• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    YS+(1Σ+,3Φ)與COS氣相反應(yīng)YS++COS→+CO的理論研究

    2012-12-21 06:34:08楊曉梅謝小光
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:理學(xué)院中醫(yī)學(xué)院云南大學(xué)

    楊 樹 楊曉梅 謝小光

    (1云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,昆明650091;2昆明理工大學(xué)理學(xué)院,昆明650093;3云南中醫(yī)學(xué)院,昆明650091)

    YS+(1Σ+,3Φ)與COS氣相反應(yīng)YS++COS→+CO的理論研究

    楊 樹1,2楊曉梅3謝小光1,*

    (1云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,昆明650091;2昆明理工大學(xué)理學(xué)院,昆明650093;3云南中醫(yī)學(xué)院,昆明650091)

    采用密度泛函理論B3LYP方法研究了硫化釔離子YS+(1Σ+,3Φ)與硫轉(zhuǎn)移試劑COS在氣相中的反應(yīng): YS++COS→.在單重基態(tài)和三重激發(fā)態(tài)勢能面上都找到了四條反應(yīng)通道.但是除一條反應(yīng)通道之外,其它的反應(yīng)機理和幾何結(jié)構(gòu)變化趨勢在不同的勢能面上有很大不同.實驗中生成所表現(xiàn)出的吸熱特征來自于在基態(tài)反應(yīng)中的三條通道(A,B和C),其活化勢壘分別為28.3、140.5和120.2 kJ·mol-1.計算結(jié)果表明硫轉(zhuǎn)移反應(yīng)沒有雙態(tài)反應(yīng)活性,因此產(chǎn)物在低能量區(qū)的放熱特征是由于基態(tài)反應(yīng)物中還混有殘留的激發(fā)態(tài)YS+.

    硫化釔離子;COS;反應(yīng)機理;B3LYP

    1 Introduction

    Interest in transition-metal sulfides arises from their significance in industrial catalysis and biology.1In industry,transition-metal oxides are used as versatile catalysts in many applications,but their reactivity is too high for some processes,and non-specific product formation occurs.In contrast,transitionmetal sulfides are less reactive and less susceptible to poisoning and can show higher selectivity.2Transition-metal sulfides also play a particular role in biochemistry,and heterometallic sulfur complexes form the active sites in several metalloenzymes.Transition-metal-ion chemistry is an active area for both experimental and theoretical studies.3-18

    In recent years,Schwarz?s and Armentrout?s research groups7-11have reported experimental studies of the thermochem-istry and reactivity of MS+(M=Sc,Ti,V,Y,Zr,Nb)in the gas phase using guided-ion-beam mass spectrometry and Fouriertransform ion-cyclotron-resonance mass spectrometry.For reactions of ground-state MS+with COS,three productsM+,and MO+,were observed in the energy-dependent crosssections.The reactions of these cationic transition-metal sulfides,MS+,have similar product cross-section patterns.Formations ofand M+are dominant at the lower and higher reaction energies,respectively,whereas the formation of MO+is less efficient across the whole energy range.The formation ofat lower energy was attributed to the S-transfer reaction: MS++COS→+CO,followed by loss of disulfur(S2),leading to the formation of M+;this is supported by the observation that the M+cross-section has its threshold in the region where the endothermic feature of thechannel starts to decline. Another common feature of these reactions is that there is an obviously exothermic feature of thecross-section at the lowest energy(before the endothermic feature appears,at about 1 eV),though this is less pronounced for M=Sc,Y.This implies that there is a barrier-less reaction path for the formation of,and the subsequent endothermic feature is attributed to the formation ofspecies with different geometric structures or different electronic states.7-11

    Recently,we reported theoretical studies of gas-phase reactions of(M=Sc,Ti,V,Nb)with S-transfer reagents:MS++ COS→+CO.19-22Although the reactions of these cationic sulfides have similar patterns of product distributions,their reactivities and the relevant reaction mechanisms may be different as a result of their different valence-electron numbers and different electronic configurations.For example,a four-membered cyclic transition-state was found in the S-transfer reaction of ScS+with COS,16whereas no analogous transition state was found in the reaction of TiS+.20Theoretical studies of these reactions are necessary to confirm the relevant mechanisms, but no theoretical studies on the S-transfer reaction of YS+with COS have yet been reported.Thus,as a supplement to the experimental studies,we present here a theoretical study of the S-transfer reaction of the1Σ+ground-state and the3Φ excitedstate of YS+with COS,using density functional theory(DFT), in order to shed some light on this reaction.Possible reaction mechanisms are proposed and the structures and energetics of the stationary points involved in the potential-energy surfaces are examined and discussed.

