• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二棕櫚酰磷脂酰膽堿/豆固醇脂質(zhì)體液態(tài)有序相的結(jié)構(gòu)性質(zhì):同步輻射X光衍射研究

    2012-12-12 02:42:14鄔瑞光尉志武
    物理化學(xué)學(xué)報(bào) 2012年8期
    關(guān)鍵詞:物理化學(xué)X光脂質(zhì)體

    鄔瑞光 陳 琳 尉志武,*

    (1清華大學(xué)化學(xué)系,生命有機(jī)磷化學(xué)與化學(xué)生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,北京100084; 2北京中醫(yī)藥大學(xué)中藥學(xué)院,北京100102)

    1 Introduction

    The cholesterol-rich domain structures in biological membranes of animals,namely rafts or detergent-resistant membrane fractions(DRMs),have been implicated in numerous cellular processes,including signal transduction,protein sorting, cellular entry by toxins and viruses,and viral budding.1-4Several pieces of evidence support the understanding that DRMs exist at liquid ordered(Lo)state.5-7The Lophase was first defined by Ipsen et al.8Generally speaking,this phase has properties that are intermediate between those of the gel and fluid phases. Like the gel phase,the Lophase is characterized by tight acyl-chain packing and relatively extended acyl chains.On the other hand,like lipids in the liquid crystal phase(Lα),lipids in the Lophase exhibit relatively rapid lateral mobility within the bilayer.6,8,9But there are few reports about the more detailed structural properties of the Lophase so far,especially the temperature and concentration dependence of the d-spacings of small-angle and wide-angle X-ray scattering(SAXS and WAXS)of Lophase.

    As the major sterol presenting in mammalian cells,cholesterol has been regarded as a critical component of rafts in cells.10-12Thus investigations concerning the characters of Lophase were mainly focused on lipid mixtures containing cholesterol.Particular efforts have been put on binary mixtures of saturated phosphatidylcholines(or sphingomyelins)and cholesterol so far.

    Not limited to animal cells,DRMs rich in sphingolipid/sterol have also been isolated from plant cells,where the dominant sterol is not cholesterol.13-16Particularly,stigmasterol has been identified as one of the predominant sterols in plant rafts such as in tobacco lipid rafts.14,17For reason that stigmasterol is among the major sterols in plant plasma membranes,18,19its role in the formation of Lophase has become an interesting topic recently.In a study of lipid mixtures containing natural sterols and sphingolipids using fluorescence quenching and detergent insolubility,Xu et al.20have shown that,like cholesterol,stigmasterol promoted the formation of tightly packed liquid ordered domains containing DPPC or sphingomyelin.And both cholesterol and stigmasterol promoted the insolubility of these domains.20There have also been reports on the effects of stigmasterol and other plant sterols on the phase behavior of DPPC multibilayers investigated by differential scanning calorimetry (DSC),X-ray diffraction(XRD),resonance energy transfer, Langmuir monolayer,and detergent-induced solubilization techniques.21-23

    Phosphatidylcholines(PCs)are among the major phospholipids of plasma membranes.24Saturated PCs are known to have very similar physical properties to that of saturated-chain sphingolipids.25Thus DPPC/sterol mixtures have been selected by many research groups as simple model systems of Lophase. Therefore,it is of importance to explore the structural properties of Lophase by studying the stigmasterol-containing DPPC multibilayers.

    We have constructed a partial phase diagram of DPPC/stigmasterol binary mixtures employing XRD,DSC,and freezefracture electron microscopy(FFEM)techniques,26as sketched in Fig.1.In the present paper we will report the structural characters of the concerned phases,particularly the Lophase,of the binary mixtures by analyzing the small-angle and wide-angle XRD patterns.

    2 Materials and methods

    2.1 Materials

    DPPC was purchased from Sigma Chemicals(99%,St.Louis,MO,USA).Stigmasterol was from MP Biomedicals Inc. (95%,Aurora,OH,USA).They were used without further purification.DPPC/stigmasterol mixtures with designated mole ratios were dissolved in chloroform,dried under nitrogen,and then stored in vacuum overnight.The lipid films were hydrated with excess Tris-HCl buffers(50 mmol·L-1Tris-HCl,150 mmol·L-1NaCl,0.1 mmol·L-1CaCl2,pH=7.2)with repeated vortexing and heating-cooling between 60 and 20°C for at least three times and then stored at-20°C at least for 24 h before experiments.The mole fractions of stigmasterol in the binary mixtures were 1.25%,2.5%,4%,5%,7.5%,10%,15%, 20%,22.5%,25%,27.5%,30%,35%,40%,45%.

    2.2 Experimental methods

    Real-time synchrotron XRD experiments were performed at Station BL40B2 of SPring-8,Japan.The SAXS/WAXS data were recorded on-line with an image plate detector.The wavelength was 0.1 nm and camera length was about 400 mm.A standard sample silver behenate was used for calibration.A Linkam thermal stage was used in temperature control.To remove thermal history,all samples have been heated to 65°C and then cooled to 20°C at a rate of 0.5°C·min-1before measurement.The temperature scanning rate was 0.5°C·min-1during the measurement.Time for image exposure,data processing and dumping was 330 s.Electron density distributions across the unit cell of lamellar repeat of the DPPC codispersions containing different molar percentages of stigmasterol were calculated as follows.Integrated intensities I(h)for a range of diffraction orders(h)were obtained from low-angle scattering intensity profiles.Electron density profiles in a one-dimension space x,in arbitrary unit,were then expressed as27-29

    Fig.1 Phase diagram of stigmasterol/DPPC mixture dispersed in excess water(redrawn after Ref.26)and schematic representation of the molecular structures of DPPC and stigmasterol

    where F(h)is the structure factor,g(h)is the phase of F(h)of the hth order diffraction,and d is the repeat spacing of the multibilayers.

