• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲烷晶體的晶格能和彈性性質(zhì):不同方法及泛函的評估

    2012-12-12 02:42:08鄭朝陽趙紀軍
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:遼寧大連大連理工大學(xué)工程學(xué)院

    鄭朝陽 趙紀軍

    (大連理工大學(xué)物理與光電工程學(xué)院,高科技研究院,遼寧大連116024)

    1 Introduction

    Dispersion interaction is originated from the interaction between the instantaneous dipoles of nearby atoms or molecules. It continues to be a challenge for theoretical chemistry and solid state physics.1Although the strength of dispersion force is much weaker than those of covalent,metallic,or ionic bonding,the van der Waals(vdW)interaction becomes dominant in the condensed phases of rare gases,molecular crystals,layered solids(like graphite),etc.Till now,the computational physicists and computational chemists have made significant efforts to an accurate description of the dispersion interaction.2-5Due to the lack of long-range correlation,the standard density functional theory(DFT)methods based on local density approximation(LDA)or generalized gradient approximation(GGA) were shown to be insufficient to describe vdW interaction.For instance,Johnson and DiLabio3examined six DFT functionals for predicting binding energies and structure for 28 vdW dimmers and found that no standard DFT method can provide a consistently accurate treatment of dispersion-bound complexes.Zhao and Truhlar5assessed forty DFT functionals for noncovalent interaction energies of biological importance.They showed that B3LYP and PBE0 functionals fail to describe the interactions in the dispersion-dominated complexes.

    Recently,there have been some attempts of adding dispersive interaction into the standard density functional theory,for example,the DFT with dispersion energy correction(DFT-D) methods.In a pioneering work,Gianturco et al.6investigated the interaction between Ar and CO using standard DFT calculation combined with a damped dispersion energy.Wu and Yang7implemented the vdW energy correction into DFT calculations and studied the effect of the damping functions and the DFT functionals.Grimme and co-workers8-10systematically studied the empirical correction to account for vdW interactions within DFT functionals and they developed a series of DFT-D methods(DFT-D2 and DFT-D3),which have been widely used in the present research.They applied these methods to study hydrogen-bonded complexes,non-aromatic complexes,benzene complexes,complexes of larger aromatic molecules and DNA base pairs.For example,the mean absolute deviation of heat of formation for G97/2 set is only 3.8 kcal·mol-1(15.9 kJ· mol-1).9Ortmann et al.11developed a semiempirical method based on a few simple assumptions that corrects DFT-GGA by including dispersion forces.The semiempirical vdW-corrected GGA functional was applied to crystalline systems such as graphite,hexagonal boron nitride(h-BN)and rare-gas solid, molecular and dimerized systems to probe the universality and transferability of this correction.Recently,Tkatchenko and Scheffler12presented an accurate method to obtain molecular C6coefficients of potential form C6R-6(R represents the distance between two interacted atoms)from ground-state electron density and reference values for the free atom.They found that the C6coefficients depended strongly on the bonding environment of an atom.In general,DFT-D method shows asymptotically correct and can be easily combined with standard or other exchange-correction functionals.13

    The dimer and solid of methane serve as ideal prototype systems to study the vdW interaction because the CH4molecule possesses close-shell electron configuration with totally eight valence electrons and carries no permanent dipole moment.In other words,the interaction between methane molecules is purely vdW force due to induced dipole-induced interaction. Previously,Tsuzuki et al.14-18carried out a series of studies on the nonbonding interactions of methane dimer using various theoretical methods,including the Hartree-Fock(HF)theory, the second-order and fourth-order M?ller-Plesset perturbation theories(MP2 and MP4),the coupled-cluster theory with singles,doubles,and perturbative triples excitations(CCSD(T)), and the density functional theory.They found that MP4 (SDTQ)was close to CCSD(T)for electron correlation energies and dispersion interaction was not covered by DFT methods using BLYP,BPW91,and B3LYP functionals.16Li and Chao19calculated the intermolecular potentials of the methane dimer at the most stable D3dconformation with M?ller-Plesset perturbation theory and density functional theory.