    2 Calculation methods

    All the molecular geometries of the reactants,intermediates, transition states,and products were fully optimized using DFT in its B3LYP formulation.The standard 6-311+G*basis set was used for the non-metal atoms and we used the DZVP basis sets for Y atoms given by Goudbout et al.23Harmonic vibration frequencies were computed at the same level(B3LYP/6-311+ G*),both to characterize the stationary points and to estimate the zero-point vibration contributions to the relative energies. In order to evaluate the reliability of the chosen level of theory, we calculated the bond-dissociation energies of several species involved in this reaction at the B3LYP and CCSD(T)levels with 6-311+G*basis sets and TZVP basis sets.The calculation results and experimental values4,24are listed in Table 1.For the title reaction system,the energy obtained at the B3LYP/6-311+ G*level is considerable.The B3LYP method was chosen because of its reliability and efficiency as a practical tool in transition-metal chemistry.25Recent calculations19-21on transitionmetal compounds affirmed this choice.The intrinsic reaction coordinates(IRCs)were also determined at the B3LYP/6-311+ G*level to characterize the reaction path.Natural bonding orbital(NBO)26calculations were also performed to give additional insights into the bonding properties of the stationary points involved in the reactions.All the calculations were carried out using Gaussian 03 program.273 Results and discussion

    In order to understand the reaction of YS+with COS,it is helpful to consider the bonding nature of the YS+molecule.28The1Σ+ground-state of YS+results from perfect pairing of Y+(3D)and S(3P),giving a 1σ22σ21π4valence configuration.The 1σ is a ligand-centered orbital mainly composed of S(3s),but the 3s orbital of the S atom is much lower in energy than the valence orbitals of the Y atom,so their interaction is very weak.The 2σ and 1π orbitals are both bonding.A triple bond (one σ and two π)is formed by two d electrons from Y+and four p electrons from the S atom.The3Φ excited-state of YS+has a 1σ22σ21π31δ1valence configuration and is higher in energy than the1Σ+ground state by 1.80 eV(171.7 kJ·mol-1)according to our calculations.

    The fully optimized geometry parameters of the stationary points and a sketch of the potential energy surfaces of the ground-and excited-state surfaces are displayed in Figs.1-4. Table 2 lists the total energies,the relative energies,including zero-point energy,and the imaginary frequencies IMG of the transition states.

    Table 1 Theoretical and experimental bond-dissociation energies(in eV)at 0 K

    Table 2 Total energies(E)and relative energies(ΔE),including zero-point energies(ZPE)correction,at the B3LYP/DZVPlevel for the stationary points(reactants,intermediates,transition states,and products)involved in the reaction of YS+with COS, and the imaginary frequencies(νIMG)for the transition states

    3.1 Reaction on the1Σ+ground-state surface

    To describe the mechanism of formation of YS+2from YS++ COS→YS+2+CO on the1Σ+ground-state surface,we have identified three one-step reaction paths(paths A,B,and C)initiated from two cis-trans isomers of the collision complexes and another one-step reaction(path D)initiated from the head-tohead collision of the two S atoms.Paths A,B,and C proceed via a three-membered cyclic transition state(1TS1),a fourmembered cyclic transition state(1TS2),and an open transition state(1TS3),respectively,and yield the same cyclic product1YS+2(cyc).Path D proceeds via a linear transition-state(1TS4) and yields a linear product1YS+2(lin).

