字幕人妻熟女| 在线观看免费午夜福利视频| 一级毛片精品| 精品人妻1区二区| 午夜亚洲福利在线播放| 老司机福利观看| 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 国产毛片a区久久久久| 久久中文看片网| 国产真实乱freesex| 一级毛片高清免费大全| 国产三级在线视频| 色精品久久人妻99蜜桃| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 免费在线观看成人毛片| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片| 在线十欧美十亚洲十日本专区| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| 人妻久久中文字幕网| 午夜免费成人在线视频| 国产成人aa在线观看| 亚洲 欧美 日韩 在线 免费| 欧美黑人巨大hd| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 长腿黑丝高跟| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 嫩草影院精品99| 99热精品在线国产| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 99re在线观看精品视频| 色视频www国产| 黄色 视频免费看| 午夜福利在线在线| 我的老师免费观看完整版| 草草在线视频免费看| 午夜免费激情av| 国产激情偷乱视频一区二区| 五月伊人婷婷丁香| 久久午夜亚洲精品久久| 人人妻人人看人人澡| av国产免费在线观看| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 91av网一区二区| 两性夫妻黄色片| 小蜜桃在线观看免费完整版高清| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 国产精品永久免费网站| 一区二区三区高清视频在线| 最近最新中文字幕大全免费视频| 国内久久婷婷六月综合欲色啪| ponron亚洲| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 在线十欧美十亚洲十日本专区| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 亚洲乱码一区二区免费版| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 国产欧美日韩精品一区二区| 精品久久久久久,| 成人无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 黑人巨大精品欧美一区二区mp4| 麻豆国产97在线/欧美| 欧美一级毛片孕妇| 亚洲中文字幕日韩| 听说在线观看完整版免费高清| 国内精品美女久久久久久| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 亚洲av片天天在线观看| 亚洲精品在线观看二区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品999在线| 午夜福利视频1000在线观看| 日本三级黄在线观看| 国产亚洲精品久久久久久毛片| 在线观看美女被高潮喷水网站 | 99久久国产精品久久久| 淫妇啪啪啪对白视频| 国产又色又爽无遮挡免费看| 国产精品美女特级片免费视频播放器 | 久久这里只有精品中国| 1024手机看黄色片| www日本在线高清视频| 九色成人免费人妻av| 高清在线国产一区| 悠悠久久av| a在线观看视频网站| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 国产激情久久老熟女| 免费在线观看视频国产中文字幕亚洲| 亚洲美女视频黄频| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 亚洲av免费在线观看| 亚洲精品456在线播放app | 欧美一级毛片孕妇| 99久久精品一区二区三区| 精品电影一区二区在线| 国产精品久久视频播放| 成人精品一区二区免费| 美女大奶头视频| 午夜福利视频1000在线观看| 岛国在线观看网站| 黄色视频,在线免费观看| 中文字幕最新亚洲高清| 999久久久国产精品视频| a级毛片在线看网站| 亚洲在线自拍视频| 免费电影在线观看免费观看| av女优亚洲男人天堂 | 国产精品久久久久久久电影 | netflix在线观看网站| 亚洲精品色激情综合| 亚洲美女视频黄频| 日本 欧美在线| 午夜精品一区二区三区免费看| 日韩 欧美 亚洲 中文字幕| 99久久无色码亚洲精品果冻| 国产高清三级在线| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 国产毛片a区久久久久| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 又黄又粗又硬又大视频| 88av欧美| 女警被强在线播放| 美女高潮的动态| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 少妇的逼水好多| 啦啦啦免费观看视频1| 国产成人av教育| 国产视频一区二区在线看| 香蕉丝袜av| 真人做人爱边吃奶动态| 