    The structure amplitude F(h)was set equal to[I(h)]1/2,where I(h)was obtained for each order h by measuring the area under the respective diffraction peak after normalization and background subtraction.27Error and trial method has been employed to solve the phase problem.All possible phase sets have been attempted,but only the phase set of“-,-,+,-,-”was reasonable.This phase combination has also been reported in similar systems including dimyristoylphosphatidylcholine(DMPC)/ cholesterol mixtures,30DPPC/dipalmitoylglycerol(DPG)mixtures,31and DPPC/dimethyl sulfoxide(DMSO)mixtures.32

    Deconvolution of the multicomponent XRD spectra was carried out using PeakFit software(Aisn Software Inc.).The baseline was created by two-point linear method and peak type was Gauss+Lorentz for all the deconvolution treatments.

    3 Results and discussion

    SAXS and WAXS patterns can provide information on long range bilayer organisation and hydrocarbon chain packing of DPPC multibilayers,respectively.The d-spacing of SAXS represents repeat distance of DPPC multibilayers,including the thickness of the bilayer(i.e.,the distance between two phosphate groups)and that of the water layer.The d-spacing of WAXS represents in-plane packing of DPPC hydrocarbon chain in a quasi-hexagonal or hexagonal lattice.27,32

    XRD patterns were recorded over the temperature range of 30 to 60°C at an interval of 2.75°C at a heating rate of 0.5°C· min-1.At least five orders of diffraction have been recorded in the small-angle region for each of the mixed lipid dispersions.

    Representative SAXS and WAXS patterns for dispersions of DPPC containing 15%(x,molar fraction)and 30%(x)stigmasterol are presented in Fig.2.Five orders,including the overlapped fourth and fifth orders,diffractions in the smallangle region can be seen.Literature results have shown that, for DPPC dispersions containing certain amount of sterol, there are two domains coexist no matter below or above the main transition temperature,called sterol-poor and sterol-rich domains,respectively.8,22,26Accordingly,each peak of the five order diffractions was deconvoluted into two subpeaks.Fig.3 shows the deconvoluted results of five SAXS orders of a sample containing 30%(x)sterol at 30°C,including the overlapped 4th and 5th order peaks.The reciprocal spacings can be put into two groups:(0.13,0.26,0.41,0.55,and 0.66 nm-1)and (0.14,0.28,0.42,0.61,and 0.69 nm-1).They are in ratios of 1:2: 3:4:5.

    Fig.4 shows the temperature-dependence of the d-spacings of WAXS of gel,Lo,and Lαphases formed by DPPC/stigmasterol mixtures.The concentrations of stigmasterol are 0 and 5%(x)for gel phase,0,5%,and 10%(x)for Lαphase,and 35%,40%,and 45%(x)for Lophase,respectively.According to Fig.1,these samples are all in single-phase region over a certain temperature range.As shown in Fig.4,the d-spacings of Lophase have a much broader range compared to those of gel phase and Lαphase.The d-spacings of the gel phase and Lαphase increase from 0.420 nm to 0.423 nm and from 0.456 nm to 0.459 nm with temperature,respectively.This corresponds to only about 0.7%in the temperature range.On the contrary, the d-spacings of Lophase show a strong temperature and concentration dependence,varying from 0.422 to 0.460 nm,contributing to about 9%increase.This is consistent with the literature33,34results.Gao and coworkers33also found that the d-spacings of Loof DPPC/stigmasterol mixtures showed a strong temperature dependence.In an experimental study on DPPC/cholesterol codispersions,Clarke and coworkers34also found that the d-spacings of WAXS of the single Lophase had a much wider range than those of gel and Lαphases,varying from 0.420 to 0.495 nm and showing a strong temperature and concentration dependence.Their and our experimental results all suggest such a conclusion:compared with gel and Lαphases, the Lophase has a more diverse range of d-spacings of WAXS. One possible reason that the d-spacing of WAXS of Lophase has marked temperature dependence is that the position of the sterol molecules in DPPC bilayers is temperature-dependent. In a molecular dynamics simulation study,Qin et al.35found that the position of α-tocopherol in phosphatidylcholine bilayers had a strong temperature dependence.The structural role of α-tocopherol and sterol in PC membrane is similar.35

    Fig.2 X-ray diffraction patterns recorded from stigmasterol/DPPC binary mixtures as a function of reciprocal spacing during heating scans at 0.5°C·min-1(a)15%(x,molar fraction)and(b)30%(x)stigmasterol.The temperature interval is 2.75°C.

    Fig.3 Deconvoluted results of all the five orders of the DPPC/ stigmasterol mixture containing 30%(x,molar fraction) sterol at 30°C(a)first order,(b)second order,(c)third,fourth,and fifth order.Open squares represent experimental data,solid lines represent overall fitting spectra,dash and dotted lines represent deconvoluted diffraction spectra of Pβ?and Lo domains,respectively.