    In addition to methane dimer,methane solid has been studied both experimentally and theoretically.Using X-ray diffraction(XRD)technology,Hazen et al.20measured the lattice parameters of crystalline methane under high pressures(up to 5.21 GPa)and determined the isothermal bulk modulus((4.9± 0.9)GPa)from the first-order Murnaghan equation of state.Bini and Pratesi21constructed a phase diagram for solid methane using high-pressure infrared spectra up to 30 GPa between 50 and 300 K.Thermodynamic properties of CH4and heavy methane(CD4)have been studied experimentally by Colwell and co-workers.22They accounted for the apparent zero-point entropies and the mechanism of thermal transitions of both solid CH4and CD4.Press23also studied the structure and phase transitions of solid CD4using XRD technology.Shimizu et al.24studied the pressure effect on rotation-translation via high-pressure elastic properties of liquid and solid methane using Brillouin spectroscopy.Nakahata et al.25performed the XRD measurements for solid methane up to 13 GPa and revealed that the high-pressure structure of solid methane is rhombohedral with a bulk modulus of 7.9 GPa

    On the theoretical side,the cohesive energy and crystal structure of solid methane have been studied using different computational methods by Kimel et al.26and Kunz,27respectively. Kimel et al.calculated the possible structures of solid methane using the intermolecular potential consisting of repulsive and attractive interactions between nonbonded atoms.They obtained the best structure of symmetry D3dand other properties of solid methane with distortion.Kunz27simulated the cohesive properties,electronic structure,and optical properties of solid methane using local orbital approach and many body perturbation theory(MBPT)based on Hartree-Fock method and was able to predict the accurate lattice parameter and the binding energy.The phase transition28,29and electronic band structure30,31of solid methane have also been studied by several groups.

    Despite of the above efforts,there were only few studies of the vdW interaction in molecular crystals using DFT-D functionals.32-34The performance of the popular DFT functionals and DFT-D functionals for the solid methane as a prototype vdW system is crucial to the further applications of these theoretical methods in the other molecular crystals.In this paper, we investigate the intermolecular interaction in terms of lattice energy,lattice constant,and bulk modulus of solid methane using different functionals.The comparison of our theoretical results with experiments provides very useful information for the validity of these DFT methods.

    2 Computational methods

    The crystalline structure of solid methane(Fig.1)is an fcc lattice with four CH4molecules per unit cell,with the central carbon atom of CH4sitting on each lattice point.DFT calculations were performed using planewave pseudopotential techniqueasimplemented in theCASTEP program.35The norm-conserving pseudopotentials36were adopted to describe the ion-electron interactions.The energy cutoff of planewave was set to 750 eV and the Brillouin zone was sampled by a 3× 3×3 k point mesh.Our test calculations show that further raising the cutoff energy or the number of k points leads to only minor changes on the computational results.

    Fig.1 Atomic structure of solid methane(perspective view)of fcc lattice

    Here we used a variety of density functionals for describing the exchange correction interaction.They can be categorized into four types:(i)CA-PZ37,38within local density approximation(LDA);(ii)standard(pure)PBE,39RPBE,40PW91,41and WC42functionals within generalized gradient approximation (GGA);(iii)hybrid sX-LDA,43B3LYP,44,45and PBE046functionals;(iv)DFT-D schemes including the DFT-Grimme by Grimme,8DFT-OBS by Ortmann,Bechstedt and Schmidt,11and DFT-TS by Tkatchenko and Scheffler.12

    For a molecular crystal,the strength of intermolecular interaction can be characterized by the lattice energy47defined as:

    where Elattis the lattice energy per molecule,Ecrysis the total energy per unit cell of the crystal,n is the number of molecules per unit cell,and Emolis the total energy of the gas phase molecule.

    The bulk modulus(B)was calculated using the following third-order Birch-Murnaghan equation of state(EOS)48for thecurve:

    where the volume(V)is determined by V=a3for cubic systems, V0represents the volume at the energy minimum E0,B?is the derivative of the bulk modulus at the zero pressure,which was set as 4.0.

    3 Results and discussion

    Table 1 summarizes the theoretical lattice energy(Elatt),lattice parameter(a),and bulk modulus(B)of solid methane obtained from different DFT methods,along with experimental data.27Fig.2 shows several representative curves of lattice ener-gy versus lattice parameter for selected DFT methods.Fig.3 compares the lattice energies and bulk modulus calculated by different functionals with experimental value.

    Table 1 Lattice parameter(a),lattice energy(Elatt),and bulk modulus(B)of solid methane calculated from different DFT functionals and experiments

    Clearly,most of standard GGA functionals except PW91 functional significantly underestimate intermolecular interaction.For example,the lattice energy obtained from PBE functional is 0.026 eV,which is only about 22%of the experiment value of 0.117 eV.27The smallest binding strength(Elatt=0.014 eV)is predicted by the WC functional.Among those pure GGAfunctionals considered,PW91 yields the largest lattice energy of 0.053 eV,which is about half of the experimental strength.Previously,Tsuzuki and Lüthi49also found that PW91 can partially give the description of the dispersion interactions. In contrast,LDA overestimates the intermolecular lattice energy of solid methane by 45%.These results are in agreement with previous studies by Slough and Perger,34who found that the B3LYP-D potential showed promise for prediction of structure and elastic properties in molecular crystals.