    When the S atom of COS attacks1YS+,two cis-trans isomers of stabilized intermediates(1IM1 and1IM2)may be formed initially,and their binding energies are 63.5 and 71.9 kJ·mol-1,respectively.They are donor-acceptor complexes formed from the interaction between the lone-pair orbital of the S atom and the empty d orbital of the Y atom.According to the natural bond orbital(NBO)analysis,the donor-acceptor interactions essentially do not affect the original Y-S bond, which is still characteristic of a triple bond,in1IM1/1IM2.This agrees with the finding that the Y-S distances in1IM1 and1IM2(0.2265 nm and 0.2270 nm)are very close to that of the isolated1YS+molecule(0.2254 nm).The isomerization between1IM1 and1IM2 can be attributed to the change in the dihedral angle(θ(CSYS))from 0°to 180°with a transition state (1TSa)located at a dihedral angle of 97.9°(see Fig.1).The differences among the other geometric parameters of1IM1,1IM2, and1TSa are very small.IM1 is only higher in energy than IM2 by 8.4 kJ·mol-1.The isomerization barriers for both directions are 11.1 and 19.5 kJ·mol-1,respectively.

    Fig.1 Optimized geometries of equilibrium and transition states at the B3LYP/6-311+G*level on the singlet surfacebond lengths in nm and angles in degree

    Paths A and B are initiated from the same trans isomer,1IM1,and proceed via a three-membered cyclic and a fourmembered cyclic transition states(1TS1 and1TS2),respectively,forming the same intermediate,IM3,which dissociates into the products(cyc)and CO,with a dissociation energy of 63.7 kJ·mol-1.In the three-centered transition state,1TS1,one of the two π bonds of the original Y-S bond has been broken and bonds between Y and the S(-C)atoms have simultaneously formed along with C-S bond breaking,and the two S atoms become close(leading to a σ single bond between the two S atoms formed in1IM3).Then,with the breaking of the C-S bond and formation of the S-S bond,the CO group transfers from the S atom to the Y atom and1IM3 is formed.In the fourcentered transition state,1TS2,as the two S atoms become close and the bond angle θ(OCS)bends,the C atom first interacts with the Y atom,and the C-S bond is slightly longer than that in IM1,by 0.123 nm.Then,with the formation of the S-S bond and strengthening of the interaction between Y and the S(-C)atom,the C-S bond breaks and1IM3 is formed.Paths A and B are similar to the analogous reaction channels of ScS+.19

    Fig.2 Schematic diagram of the singlet potential-energy curves for the S-transfer reaction involved in the reaction of YS+with COSThe values are given by B3LYP/DZVP plus ZPE in kJ·mol-1.

    Fig.3 Optimized geometries of equilibrium and transition states at the B3LYP/6-311+G*level on the triplet surfacebond lengths in nm and angles in degree

    Initiated from the cis isomer1IM2,and with bending of the bond angle θ(SYS)and lengthening of the S-C bond,path C proceeds via an open-structure transition state,1TS3.A similar process and analogous transition state were found in the reaction of ScS+.19As in the case of ScS+,an intermediate product was not found on the reaction path,and the IRC calculation shows that after overcoming the1TS3 transition state,the reaction directly yields the cyclic product(cyc).The calculated barriers of paths A,B,and C are 28.3,140.5,and 120.2 kJ· mol-1,respectively,at the B3LYP/6-311+G*level plus ZPE, relative to the reactants,which may account for the endothermic feature of thecross-section.

    Instead of the S atom attacking the Y atom,path D is initiated by head-to-head collision of the two S atoms and proceeds via a linear transition state,1TS4,and yields the linear product(lin).The IRC calculation shows that1TS4 directly connects the separate reactants and products,and no intermediate was found on the reaction surface.The activation energy of1TS4 is 229.2 kJ·mol-1relative to the reactants,but the probability of end-on collisions is very small and this reaction channel makes no significant contribution to the formation of

    The high-energy formation of Y+in the experiment can be attributed to simple collision-induced dissociation of,the product of the S-transfer reaction,with CO as the collision gas. This agrees with the observation that thecross-section decreases with elevation of the reaction energy,whereas the Y+cross-section increases,and the formation of Y+is dominant in the high-energy region.8The calculated reaction heat of yielding of3Y+is 398.1 kJ·mol-1(4.13 eV),in good agreement with the value of(421.64±12.54)kJ·mol-1((4.37±0.13)eV)obtained from experimental thermochemical data for bond-dissociation energies.8