    It is well known that 0.42 and 0.46 nm are characteristic dspacings of WAXS of gel phase and Lαphase,respectively.32,34,36They reflect the repeat spacings of hexagonal or quasi-hexagonal arrangements of acyl chains as depicted in a previous publication.37The experimental results that the d-spacing of Lophase varies from 0.422 nm to 0.460 nm may imply that the Lophase owns both the character of gel phase and the character of Lαphase,depending on the composition of the binary mixture and temperature.This is consistent with the conclusion that the character of Lophase covers the characters of both gel phase and Lαphase.6

    Fig.4 shows that the d-spacings of WAXS of Lophase formed by stigmasterol/DPPC mixtures are larger than that of Pβ?phase(the gel phase of Fig.4 includes Pβ?phase and Lβ?phase).This implies that the degree of chain order of Pβ?phase is higher than that of Lophase.This is consistent with our thermodynamic experimental results of stigmasterol/DPPC mixtures.In our earlier work,26the ratio ofwas found to be 1.2(1.2 was the value ofaccording to nonlinear least squares fitting when taking 1.1 as the initial value.andwere defined as the molar phase transition enthalpies of lipid mixtures from Pβ?to Lαand from Loto Lα,respectively).26As far as the ratio is concerned,though the concentration and the temperature of the two“Lα”phases are different,data in Fig.4 suggest that the d-spacings of Lαphase have little dependence on temperature and concentration.Thus it is reasonable to assume that the two“Lα”phases have almost the same degree of chain ordering.Thussuggests that it is an endothermal transition from Pβ?phase to Lophase.This implies that the alkyl chains of Lophase are more disordered than that of Pβ?phase.

    Fig.4 Dependence of d-spacings of WAXS of single Lophase(a),single gel phase(b),and single Lαphase(b)on temperature and stigmasterol concentration

    Fig.5 shows the temperature-dependence of the d-spacings (SAX)of Lβ?,Pβ?,Lo,and Lαphases formed by DPPC/stigmasterol mixtures.The concentrations of stigmasterol are 0 for Lβ?phase,0 and 5%(x)for Pβ?phase,35%,40%,and 45%(x)for Lophase,and 0,5%,and 10%(x)for Lαphase.According to the phase diagram(Fig.1),these samples are all in single-phase region over a certain temperature range.Based on these data, two conclusions can be drawn.Firstly,the d-spacings of various phases of DPPC/stigmasterol multilamellar structures increase in the following sequential order:Lβ?<Lα<Lo<Pβ?.This d-spacing sequence is consistent with that of pure DPPC membranes(Lβ?<Lα<Pβ?).36Not surprisingly,ripple phase shows the longest repeat spacing among the four phases.Surprisingly,the repeat spacing of Lois greater than those of Lβ?and Lα.This is consistent with what Hui and He reported.38We will discuss this further after we have shown the electron density profiles. Secondly,similar to those of Lβ?phase and Lαphase,the d-spacings of Lophase change slightly with temperature and sterol concentration.As shown in Fig.5,the d-spacings of Lβ?,Lα,and Lophases vary from 6.39 to 6.44 nm,6.60 to 6.82 nm,and 6.91 to 7.12 nm in the respective temperature range,increasing only 0.05,0.22,and 0.21 nm,respectively.Clarke and coworkers34reported that the d-spacings of Lophase formed by DPPC(or DMPC)and cholesterol were nearly a constant,varied by only 0.1 nm over the temperature range(5-65°C).Our experimental results are consistent with their conclusions.But the d-spacings of Pβ?phase vary from 7.16 to 8.97 nm,increasing 1.81 nm.Yu et al.32and Matuoka et al.39also reported that the d-spacings of Pβ?phase had a larger range than that of Lβ?phase. Furthermore,careful examination on the data of Lophase (Fig.5)shows that the dependence of d-spacing on stigmasterol concentration is not monotonic.This might have been caused by the sample containing 35%(x)stigmasterol.As shown in Fig.1,the right boundary of the two-phase region below 40°C is very close to 35%(x).Taking the error of the concentration of this sample and that of the boundary into account,the sample may not be a pure Lophase,but containing a small amount of ripple phase.This might have caused greater d-spacing values than they should be since the d-spacing of Pβ?phase is much larger than that of Lophase.

    Fig.5 Temperature dependence of SAXS d-spacings of various DPPC/stigmasterol codispersions at different phase statesThe concentrations of stigmasterol are:0%(○),5%(Δ),10%(□),35%(■), 40%(●),and 45%(▲).Inset shows the temperature dependence of dP-Pof Lo phase which coexists with sterol-poor domains.

    Fig.6 d-spacings of the Lophase(○)and coexisting Pβ?phase(□) or Lαphase(Δ)

    As shown in Fig.1,the Lophase coexists with Pβ?phase below 40.8°C(the temperature of three-phase line)and coexists with Lαphase above 40.8°C.Thus the d-spacings of the two phases at the same temperature are almost fixed at a given temperature.We deconvoluted the second order of the SAXS patterns at a given temperature to deduce the d-spacings of Lophase and another coexisted phase.The results are summarized in Fig.6.The d-spacings of the two phases at each temperature represent the average of at least three sample concentrations. There are two obvious differences between the d-spacings of the Lophase and another coexisted phase.Firstly,the change of d-spacing of another coexisted phase is much larger than that of the Lophase.As shown in Fig.6,the d-spacing of another coexisted phase decreases from 8.05 to 6.43 nm,making a 20% decrease compared to only 6%decrease from 7.28 to 6.87 nm for Lophase.Secondly,the d-spacing of another coexisted phase decreases drastically at around 40°C while that of the Lophase decreases much gradually over the temperature range.