    As for the hybrid functionals,some of them(such as PBE0, B3LYP,and HF-LDA)show no maximum lattice energy on the binding curve,indicating that the solid methane described by these methods is not even locally stable.On the contrary, sX-LDA yields large lattice energy of 0.231 eV,severely overestimated the CH4-CH4interaction by about twice of magnitude with regard to experiment.

    Since all above functionals can not describe the binding interaction in the molecular solid well,they are not able to give reasonable lattice parameters of solid methane.Accordingly, most pure and hybrid GGA functionals overestimate the lattice parameter,while LDA and sX-LDA underestimate.For example,PBE functional predicts a lattice parameter of 0.6526 nm, while LDA gives 0.5535 nm,compared with the experiment value of 0.5989 nm.27

    The most exciting result is that some DFT-D methods(such as PBE-TS,PBE-Grimme,PBE0-TS,and B3LYP-TS)give better description of intermolecular interaction than those stan-dard DFT methods.Among them,the lattice energies predicted by the PBE0-TS(0.1 eV)and PBE-Grimme(0.134 eV)are closest to the experiment value(0.117 eV).27However,as shown in Table 1 and Fig.3,some DFT-D functionals like PW91-OBS and LDA-OBS overcorrects the binding properties severely and yields too large lattice energies(0.736 or 1.162 eV).Meanwhile,all DFT-D methods underestimate lattice parameter of solid methane(see Table 1).In particular,the DFT-D methods which overestimate the lattice energy also underestimate the lattice parameter severely.For instance,the lattice parameter from PW91-OBS functional is 0.5051 nm, which is 15.7%smaller than experimental value of 0.5989 nm.27Among the methods considered,the lattice constants from sX-LDA,PBE-TS,PBE0-TS are relatively closer to experiment,with deviation of about 4%.

    Fig.2 Lattice energy versus cell parameter of solid methane for selected DFT methodsThe lines are connecting these data points simply,and the open circle dot is the experimental values.27

    Fig.3 Lattice energies(a)and bulk modulus(b)of solid methane calculated using different DFT functionalsThe experiment value of 0.117 eV27for lattice energy and 4.9 GPa20for bulk modulus were marked by dashed lines.

    Since the intermolecular interaction is rather weak,there is no noticeable difference in the geometry parameters in the gas-phase molecule and solid methane described with the same functional.For example,the C―H bond length is 0.1091 nm for both individual methane molecule and solid methane from calculation using PBE functional,which is in good agreement with the experimentally spectroscopic data of(0.1086± 0.0001)nm for CH4molecule.40

    To ensure a good description of intermolecular vdW force,it is crucial to examine the performance of the DFT methods for a molecular solid under high-pressure compression,which corresponds to shorter intermolecular distance.For each DFT method,we computed the Elatt-a curve and fitted the Birch-Murnaghan equation of state to obtain the bulk modulus B.The calculated bulk moduli are listed in Table 1.One can see that all pure GGA functionals underestimate the bulk modulus of solid methane because they underestimate the bonding property of weak interactions system.For example,the bulk modulus of solid methane using PBE functional is only 1.02 GPa,compared to the experiment value of(4.9±0.9)GPa.20Naturally, those functionals that overestimate the binding properties of solid methane,such as LDA,PW91-OBS,and LDA-OBS,also overestimate the bulk modulus.Again,the PBE0-TS and PBEGrimme methods yield reasonable values of 5.06 and 5.85 GPa,respectively,which agree satisfactorily with experiment value.20In addition,the bulk modulus(5.60 GPa)given by PBE-TS calculation is also acceptable.

    4 Conclusions

    In the present study,we examined the description of vdW interactions in a prototype molecular solid of methane by a variety of DFT methods,including LDA,standard GGA,hybrid GGA,and DFT-D.The lattice constant,lattice energy,and bulk modulus of solid methane were calculated using different DFT methods and compared with experimental data.Without dispersion correction,LDA as well as pure or hybrid GGA fail to reproduce the intermolecular vdW interaction of solid methane. Our calculations show that the PBE0-TS and PBE-Grimme functionals are able to describe the vdW interaction of solid methane well,and the performance of PBE-TS is also acceptable.Considering the high computational cost of the hybrid DFT functional like PBE0,dispersion-corrected PBE functionals,such as PBE-Grimme and PBE-TS are recommended as the reasonable choice for studying the vdW solid.

    (1) Dobson,J.F.;McLennan,K.;Rubio,A.;Wang,J.;Gould,T.; Le,H.M.;Dinte,B.P.Aust.J.Chem.2001,54(8),513.doi: 10.1071/CH01052

    (2) Johnson,B.;Gill,P.;Pople,J.J.Chem.Phys.1993,98(7), 5612.doi:10.1063/1.464906

    (3) Johnson,E.R.;DiLabio,G.A.Chem.Phys.Lett.2006,419 (4-6),333.doi:10.1016/j.cplett.2005.11.099

    (4) Zhang,Y.;Pan,W.;Yang,W.J.Chem.Phys.1997,107(19), 7921.doi:10.1063/1.475105

    (5) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2006,3(1), 289.