    3.2 Reaction on the3Φ excited-state surface

    In order to clarify whether two-state reactivity exists in the title reaction,the S-transfer reaction of the3Φ excited-state of YS+was also investigated at the same theoretical level.Four parallel reaction pathways(paths A,B,C,and D)were also found on the triplet surface,and these are associated with two isomeric products,(v)and(cyc).Path A and path B yield the same product,(v),with a V-shaped structure. Path A proceeds via one four-centered transition state(3TS1), and is a one-step-mechanism reaction,whereas path B proceeds via two four-centered transition states(3TS2 and3TS3) with a four-membered cyclic intermediate(3IM4)located between them,and is a two-step-mechanism reaction.The other two reaction paths(C and D)proceed via a four-centered transition state(3TS4)and a three-membered cyclic transition state (3TS5),respectively,and yield the same cyclic product,(cyc).

    Fig.4 Schematic diagram of the triplet potential-energy curves for the S-transfer reaction involved in the reaction of YS+with COSThe values are given by B3LYP/DZVP plus ZPE in kJ·mol-1.

    Like the reaction on the singlet surface,when the S atom of COS attacks the3Φ excited-state of YS+,two stabilized cistrans isomers,3IM2 and3IM3,may be formed,with binding energies of 60.6 and 56.4 kJ·mol-1,respectively.In addition to the two cis-trans isomers3IM2 and3IM3,another complex,3IM1,has been found on the triplet surface,in which the S atom and the C atom of COS interact simultaneously with the Y atom of YS+.The strong interaction leads to bending of the θ(OCS)bond angle in3IM1 and a large binding energy of 94.1 kJ·mol-1.However,it should be noted that3IM1 can easily be formed from the isomerization of3IM3 via3TSa,with a small barrier of 0.7 kJ·mol-1.The reaction paths A and C are both initiated from3IM1 and yield the3YS+(v)and3YS+(cyc)products,respectively.However,the analogous collision complex was not found on the singlet ground-state surface.

    The calculated barriers of the four paths,A,B,C,and D, are-72.3,-14.5,20.2,and 27.5 kJ mol-1,respectively,at the B3LYP/6-311+G*level plus ZPE relative to the excited-state reactants.Compared with the reaction barriers on the groundstate surface,these lower barriers imply that the3Φ excitedstate of YS+is much more reactive for the title reaction.However,by carefully inspecting the differences among the mechanisms on the singlet and triplet surfaces,the two-state reactivity of the title reaction can be excluded for the following reasons.The crucial conditions for efficient crossing-over are the existence of crossing-seam and the spin-orbital coupling.In the crossing-seam region,the geometrical structures of the reaction system in different spin states must be quite similar,and have the same or similar relative energies.Spin-orbital coupling is generally strong enough in transition-metal-containing systems.However,from Fig.1 and Fig.2,one can see that although path D on the excited-state surface and path A on the ground-state surface have similar mechanisms and similar trends in the changes in their geometrical parameters,the other reaction paths are quite different on the different surfaces.This means that only path A on the ground-state surface and path D on the excited-state surface have the desired geometrical conditions to form a crossing-seam.However,the energy conditions of the two reaction paths do not match,because the stationary points of path D on the excited-state surface are located at much higher energies than those of path A on the ground-state surface.So,according to our calculation,the title reaction has no two-state reactivity.

    The exothermic feature of thecross-sections observed in the experiment means that at least one barrier-less reaction channel is present in the reactions.Theoretically,three cases can make this possible.One is that there really are one or more barrier-less reaction paths on the ground-state surface(as in the reaction of NbS+12).Second,two-state reactivity may provide a lower energy reaction channel,in which,generally,the transition state on the excited-state surface is located at a lower energy than that of its corresponding transition state on the groundstate surface and is also lower than the ground-state reactants, and then the reaction involves a spin inversion.The third case is that the ground-state reactant MS+is impure,mixing with minor excited-state species that react with COS with no barriers. According to our calculations,however,no barrier-less reaction channel has been found on the ground-state surface,despite the numerous strategies pursued and different methods employed,and the reactions have no two-state reactivity.We therefore suggest that the exothermic feature of thecrosssection observed in the experiment should be attributed to the residual excited-state of YS+mixing in the ground-state reactants,which react with COS with no barriers;for example, path A and path B on the excited-state surface proceed with no barriers to yield theproduct. 4 Conclusions