    To estimate the thicknesses of the bilayer and the water layer,the relative electron density profiles of Loand Lαphases from 44 to 52°C have been calculated.Taking the DPPC/stigmasterol mixture containing 20%(x)sterol as an example, Fig.7 shows the representative electron density profiles of DPPC/stigmasterol mixtures containing 20%(x)sterol at 44°C. The top pattern is the electron density profile of Lophase and the bottom pattern,Lαphase.As shown in Fig.7,the thickness of the bilayer(i.e.,the distance between two phosphate groups) and that of the water layer are 4.38 and 2.23 nm for Lαphase, while 4.62 and 2.43 nm for Lophase,respectively.Though accurate estimation of electron density profiles of the ripple phase at temperature below 41°C was not possible due to the low resolution of the diffraction peaks of the ripple phase,reliable results of Lophase at temperature below 41°C can be obtained.All the derived thickness of the bilayer(dP-P)and thickness of water layer(dw)are summarized in Table 1.The dP-Pand dwat each temperature represent the average of at least three sample concentrations.

    Fig.7 One-dimensional electron density profiles constructed from the XRD patterns for the sterol-poor(lower)and sterol-rich (upper)domains of DPPC codispersions containing 20%(x) stigmasterol at 44°C

    Three conclusions concerning the Lophase can be drawn from the data in Table 1.Firstly,the bilayer thickness of Lophase is larger than that of Lαphase at all temperatures.This is consistent with the present understanding that the Lophase is characterized by tight acyl-chain packing and relatively extended acyl chains,while Lαphase is characterized by conformationally disordered acyl chains.6,8,40Atomic force microscopy (AFM)experiment also showed that the bilayer thickness of Lophase is larger than that of Lαphase.41

    Secondly,the thickness of water layer of Lophase is larger than that of Lαphase at all temperatures.This is consistent with the published experimental results,which showed that the hydration degree of cholesterol-containing DPPC multibilayers was a little higher than that of pure DPPC.42Therefore,it is reasonable that Lophase has a larger thickness of water layer than Lαphase since the sterol concentration of Lophase is largerthan that of the coexisted Lαphase from 44 to 52°C

    Table 1 dP-Pand dwof Loand Lαphases in the two-phase region at various temperatures

    Thirdly,the thickness of bilayer of Lophase decreases slightly with increasing temperature,as shown in inset of Fig.5.Not only temperature,but also sterol concentration influences the bilayer thickness.Due to the fact that the compositions of the Lophase which coexists with a sterol-poor domain at different temperatures are different as defined by the right boundaries of the two-phase regions of Fig.1,the change in dP-Pis the result of changes in both temperature and concentration.According to Fig.4(a),the alkyl chains of Lophase become more disordered with increasing temperature or sterol concentration,so increasing temperature or concentration will decrease the dP-Pvalue.According to Fig.1,the sterol concentration of the right boundary line decreases with increasing temperature up to 40.8°C(the temperature of three-phase line),so the effects of temperature and concentraton on the dP-Pare contrary in this temperature range.The general trend of decreasing dP-Pwith increasing temperature indicates that temperature plays the dominating role.When temperature is above 40.8°C,the sterol concentration of the Lophase increases with increasing temperature,so the effects of temperature and concentraton on the dP-Pare consistent,thus the dP-Pdecreases with increasing temperature more drastically than below 40.8°C.

    As shown in Table 1,both dP-Pand dwof Lophase decrease with increasing temperature below 44°C,thus the d-spacings decrease with increasing temperature below 44°C.Also shown in Table 1,though the dwof Lophase increases slightly with increasing temperature above 44°C,the dP-Pof Lophase decreases more drastically,thus the d-spacing decreases with increasing temperature above 44°C.

    4 Conclusions

    The characters of Lophase of DPPC/stigmasterol codispensions have been studied by XRD technique.The lamellar spacings of Lophase change slightly with the sterol concentration and temperature.Compared with gel and Lαphases,the d-spacings of WAXS of Lophase have a broader range,varying from 0.422 to 0.460 nm in the temperature range from 30 to 52°C, suggesting that Lophase has a diverse range of properties,covering possibly the characters of both gel phase and Lαphase. The electron density profiles show that both the thickness of bilayer and that of water layer of Lophase are larger than those of Lαphase.In addition,the thickness of bilayer of Lophase decreases with increasing temperature.

    (1)Sun,R.G.;Zhang,J.;Hao,C.C.;Chen,Y.Y.;Yang,Q.Chem. J.Chin.Univ.2011,32,2062.[孫潤(rùn)廣,張 靜,郝長(zhǎng)春,陳瑩瑩,楊 謙.高等學(xué)?;瘜W(xué)學(xué)報(bào),2011,32,2062.]

    (2) Verma,S.P.Curr.Drug Targets 2009,10,51.doi:10.2174/ 138945009787122851

    (3) Orlowski,S.;Coméra,C.;Tercé,F.;Collet,X.Eur.Biophys.J. 2006,36,869.

    (4) Szabo,G.;Dolganiuc,A.;Dai,Q.J.Immunol.2007,178,1243.

    (5) Schroeder,R.;London,E.;Brown,D.A.Proc.Nati.Acad.Sci. U.S.A.1994,91,12130.doi:10.1073/pnas.91.25.12130

    (6) Sharmin,N.A.;Brown,D.A.;London,E.Biochemistry 1997, 36,10944.doi:10.1021/bi971167g

    (7) Sinha,M.;Mishra,S.;Joshi,P.G.Eur.Biophys.J.2003,32, 381.doi:10.1007/s00249-003-0281-3

    (8) Ipsen,J.H.;Karlstroem,G.;Mouritsen,O.G.;Wennerstroem, H.;Zuckermann,M.J.Biochim.Biophys.Acta 1987,905,162. doi:10.1016/0005-2736(87)90020-4

    (9)Almeida,P.F.F.;Vaz,W.L.C.;Thompson,T.E.Biochemistry 1992,31,6739.doi:10.1021/bi00144a013

    (10) Brown,D.A.;London,E.Annu.Rev.Cell Dev.Biol.1998,14, 111.doi:10.1146/annurev.cellbio.14.1.111