    (6) Gianturco,F.A.;Paesani,F.;Laranjeira,M.F.;Vassilenko,V.; Cunha,M.A.J.Chem.Phys.1999,110(16),7832.doi:10.1063/ 1.478690

    (7)Wu,Q.;Yang,W.J.Chem.Phys.2002,116(2),515.doi: 10.1063/1.1424928

    (8) Grimme,S.J.Comput.Chem.2004,25(12),1463.doi:10.1002/ jcc.20078

    (9) Grimme,S.J.Comput.Chem.2006,27(15),1787.doi:10.1002/ jcc.20495

    (10) Grimme,S.;Antony,J.;Ehrlich,S.;Krieg,H.J.Chem.Phys. 2010,132(15),154104.doi:10.1063/1.3382344

    (11) Ortmann,F.;Bechstedt,F.;Schmidt,W.G.Phys.Rev.B 2006, 73(20),205101.doi:10.1103/PhysRevB.73.205101

    (12) Tkatchenko,A.;Scheffler,M.Phys.Rev.Lett.2009,102(7), 073005.doi:10.1103/PhysRevLett.102.073005

    (13) Grimme,S.Wires Comput.Mol.Sci.2011,1(2),211.doi: 10.1002/wcms.30

    (14) Tsuzuki,S.;Tanabe,K.J.Phys.Chem.1991,95(6),2272.doi: 10.1021/j100159a032

    (15)Tsuzuki,S.;Uchimaru,T.;Mikami,M.;Tanabe,K.J.Phys. Chem.A 1998,102(12),2091.doi:10.1021/jp973467d

    (16) Tsuzuki,S.;Uchimaru,T.;Tanabe,K.Chem.Phys.Lett.1998, 287(1-2),202.doi:10.1016/S0009-2614(98)00159-6

    (17)Tsuzuki,S.;Uchimaru,T.;Tanabe,K.Chem.Phys.Lett.1998, 287(3-4),327.doi:10.1016/S0009-2614(98)00193-6

    (18) Tsuzuki,S.;Uchimaru,T.;Tanabe,K.;Kuwajima,S.J.Phys. Chem.1994,98(7),1830.

    (19) Li,A.H.T.;Chao,S.D.J.Chem.Phys.2006,125(9),094312. doi:10.1063/1.2345198

    (20) Hazen,R.;Mao,H.;Finger,L.;Bell,P.Appl.Phys,Lett.1980, 37(3),288.doi:10.1063/1.91909

    (21) Bini,R.;Pratesi,G.Phys.Rev.B 1997,55(22),14800.doi: 10.1103/PhysRevB.55.14800

    (22) Colwell,J.;Gill,E.;Morrison,J.J.Chem.Phys.1964,40(7), 2041.doi:10.1063/1.1725446

    (23) Press,W.J.Chem.Phys.1972,56(6),2597.doi:10.1063/ 1.1677586

    (24) Shimizu,H.;Nakashima,N.;Sasaki,S.Phys.Rev.B 1996,53 (1),111.doi:10.1103/PhysRevB.53.111

    (25)Nakahata,I.;Matsui,N.;Akahama,Y.;Kawamura,H.Chem. Phys.Lett.1999,302(3-4),359.doi:10.1016/S0009-2614(99) 00092-5

    (26) Kimel,S.;Ron,A.;Hornig,D.J.Chem.Phys.1964,40(11), 3351.doi:10.1063/1.1725006

    (27) Kunz,A.B.J.Phys.Condens.Mat.1994,6(17),L233.

    (28) Spanu,L.;Donadio,D.;Hohl,D.;Galli,G.J.Chem.Phys. 2009,130(16),164520.doi:10.1063/1.3120487

    (29)Yamamoto,T.;Kataoka,Y.Phys,Rev.Lett.1968,20(1),1.doi: 10.1103/PhysRevLett.20.1

    (30) Kunz,A.B.Phys.Rev.B 1974,9(12),5330.doi:10.1103/ PhysRevB.9.5330

    (31) Piela.L.;Pietronero,L.;Resta,R.Phys.Rev.B 1973,7(12), 5321.doi:10.1103/PhysRevB.7.5321

    (32) Bucko,T.S.;Hafner,J.R.;Lebègue,S.B.;ángyán,J.N.G. J.Phys.Chem.A 2010,114(43),11814.doi:10.1021/ jp106469x

    (33) Shimojo,F.;Wu,Z.;Nakano,A.;Kalia,R.K.;Vashishta,P. J.Chem.Phys.2010,132(9),094106.doi:10.1063/1.3336452