又粗又爽又猛毛片免费看| a级毛片在线看网站| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 亚洲精品色激情综合| aaaaa片日本免费| 在线a可以看的网站| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 亚洲av电影在线进入| 亚洲在线自拍视频| 黄片小视频在线播放| 免费看日本二区| 亚洲 国产 在线| 精品一区二区三区视频在线 | 欧美日韩国产亚洲二区| 国产一区二区激情短视频| 久久久久久久久免费视频了| 久久这里只有精品中国| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 欧美日韩一级在线毛片| 欧美日韩黄片免| 丝袜人妻中文字幕| 国产精品一区二区精品视频观看| 国产精品女同一区二区软件 | av福利片在线观看| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 国产精品日韩av在线免费观看| 高潮久久久久久久久久久不卡| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| av在线蜜桃| 国产精华一区二区三区| 手机成人av网站| 一夜夜www| 中文字幕av在线有码专区| 亚洲精品国产精品久久久不卡| 久久久精品大字幕| 国产成年人精品一区二区| 欧美大码av| 国产欧美日韩一区二区三| svipshipincom国产片| www日本黄色视频网| 国产成人欧美在线观看| 女人高潮潮喷娇喘18禁视频| 成人三级做爰电影| 波多野结衣高清作品| 中文资源天堂在线| 欧美黑人巨大hd| 每晚都被弄得嗷嗷叫到高潮| 性欧美人与动物交配| 免费av毛片视频| 看片在线看免费视频| 日日干狠狠操夜夜爽| 成年女人看的毛片在线观看| 99热6这里只有精品| www.自偷自拍.com| 午夜激情欧美在线| 午夜福利欧美成人| 精品一区二区三区av网在线观看| 国产精品av久久久久免费| 亚洲午夜精品一区,二区,三区| 亚洲成av人片免费观看| 婷婷精品国产亚洲av在线| 热99re8久久精品国产| 国内少妇人妻偷人精品xxx网站 | 精品国产三级普通话版| 欧美大码av| 美女黄网站色视频| 怎么达到女性高潮| 日本a在线网址| 亚洲精品在线美女| 久久久国产成人精品二区| 1024香蕉在线观看| 99久久99久久久精品蜜桃| 国产精品 国内视频| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 久久天躁狠狠躁夜夜2o2o| 91字幕亚洲| 蜜桃久久精品国产亚洲av| 19禁男女啪啪无遮挡网站| 国内精品一区二区在线观看| 久久午夜亚洲精品久久| 亚洲国产精品sss在线观看| 日本一本二区三区精品| 我要搜黄色片| 亚洲精品在线美女| 少妇的丰满在线观看| 美女高潮喷水抽搐中文字幕| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产又黄又爽又无遮挡在线| 久久中文字幕人妻熟女| 国产精品久久久久久久电影 | 午夜免费激情av| 熟女人妻精品中文字幕| 91在线观看av| 日韩欧美免费精品| 激情在线观看视频在线高清| 中国美女看黄片| 免费无遮挡裸体视频| 精品久久久久久久末码| 欧美三级亚洲精品| 最近在线观看免费完整版| 999久久久国产精品视频| 久久久国产成人免费| ponron亚洲| 99久久国产精品久久久| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 国产一区在线观看成人免费| 日本三级黄在线观看| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 国产精品九九99| 看片在线看免费视频| 九九热线精品视视频播放| 中文资源天堂在线| av在线天堂中文字幕| 亚洲自偷自拍图片 自拍| 欧美在线一区亚洲| 麻豆成人av在线观看| 男人和女人高潮做爰伦理| 午夜视频精品福利| 无人区码免费观看不卡| 久久欧美精品欧美久久欧美| aaaaa片日本免费| 美女免费视频网站| 亚洲第一电影网av| 亚洲av免费在线观看| 欧美最黄视频在线播放免费| 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 搡老妇女老女人老熟妇| av福利片在线观看| 97超级碰碰碰精品色视频在线观看| 丰满人妻一区二区三区视频av | 久久久久久久久免费视频了| 狠狠狠狠99中文字幕| 日韩人妻高清精品专区| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 亚洲国产精品999在线| 国内精品久久久久精免费| 亚洲av熟女| 男人舔奶头视频| 国产aⅴ精品一区二区三区波| 黄频高清免费视频| 国产爱豆传媒在线观看| 国产av一区在线观看免费| 久久中文字幕人妻熟女| 老汉色∧v一级毛片| 日本三级黄在线观看| 88av欧美| 国产亚洲精品综合一区在线观看| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 欧美色视频一区免费| www.自偷自拍.com| 精品久久蜜臀av无| 久久精品国产清高在天天线| 99热精品在线国产| 在线观看美女被高潮喷水网站 | 搡老熟女国产l中国老女人| 夜夜爽天天搞| 日韩欧美 国产精品| 91麻豆av在线| 长腿黑丝高跟| 欧美精品啪啪一区二区三区|