    (11) Brown,D.A.;London,E.J.Membr.Biol.1998,164,103.doi: 10.1007/s002329900397

    (12) Simons,K.;Toomre,D.Nat.Rev.Mol.Cell Biol.2000,1,31. doi:10.1038/35036052

    (13) Peskan,T.;Westermann,M.;Oelmuller,R.Eur.J.Biochem. 2000,267,6989.doi:10.1046/j.1432-1327.2000.01776.x

    (14) Mongrand,S.;Morel,J.;Laroche,J.;Claverol,S.;Carde,J.P. J.Biol.Chem.2004,279,36277.doi:10.1074/jbc.M403440200

    (15) Borner,G.H.H.;Sherrier,D.J.;Weimar,T.;Michaelson,L.V.; Hawkins,N.D.Plant Physiol.2005,137,104.doi:10.1104/ pp.104.053041

    (16) Dufourc,E.J.J.Chem.Biol.2008,1,63.doi:10.1007/s12154-008-0010-6

    (17) Martin,S.W.;Glover,B.J.;Davies,J.M.Trends Plant Sci. 2005,10,263.doi:10.1016/j.tplants.2005.04.004

    (18) Demel,R.A.;Kruyff,B.D.Biochim.Biophys.Acta 1976,457, 109.

    (19) Mckersie,B.D.;Lepock,J.R.;Kruuv,J.;Thompson,J.E. Biochim.Biophys.Acta 1978,508,197.doi:10.1016/0005-2736 (78)90325-5

    (20) Xu,X.L.;Bittman,R.;Duportail,G.;Heissler,D.;Vilcheze,C.; London,E.J.Biol.Chem.2001,276,33540.doi:10.1074/jbc. M104776200

    (21) McKersie,B.D.;Thompson,J.E.Plant Physiol.1979,63,802. doi:10.1104/pp.63.5.802

    (22) Halling,K.K.;Slotte,J.P.Biochim.Biophys.Acta 2004,1664, 161.doi:10.1016/j.bbamem.2004.05.006

    (23) Su,Y.L.;Li,Q.Z.;Chen,L.;Yu,Z.W.Colloid Surf.APhysicochem.Eng.Aspects 2007,293,123.doi:10.1016/ j.colsurfa.2006.07.016

    (24)Wu,R.G.;Wang,Y.R.;Wu,F.G.;Zhou,H.W.;Zhang,X.H.; Hou,J.L.J.Therm.Anal.Calorim.2012,109,311.doi: 10.1007/s10973-012-2331-5.

    (25) Ohvo-Rekil?,H.;Ramstedt,B.;Leppim?ki,P.;Slotte,J.P.Prog. Lipid Res.2002,41,66.doi:10.1016/S0163-7827(01)00020-0

    (26) Wu,R.G.;Chen,L.;Yu,Z.W.;Quinn,P.J.Biochim.Biophys. Acta 2006,1758,764.doi:10.1016/j.bbamem.2006.04.017

    (27) McIntosh,T.J.;Magid,A.D.;Simon,S.A.Biochemistry 1989, 28,7904.doi:10.1021/bi00445a053

    (28)Wu,F.G.;Jia,Q.;Wu,R.G.;Yu,Z.W.J.Phys.Chem.B 2011, 115,8559.doi:10.1021/jp200733y

    (29)Gao,W.Y.;Chen,L.;Wu,R.G.;Yu,Z.W.;Quinn,P.J.J.Phys. Chem.B 2008,112,8375.doi:10.1021/jp712032v

    (30) McIntosh,T.J.;Simon,S.A.Biochemistry 1986,25,4058.doi: 10.1021/bi00362a011

    (31) Quinn,P.J.;Takahashi,H.;Hatta,I.Biophys.J.1995,68,1374. doi:10.1016/S0006-3495(95)80310-3

    (32) Yu,Z.W.;Quinn,P.J.Biophys.J.1995,69,1456.doi:10.1016/ S0006-3495(95)80015-9

    (33)Gao,W.Y.;Chen,L.;Wu,F.G.;Yu,Z.W.Acta Phys.-Chim. Sin.2008,24,1149.[高文穎,陳 琳,吳富根,尉志武.物理化學(xué)學(xué)報(bào),2008,24,1149.]doi:10.1016/S1872-1508(08) 60050-9

    (34) Clarke,J.A.;Heron,A.J.;Seddon,J.M.;Law,R.V.Biophys.J. 2006,90,2383.doi:10.1529/biophysj.104.056499

    (35) Qin,S.S.;Yu,Z.W.Acta Phys.-Chim.Sin.2011,27,213. [秦姍姍,尉志武.物理化學(xué)學(xué)報(bào),2011,27,213.]doi:10.3866/ PKU.WHXB20110109

    (36) Tristram-Nagle,S.;Moore,T.;Petrache,H.I.;Nagle,J.F. Biochim.Biophys.Acta 1998,1369,19.doi:10.1016/S0005-2736(97)00197-1

    (37)Gao,W.Y.;Yu,Z.W.Chin.J.Chem.2008,26,1596.[高文穎,尉志武.中國(guó)化學(xué),2008,26,1596.]doi:10.1002/ cjoc.200890288

    (38) Hui,S.W.;He,N.B.Biochmeistry 1983,22,1159.doi:10.1021/ bi00274a026

    (39) Matuoka,S.;Kato,S.;Hatta,I.Biophys.J.1994,67,728.doi: 10.1016/S0006-3495(94)80533-8

    (40) Sankaram,M.B.;Thompson,T.E.Biochemistry 1990,29, 10676.doi:10.1021/bi00499a015