    (34) Slough,W.;Perger,W.F.Chem.Phys.Lett.2010,498(1-3), 97.doi:10.1016/j.cplett.2010.08.049

    (35) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert, M.I.J.;Refson,K.;Payne,M.C.Zeitschrift für Kristallographie 2005,220(5-6),567.doi:10.1524/ zkri.220.5.567.65075

    (36) Hamann,D.R.;Schlüter,M.;Chiang,C.Phys,Rev.Lett.1979, 43(20),1494.doi:10.1103/PhysRevLett.43.1494

    (37) Ceperley,D.M.;Alder,B.J.Phys.Rev.Lett.1980,45(7),566. doi:10.1103/PhysRevLett.45.566

    (38) Perdew,J.P.;Zunger,A.Phys.Rev.B 1981,23(10),5048.doi: 10.1103/PhysRevB.23.5048

    (39) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.doi:10.1103/PhysRevLett.77.3865

    (40) Hammer,B.;Hansen,L.B.;N?rskov,J.K.Phys.Rev.B 1999, 59(11),7413.doi:10.1103/PhysRevB.59.7413

    (41) Perdew,J.P.;Wang,Y.Phys.Rev.B 1992,45,13244. doi:10.1103/PhysRevB.45.13244

    (42) Wu,Z.;Cohen,R.E.Phys.Rev.B 2006,73(23),235116.doi: 10.1103/PhysRevB.73.235116

    (43) Seidl,A.;G?rling,A.;Vogl,P.;Majewski,J.A.;Levy,M.Phys. Rev.B 1996,53(7),3764.doi:10.1103/PhysRevB.53.3764

    (44) Becke,A.D.J.Chem.Phys.1993,98(7),5648.doi:10.1063/ 1.464913

    (45) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37(2),785. doi:10.1103/PhysRevB.37.785

    (46)Adamo,C.;Barone,V.J.Chem.Phys.1999,110(13),6158. doi:10.1063/1.478522

    (47)Perger,W.F.;Pandey,R.;Blanco,M.A.;Zhao,J.Chem.Phys. Lett.2004,388(1-3),175.doi:10.1016/j.cplett.2004.02.100

    (48) Birch,F.Phys.Rev.1947,71(11),809.

    (49) Tsuzuki,S.;Lüthi,H.P.J.Chem.Phys.2001,114(9),3949. doi:10.1063/1.1344891

    (50) Gray,D.L.;Robiette,A.G.Mol.Phys.1979,37(6),1901.doi: 10.1080/00268977900101401