    (41) Rinia,H.A.;Snel,M.M.E.;Jan,P.J.M.FEBS Lett.2001,501, 92.doi:10.1016/S0014-5793(01)02636-9

    (42) Bach,D.;Miller,I.R.Chem.Phys.Lipids 2005,136,67.doi: 10.1016/j.chemphyslip.2005.04.001

    猜你喜歡
    物理化學(xué)X光脂質(zhì)體
    PEG6000修飾的流感疫苗脂質(zhì)體的制備和穩(wěn)定性
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    仿生武器大揭秘
    給動(dòng)物拍張X光片
    人眼X光
    超濾法測(cè)定甘草次酸脂質(zhì)體包封率
    中成藥(2018年2期)2018-05-09 07:20:08
    Chemical Concepts from Density Functional Theory
    TPGS修飾青蒿琥酯脂質(zhì)體的制備及其體外抗腫瘤活性
    中成藥(2017年3期)2017-05-17 06:08:52
    還在喂奶,能照X光嗎?
    媽媽寶寶(2017年2期)2017-02-21 01:21:28
    日韩 欧美 亚洲 中文字幕| 久久午夜亚洲精品久久| 午夜久久久在线观看| 亚洲av片天天在线观看| 国产一级毛片七仙女欲春2 | 亚洲七黄色美女视频| 精品国产一区二区久久| 国产成人免费无遮挡视频| 亚洲熟女毛片儿| 午夜a级毛片| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 精品少妇一区二区三区视频日本电影| 国产成人欧美| 一区二区日韩欧美中文字幕| 国产一区二区三区在线臀色熟女| 波多野结衣一区麻豆| 别揉我奶头~嗯~啊~动态视频| 中文字幕色久视频| 久久人妻av系列| 免费无遮挡裸体视频| 亚洲国产精品sss在线观看| 黄色视频不卡| 三级毛片av免费| 亚洲 欧美一区二区三区| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 亚洲欧美一区二区三区黑人| 色av中文字幕| 欧美激情久久久久久爽电影 | 伦理电影免费视频| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 啪啪无遮挡十八禁网站| 免费久久久久久久精品成人欧美视频| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 亚洲欧美一区二区三区黑人| 亚洲第一欧美日韩一区二区三区| 精品福利观看| 宅男免费午夜| 麻豆国产av国片精品| 久久伊人香网站| 岛国在线观看网站| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 国产av一区在线观看免费| 老司机在亚洲福利影院| av视频免费观看在线观看| 久久亚洲真实| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2 | 精品无人区乱码1区二区| 丁香六月欧美| 久久欧美精品欧美久久欧美| 日本a在线网址| 国产精品亚洲av一区麻豆| 欧美日本视频| 99re在线观看精品视频| 久久精品国产亚洲av高清一级| 国产区一区二久久| 9热在线视频观看99| av在线播放免费不卡| 亚洲精品中文字幕一二三四区| 十分钟在线观看高清视频www| 9191精品国产免费久久| 亚洲国产精品999在线| 制服丝袜大香蕉在线| 性欧美人与动物交配| 亚洲自偷自拍图片 自拍| 亚洲欧美日韩无卡精品| 一夜夜www| 欧美一级毛片孕妇| 麻豆成人av在线观看| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 国产在线精品亚洲第一网站| 老司机靠b影院| 亚洲熟妇熟女久久| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 最好的美女福利视频网| 国产精品久久久久久人妻精品电影| 91麻豆av在线| 国产精品一区二区精品视频观看| 18禁国产床啪视频网站| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 国产在线观看jvid| 69av精品久久久久久| 亚洲国产精品久久男人天堂| 亚洲精品国产区一区二| 欧美激情高清一区二区三区| 国产精品永久免费网站| 亚洲成人久久性| 久久久久久国产a免费观看| 精品国产一区二区久久| 手机成人av网站| 久热这里只有精品99| 18美女黄网站色大片免费观看| 正在播放国产对白刺激| 亚洲全国av大片| 久久精品人人爽人人爽视色| 99久久综合精品五月天人人| 老司机在亚洲福利影院| 变态另类丝袜制服| 国产成人欧美在线观看| 在线观看免费视频日本深夜| 欧美激情 高清一区二区三区| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 日本免费a在线| 99久久综合精品五月天人人| 变态另类成人亚洲欧美熟女 | 9191精品国产免费久久| 99re在线观看精品视频| 69精品国产乱码久久久| 熟妇人妻久久中文字幕3abv| 久久精品aⅴ一区二区三区四区| 免费看十八禁软件| xxx96com| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 黑人巨大精品欧美一区二区蜜桃| cao死你这个sao货| 欧美久久黑人一区二区| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 老司机福利观看| 国产精品亚洲一级av第二区| 国产欧美日韩精品亚洲av| 国产欧美日韩综合在线一区二区| 韩国av一区二区三区四区| 亚洲第一av免费看| 真人一进一出gif抽搐免费| 一级毛片精品| 久久狼人影院| 高清毛片免费观看视频网站| 99精品在免费线老司机午夜| 美女免费视频网站| 青草久久国产| 91九色精品人成在线观看| 欧美在线黄色| 99精品久久久久人妻精品| 91在线观看av| 国产精品免费一区二区三区在线| 女人精品久久久久毛片| 亚洲欧美激情在线| 国产精品自产拍在线观看55亚洲| 亚洲av电影不卡..在线观看| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 99在线人妻在线中文字幕| 亚洲人成伊人成综合网2020| 少妇熟女aⅴ在线视频| av视频免费观看在线观看| 男人操女人黄网站| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| 午夜精品在线福利| 又黄又粗又硬又大视频| 深夜精品福利| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 黄频高清免费视频| 免费观看精品视频网站| 午夜a级毛片| tocl精华| 久久精品国产综合久久久| 男人舔女人下体高潮全视频| 国产欧美日韩综合在线一区二区| 欧美精品啪啪一区二区三区| 国产一区二区三区综合在线观看| 老司机福利观看| 激情视频va一区二区三区| 国产成人精品在线电影| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 色播亚洲综合网| 久久人人爽av亚洲精品天堂| 色在线成人网| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点 | 色综合婷婷激情| 国产又爽黄色视频| 热99re8久久精品国产| 欧美激情久久久久久爽电影 | 亚洲专区字幕在线| 亚洲精品美女久久av网站| 99久久国产精品久久久| 亚洲欧美激情在线| 亚洲精品中文字幕一二三四区| 欧美久久黑人一区二区| 亚洲自拍偷在线| 免费看十八禁软件| 国产伦一二天堂av在线观看| 亚洲精品美女久久久久99蜜臀| av片东京热男人的天堂| 少妇 在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美国产在线观看| 国产成人系列免费观看| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月欧美| 亚洲,欧美精品.| 亚洲免费av在线视频| 一边摸一边做爽爽视频免费| 午夜亚洲福利在线播放| 国产1区2区3区精品| 国产一区在线观看成人免费| 极品人妻少妇av视频| av免费在线观看网站| 成人免费观看视频高清| 亚洲第一电影网av| 人人妻人人澡欧美一区二区 | 伊人久久大香线蕉亚洲五| 国产伦人伦偷精品视频| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 久久精品国产亚洲av香蕉五月| 久久久久久久精品吃奶| 脱女人内裤的视频| 黄片小视频在线播放| 欧美中文日本在线观看视频| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 99国产精品一区二区三区| АⅤ资源中文在线天堂| 最新美女视频免费是黄的| 涩涩av久久男人的天堂| 女警被强在线播放| 妹子高潮喷水视频| 中国美女看黄片| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 国产一区二区三区视频了| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 成人亚洲精品av一区二区| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 长腿黑丝高跟| 亚洲天堂国产精品一区在线| 一区福利在线观看| 少妇的丰满在线观看| 黄色 视频免费看| 免费搜索国产男女视频| 亚洲专区字幕在线| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看 | 免费少妇av软件| av超薄肉色丝袜交足视频| 麻豆一二三区av精品| 亚洲成人国产一区在线观看| 老司机午夜福利在线观看视频| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 无限看片的www在线观看| 在线天堂中文资源库| 欧美中文综合在线视频| 美女免费视频网站| 成人国语在线视频| av中文乱码字幕在线| 国语自产精品视频在线第100页| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 美女免费视频网站| 女人被狂操c到高潮| 日韩免费av在线播放| 在线观看午夜福利视频| 又黄又粗又硬又大视频| 国产av精品麻豆| 人人澡人人妻人| 男人舔女人下体高潮全视频| 91麻豆av在线| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| cao死你这个sao货| 欧美激情久久久久久爽电影 | 国产精品1区2区在线观看.| 叶爱在线成人免费视频播放| 亚洲国产日韩欧美精品在线观看 | 一区在线观看完整版| 国产精品1区2区在线观看.| 日本免费a在线| 成人精品一区二区免费| av有码第一页| 窝窝影院91人妻| 国产精品免费一区二区三区在线| 级片在线观看| 国产精品久久久人人做人人爽| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 999久久久国产精品视频| 18美女黄网站色大片免费观看| 欧美精品啪啪一区二区三区| 日本a在线网址| 久久精品国产综合久久久| 国产精品九九99| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| xxx96com| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 深夜精品福利| 黄色a级毛片大全视频| 免费av毛片视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久亚洲av毛片大全| 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 老司机靠b影院| 在线观看免费日韩欧美大片| 动漫黄色视频在线观看| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片| 久久久久久久精品吃奶| 9热在线视频观看99| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点 | 一边摸一边做爽爽视频免费| 一本久久中文字幕| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 亚洲午夜理论影院| 叶爱在线成人免费视频播放| 久久精品亚洲精品国产色婷小说| 一夜夜www| 熟妇人妻久久中文字幕3abv| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 满18在线观看网站| 免费无遮挡裸体视频| 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 淫秽高清视频在线观看| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 久久精品亚洲精品国产色婷小说| 亚洲欧美一区二区三区黑人| 手机成人av网站| cao死你这个sao货| 国产精品1区2区在线观看.| 母亲3免费完整高清在线观看| 激情在线观看视频在线高清| 久久精品91无色码中文字幕| 亚洲三区欧美一区| 成人手机av| 夜夜看夜夜爽夜夜摸| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 在线观看免费日韩欧美大片| 亚洲成人久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利高清视频| 三级毛片av免费| 波多野结衣高清无吗| 久久香蕉激情| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 午夜福利欧美成人| 国产片内射在线| 91麻豆精品激情在线观看国产| 91大片在线观看| 亚洲视频免费观看视频| 黄色视频不卡| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 无限看片的www在线观看| 精品免费久久久久久久清纯| 老司机在亚洲福利影院| 午夜免费激情av| 999久久久精品免费观看国产| 制服诱惑二区| ponron亚洲| 久99久视频精品免费| 午夜福利高清视频| 