    猜你喜歡
    遼寧大連大連理工大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    福建工程學(xué)院
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    福建工程學(xué)院
    孫子垚
    偽隨機碼掩蔽的擴頻信息隱藏
    “白草莓”亮相遼寧大連
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    国产成人精品无人区| 高清不卡的av网站| 悠悠久久av| av视频免费观看在线观看| 你懂的网址亚洲精品在线观看| 99精品久久久久人妻精品| www.精华液| 日韩免费高清中文字幕av| 亚洲av成人不卡在线观看播放网 | www.av在线官网国产| 18在线观看网站| 中文精品一卡2卡3卡4更新| 精品少妇内射三级| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 国产精品亚洲av一区麻豆| av在线播放精品| 好男人视频免费观看在线| 在线 av 中文字幕| 激情视频va一区二区三区| 十八禁高潮呻吟视频| 1024香蕉在线观看| 日韩大码丰满熟妇| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 成年人免费黄色播放视频| 成人手机av| 国产高清国产精品国产三级| 蜜桃国产av成人99| 日韩熟女老妇一区二区性免费视频| 亚洲天堂av无毛| 欧美久久黑人一区二区| 欧美日韩亚洲高清精品| av有码第一页| 99久久精品国产亚洲精品| 美女福利国产在线| 丁香六月天网| cao死你这个sao货| 国产精品三级大全| 国产精品久久久久久精品电影小说| 国产一区有黄有色的免费视频| 黑丝袜美女国产一区| 少妇人妻 视频| 午夜福利视频精品| 亚洲成人免费av在线播放| 久久国产精品大桥未久av| 国产成人一区二区三区免费视频网站 | 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影 | 成人亚洲欧美一区二区av| 18禁黄网站禁片午夜丰满| 高清不卡的av网站| 少妇精品久久久久久久| 丝袜美腿诱惑在线| 亚洲国产欧美在线一区| 精品福利观看| 亚洲,欧美,日韩| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频 | 久久影院123| 久久ye,这里只有精品| 黄色a级毛片大全视频| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 久久天堂一区二区三区四区| 如日韩欧美国产精品一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 在线精品无人区一区二区三| 操美女的视频在线观看| 一边摸一边抽搐一进一出视频| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| 久久ye,这里只有精品| 韩国高清视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 精品少妇内射三级| 久久狼人影院| 嫁个100分男人电影在线观看 | 色94色欧美一区二区| 国产成人91sexporn| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 日韩一本色道免费dvd| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看 | 亚洲欧美一区二区三区国产| 日本黄色日本黄色录像| 亚洲熟女精品中文字幕| 一级片'在线观看视频| 亚洲欧美日韩高清在线视频 | 老司机午夜十八禁免费视频| 久久精品久久精品一区二区三区| av一本久久久久| 久久久国产一区二区| 咕卡用的链子| 校园人妻丝袜中文字幕| 女性被躁到高潮视频| 亚洲精品在线美女| 国产成人系列免费观看| 亚洲av电影在线进入| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 国产免费视频播放在线视频| 亚洲欧美一区二区三区国产| 亚洲第一av免费看| av有码第一页| cao死你这个sao货| 久久久久精品国产欧美久久久 | 嫩草影视91久久| 欧美日韩综合久久久久久| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 脱女人内裤的视频| 精品人妻1区二区| 亚洲欧美精品自产自拍| 国产高清videossex| 啦啦啦啦在线视频资源| 精品久久久久久久毛片微露脸 | 国产一区二区 视频在线| 婷婷色av中文字幕| 精品免费久久久久久久清纯 | 国产精品九九99| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 国产一区二区激情短视频 | 午夜福利影视在线免费观看| 国产精品国产av在线观看| 国产色视频综合| 久久 成人 亚洲| 丝袜喷水一区| 日韩av不卡免费在线播放| 天堂8中文在线网| 亚洲 国产 在线| 你懂的网址亚洲精品在线观看| 国产激情久久老熟女| 亚洲三区欧美一区| 免费观看人在逋| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| 老司机影院毛片| 午夜激情久久久久久久| 晚上一个人看的免费电影| 国产av精品麻豆| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 午夜福利免费观看在线| 一级毛片电影观看| 亚洲国产精品国产精品| 18在线观看网站| 久久国产亚洲av麻豆专区| 丁香六月天网| 男人操女人黄网站| 91九色精品人成在线观看| 在线观看免费视频网站a站| 久久九九热精品免费| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 日本色播在线视频| 日本欧美国产在线视频| 亚洲精品美女久久久久99蜜臀 | 欧美变态另类bdsm刘玥| 久久这里只有精品19| 成年人午夜在线观看视频| a级片在线免费高清观看视频| 99热国产这里只有精品6| 欧美人与性动交α欧美软件| 国产伦理片在线播放av一区| 日韩中文字幕视频在线看片| 少妇粗大呻吟视频| 亚洲黑人精品在线| 美女福利国产在线| 久久亚洲国产成人精品v| 少妇人妻 视频| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av涩爱| 首页视频小说图片口味搜索 | 久久久精品国产亚洲av高清涩受| 97精品久久久久久久久久精品| 亚洲成av片中文字幕在线观看| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 丰满迷人的少妇在线观看| 嫩草影视91久久| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 亚洲欧美清纯卡通| 黄色 视频免费看| 人妻一区二区av| 国产国语露脸激情在线看| 久久久久网色| 捣出白浆h1v1| 欧美中文综合在线视频| videos熟女内射| 日韩大码丰满熟妇| 一本大道久久a久久精品| kizo精华| 欧美日韩亚洲国产一区二区在线观看 | 成人午夜精彩视频在线观看| 国产成人91sexporn| 欧美日韩精品网址| 看十八女毛片水多多多| 国产一区二区 视频在线| 新久久久久国产一级毛片| 国产精品国产三级专区第一集| 久久精品国产综合久久久| 精品视频人人做人人爽| 观看av在线不卡| 久久久久网色| 看十八女毛片水多多多| 91老司机精品| 80岁老熟妇乱子伦牲交| 日韩一卡2卡3卡4卡2021年| 国产视频一区二区在线看| 久久精品国产亚洲av涩爱| 久久久久国产一级毛片高清牌| 超碰97精品在线观看| 国产成人精品久久久久久| 久久久久久久精品精品| 久久久欧美国产精品| 极品人妻少妇av视频| 一级黄色大片毛片| 成年美女黄网站色视频大全免费| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 悠悠久久av| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 国产精品国产av在线观看| 免费不卡黄色视频| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 美女午夜性视频免费| 在线观看免费午夜福利视频| 国产亚洲一区二区精品| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 久久亚洲精品不卡| 精品欧美一区二区三区在线| 男女午夜视频在线观看| bbb黄色大片| 一级黄色大片毛片| av网站免费在线观看视频| 亚洲国产欧美网| 熟女av电影| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 亚洲人成电影免费在线| 国产亚洲一区二区精品| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 各种免费的搞黄视频| 丰满饥渴人妻一区二区三| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 好男人视频免费观看在线| 欧美在线黄色| 观看av在线不卡| 精品高清国产在线一区| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 在现免费观看毛片| 国产精品二区激情视频| 十分钟在线观看高清视频www| 一级黄色大片毛片| 精品久久久久久久毛片微露脸 | 久久这里只有精品19| 亚洲一区中文字幕在线| 99re6热这里在线精品视频| 亚洲av成人精品一二三区| 亚洲午夜精品一区,二区,三区| 国产精品二区激情视频| 一本色道久久久久久精品综合| 大片电影免费在线观看免费| 看免费成人av毛片| 日韩制服骚丝袜av| 97人妻天天添夜夜摸| 岛国毛片在线播放| 男女边吃奶边做爰视频| 一二三四在线观看免费中文在| 九草在线视频观看| 日本色播在线视频| 亚洲欧美一区二区三区久久| 午夜福利一区二区在线看| 国产欧美日韩综合在线一区二区| 中文乱码字字幕精品一区二区三区| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| 精品福利观看| 国产亚洲欧美在线一区二区| 亚洲欧洲日产国产| 在线亚洲精品国产二区图片欧美| 视频区欧美日本亚洲| 亚洲综合色网址| 激情视频va一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 丝袜美足系列| videosex国产| 99国产精品99久久久久| 日韩熟女老妇一区二区性免费视频| 国产成人av激情在线播放| 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av片在线观看秒播厂| 国产成人一区二区三区免费视频网站 | 亚洲av成人不卡在线观看播放网 | 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 国产亚洲欧美精品永久| 国产xxxxx性猛交| 亚洲av男天堂| 波多野结衣av一区二区av| 少妇人妻 视频| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 秋霞在线观看毛片| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 国产三级黄色录像| 日日摸夜夜添夜夜爱| 99国产精品免费福利视频| 在线观看国产h片| 两个人免费观看高清视频| 一边亲一边摸免费视频| 日韩电影二区| 夫妻午夜视频| 久久久国产欧美日韩av| 嫁个100分男人电影在线观看 | 久久鲁丝午夜福利片| 操出白浆在线播放| 水蜜桃什么品种好| 国产在线免费精品| 国产精品亚洲av一区麻豆| 成年人午夜在线观看视频| 久久天堂一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 国产老妇伦熟女老妇高清| 成年美女黄网站色视频大全免费| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区久久| 亚洲中文av在线| 国产99久久九九免费精品| 在线精品无人区一区二区三| 高清不卡的av网站| 波野结衣二区三区在线| 最近手机中文字幕大全| 51午夜福利影视在线观看| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 99国产精品一区二区三区| 欧美激情高清一区二区三区| 亚洲精品日本国产第一区| 满18在线观看网站| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 丝袜脚勾引网站| 人成视频在线观看免费观看| 日韩 亚洲 欧美在线| 日韩人妻精品一区2区三区| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看 | 一区二区av电影网| 日本91视频免费播放| 久久久久久亚洲精品国产蜜桃av| 日韩视频在线欧美| svipshipincom国产片| 国产av一区二区精品久久| √禁漫天堂资源中文www| 亚洲伊人色综图| 两性夫妻黄色片| 欧美日韩精品网址| 国产熟女欧美一区二区| 一级毛片女人18水好多 | 亚洲精品国产一区二区精华液| 91成人精品电影| 午夜老司机福利片| 老汉色∧v一级毛片| 国产精品国产三级专区第一集| 欧美人与性动交α欧美软件| av有码第一页| 一级毛片女人18水好多 | 国产成人av激情在线播放| 精品一品国产午夜福利视频| 亚洲国产av新网站| 97精品久久久久久久久久精品| 