两人在一起打扑克的视频| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| avwww免费| 在线播放国产精品三级| 天堂动漫精品| 国产成人精品久久二区二区免费| 丝袜美腿诱惑在线| 亚洲国产精品合色在线| 丝袜人妻中文字幕| 国产一区二区三区视频了| 精品熟女少妇八av免费久了| 亚洲少妇的诱惑av| 欧美成人免费av一区二区三区| 免费少妇av软件| 午夜久久久在线观看| 免费av毛片视频| 亚洲情色 制服丝袜| 亚洲成av片中文字幕在线观看| 看免费av毛片| 国产精品精品国产色婷婷| 熟妇人妻久久中文字幕3abv| av超薄肉色丝袜交足视频| 亚洲人成网站在线播放欧美日韩| 后天国语完整版免费观看| 日韩免费av在线播放| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 国产精品久久电影中文字幕| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 制服丝袜大香蕉在线| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 日韩免费av在线播放| 97超级碰碰碰精品色视频在线观看| 美女大奶头视频| 午夜福利成人在线免费观看| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 午夜视频精品福利| aaaaa片日本免费| 欧美av亚洲av综合av国产av| 国产av在哪里看| 国产欧美日韩综合在线一区二区| 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 男女床上黄色一级片免费看| 亚洲国产欧美网| 午夜亚洲福利在线播放| 麻豆成人av在线观看| 波多野结衣一区麻豆| 乱人伦中国视频| 婷婷丁香在线五月| 国产私拍福利视频在线观看| 真人做人爱边吃奶动态| 亚洲精品中文字幕一二三四区| 久久国产精品影院| 一级作爱视频免费观看| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 国产精品二区激情视频| 亚洲国产欧美网| av视频在线观看入口| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 美女午夜性视频免费| 中文字幕最新亚洲高清| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看 | 校园春色视频在线观看| 精品乱码久久久久久99久播| 99国产精品99久久久久| 99国产精品一区二区蜜桃av| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 中文字幕人成人乱码亚洲影| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| 亚洲色图av天堂| tocl精华| 亚洲欧美日韩无卡精品| 国产日韩一区二区三区精品不卡| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 99香蕉大伊视频| 日韩成人在线观看一区二区三区| 国产精品一区二区在线不卡| 久久久国产精品麻豆| 99国产精品一区二区三区| a在线观看视频网站| 亚洲专区中文字幕在线| 国产亚洲欧美精品永久| 国产欧美日韩精品亚洲av| 欧美乱码精品一区二区三区| 视频在线观看一区二区三区| 自线自在国产av| 成人三级做爰电影| www.熟女人妻精品国产| 亚洲精品粉嫩美女一区| 久久精品亚洲熟妇少妇任你| 欧美乱妇无乱码| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 在线天堂中文资源库| 天天一区二区日本电影三级 | 人人妻人人澡欧美一区二区 | 色综合站精品国产| 亚洲色图av天堂| 欧美日韩一级在线毛片| 欧美在线黄色| 精品国内亚洲2022精品成人| 欧美成人性av电影在线观看| 国产一级毛片七仙女欲春2 | 亚洲国产精品合色在线| 久久久国产成人免费| 97人妻精品一区二区三区麻豆 | 波多野结衣巨乳人妻| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 91麻豆av在线| 亚洲熟妇熟女久久| 美女国产高潮福利片在线看| av福利片在线| 久久亚洲精品不卡| 男男h啪啪无遮挡| 国产精品 国内视频| 久久久久久人人人人人| 亚洲男人的天堂狠狠| 岛国视频午夜一区免费看| 美国免费a级毛片| 一区二区三区精品91| 村上凉子中文字幕在线| 制服人妻中文乱码| 成在线人永久免费视频| 日韩中文字幕欧美一区二区| 十分钟在线观看高清视频www| 欧美老熟妇乱子伦牲交| 成人永久免费在线观看视频| 禁无遮挡网站| 在线视频色国产色| 91老司机精品| 国产伦人伦偷精品视频| 黄色 视频免费看| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 久久国产精品影院| 夜夜夜夜夜久久久久| 欧美老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频| 久久九九热精品免费| 一级a爱片免费观看的视频| 午夜免费鲁丝| 最近最新中文字幕大全免费视频| 成人av一区二区三区在线看| www.精华液| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽| 99久久精品国产亚洲精品| 久久天堂一区二区三区四区| 国产成+人综合+亚洲专区| 欧美成狂野欧美在线观看| 亚洲国产精品sss在线观看| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 男人舔女人的私密视频| 久久伊人香网站| 大陆偷拍与自拍| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色 | 久久精品成人免费网站| 村上凉子中文字幕在线| 免费观看精品视频网站| 夜夜爽天天搞| 亚洲精品一区av在线观看| 精品久久久久久久久久免费视频| 满18在线观看网站| www.自偷自拍.com| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久5区| 久久婷婷成人综合色麻豆| 午夜久久久在线观看| 日韩视频一区二区在线观看| 国产午夜福利久久久久久| 午夜福利成人在线免费观看| 午夜福利免费观看在线| 黄网站色视频无遮挡免费观看| 老司机午夜福利在线观看视频| 国产一区二区在线av高清观看| 侵犯人妻中文字幕一二三四区| 亚洲成a人片在线一区二区| 国产精品一区二区三区四区久久 | 欧美亚洲日本最大视频资源| 国产激情久久老熟女| 亚洲无线在线观看| 久久香蕉精品热| 婷婷丁香在线五月| 90打野战视频偷拍视频| 精品一区二区三区视频在线观看免费| 精品日产1卡2卡| 久久久久久久午夜电影| 欧美成人午夜精品| 精品午夜福利视频在线观看一区| 黄色视频不卡| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 成人免费观看视频高清| 亚洲电影在线观看av| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女| 亚洲中文字幕一区二区三区有码在线看 | 伊人久久大香线蕉亚洲五| 九色国产91popny在线|