欧美激情高清一区二区三区| 高清不卡的av网站| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 午夜av观看不卡| a 毛片基地| 国产成人精品久久二区二区91| netflix在线观看网站| 国产成人一区二区在线| 久久ye,这里只有精品| 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 人人妻,人人澡人人爽秒播 | 午夜福利影视在线免费观看| www.av在线官网国产| 国产精品一区二区免费欧美 | 90打野战视频偷拍视频| 精品少妇久久久久久888优播| 赤兔流量卡办理| 午夜激情久久久久久久| 搡老岳熟女国产| 亚洲av成人精品一二三区| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 亚洲国产精品成人久久小说| 在线看a的网站| 日本欧美国产在线视频| 99国产综合亚洲精品| 精品国产国语对白av| av有码第一页| 午夜福利视频精品| 看免费成人av毛片| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲国产一区二区在线观看 | 国产片特级美女逼逼视频| 国产精品av久久久久免费| 久久 成人 亚洲| 欧美激情 高清一区二区三区| 夫妻午夜视频| 午夜福利一区二区在线看| av网站在线播放免费| 婷婷色av中文字幕| 久久九九热精品免费| 欧美成人午夜精品| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 久久国产精品人妻蜜桃| 熟女av电影| 在线观看国产h片| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成国产av| 性少妇av在线| 国产在线一区二区三区精| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 国产成人一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看www视频免费| 免费看十八禁软件| 亚洲欧美一区二区三区国产| 国产成人精品久久二区二区91| 国语对白做爰xxxⅹ性视频网站| 亚洲精品美女久久久久99蜜臀 | 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| 亚洲视频免费观看视频| 热re99久久国产66热| 国产福利在线免费观看视频| 亚洲精品国产区一区二| 成人国语在线视频| 熟女av电影| 午夜日韩欧美国产| 久久久久久久久久久久大奶| 纯流量卡能插随身wifi吗| 日韩中文字幕视频在线看片| 人人妻人人爽人人添夜夜欢视频| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频| 悠悠久久av| 可以免费在线观看a视频的电影网站| 蜜桃在线观看..| 热re99久久国产66热| 国产女主播在线喷水免费视频网站| 久久久久久免费高清国产稀缺| 免费不卡黄色视频| 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 色精品久久人妻99蜜桃| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 国产精品九九99| 国产片特级美女逼逼视频| 午夜av观看不卡| 少妇精品久久久久久久| 天堂8中文在线网| 精品国产乱码久久久久久男人| 99热全是精品| 两人在一起打扑克的视频| 日韩电影二区| 国产精品三级大全| 久久精品aⅴ一区二区三区四区| 亚洲精品国产一区二区精华液| 在线观看一区二区三区激情| 老司机午夜十八禁免费视频| 久久精品国产a三级三级三级| 又大又黄又爽视频免费| 日韩中文字幕欧美一区二区 | 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 亚洲图色成人| www.熟女人妻精品国产| 国产精品一区二区在线观看99| 九色亚洲精品在线播放| 一区二区av电影网| 少妇被粗大的猛进出69影院| 亚洲国产欧美网| 亚洲av国产av综合av卡| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线不卡| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 成人国语在线视频| 99re6热这里在线精品视频| 2021少妇久久久久久久久久久| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 久久久久久久精品精品| 永久免费av网站大全| 三上悠亚av全集在线观看| 午夜久久久在线观看| 性高湖久久久久久久久免费观看| 777久久人妻少妇嫩草av网站| 亚洲一卡2卡3卡4卡5卡精品中文| avwww免费| 午夜福利视频精品| 又大又爽又粗| 91成人精品电影| 黄片播放在线免费| 国产成人精品久久久久久| 晚上一个人看的免费电影| 美女扒开内裤让男人捅视频| 性高湖久久久久久久久免费观看| 一级a爱视频在线免费观看| 亚洲国产av新网站| 欧美激情 高清一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 国产免费又黄又爽又色| 久久 成人 亚洲| 日韩av在线免费看完整版不卡| 亚洲图色成人| 国产一区二区 视频在线| 精品免费久久久久久久清纯 | 可以免费在线观看a视频的电影网站| 在线精品无人区一区二区三| 国产老妇伦熟女老妇高清| bbb黄色大片| kizo精华| 久久精品亚洲熟妇少妇任你| 99热国产这里只有精品6| 赤兔流量卡办理| 一本综合久久免费| 成人黄色视频免费在线看| 一区福利在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品成人在线| 久久狼人影院| 精品卡一卡二卡四卡免费| 亚洲人成电影观看| 国产精品麻豆人妻色哟哟久久| 亚洲欧美日韩高清在线视频 | 狠狠婷婷综合久久久久久88av| 丝袜在线中文字幕| 欧美少妇被猛烈插入视频| 最近中文字幕2019免费版| 婷婷成人精品国产| 亚洲国产中文字幕在线视频| 色网站视频免费| 婷婷成人精品国产| 国产精品 欧美亚洲| 欧美日韩亚洲综合一区二区三区_| 性色av一级| 国产精品免费大片| 99国产综合亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 国产片内射在线| 51午夜福利影视在线观看| 好男人电影高清在线观看| 丰满迷人的少妇在线观看| 国产成人精品久久二区二区91| 亚洲伊人色综图| 亚洲欧美日韩高清在线视频 | 欧美xxⅹ黑人| 久久人人97超碰香蕉20202| 国产一区二区 视频在线| 纵有疾风起免费观看全集完整版| 精品亚洲乱码少妇综合久久| xxxhd国产人妻xxx| 亚洲精品日韩在线中文字幕|