    The title reaction was studied using DFT at the B3LYP/6-311+G*level.The following conclusions have been made.(1) Four parallel reaction paths(A,B,C,and D)have been identified for the S-transfer reactions of the1Σ+ground-state of YS+with COS;the reaction mechanism and reactivity are quite similar to the analogous reactions of the1Σ+ground-state of ScS+, the isovalent system.Paths A,B,and C,which have obvious barriers,make the main contributions to the endothermic feature of thecross-section observed in the experiment.(2) On the triplet excited-state surface,four parallel reaction paths have also been found,but the mechanisms and geometrical change trends are quite different from those of the reactions on the ground-state surface.The calculation results show that the3Φ excited state of YS+is more reactive for the title reaction. (3)Because no barrier-less reaction channel on the groundstate surface and no two-state reactivity have been identified, the exothermic feature of thecross-section is attributed to reactions of the residual excited state of YS+according to our calculations.

    (1) Stiefel,E.I.;Matsmoto,K.Transition Metal Sulfur Chemistry, ACS Symposium Series 653,1st ed.;American Chemical Society:Washington DC,1996;pp 2-38.

    (2) Bhadure,M.;Mitchell,P.C.H.J.Catal.1982,77,132.doi: 10.1016/0021-9517(82)90153-1

    (3) Clemmer,D.E.;Sunderlin,L.S.;Armentrout,P.B.J.Phys. Chem.1990,94,208.doi:10.1021/j100364a034

    (4) Schults,R.H.;Elkind,J.L.;Armentrout,P.B.J.Am.Chem. Soc.1988,110,411.doi:10.1021/ja00210a017

    (5)Armentrout,P.B.Annu.Rev.Phys.Chem.1990,41,313.doi: 10.1146/annurev.pc.41.100190.001525

    (6)Castleman,A.W.;Keesee,R.G.Chem.Rev.1986,86,589.doi: 10.1021/cr00073a005

    (7) Kretzschmar,I.;Schr?der,D.;Schwarz,H.;Rue,C.;Armentrout, P.B.J.Phys.Chem.A 2000,104(21),5046.doi:10.1021/ jp994228o

    (8) Kretzschmar,I.;Schr?der,D.;Schwarz,H.;Armentrout,P.B. Int.J.Mass Spectrometry 2006,249/250,263.

    (9) Kretzschmar,I.;Fiedler,A.;Harvey,J.N.;Schr?der,D.; Schwarz,H.J.Phys.Chem.A 1997,101(35),6252.doi: 10.1021/jp971941+

    (10) Kretzschmar,I.;Schr?der,D.;Schwarz,H.;Rue,C.; Armentrout,P.B.J.Phys.Chem.A 1998,102(49),10060.doi: 10.1021/jp982199w

    (11) Kretzschmar,I.;Schr?der,D.;Schwarz,H.;Armentrout,P.B. Int.J.Mass Spectrometry 2003,228,439.

    (12)Armentrout,P.B.;Kretzschmar,I.J.Phys.Chem.A 2009,113 (41),10955.doi:10.1021/jp907253r

    (13) Rue,C.;Armentrout,P.B.;Kretzschmar,I.;Schr?der,D.; Schwarz,H.J.Phys.Chem.A 2002,106(42),9788.doi: 10.1021/jp020161k

    (14)Flemmig,B.;Kretzschmar,I.;Friend,C.M.;Hoffmann,R. J.Phys.Chem.A 2004,108(15),2972.doi:10.1021/jp0369701

    (15) Frommer,J.;Nachtegaal,M.;Czekaj,I.;Weng,T.;Kretzschmar, R.J.Phys.Chem.A 2009,113(44),12171.doi:10.1021/ jp902604p

    (16) Villarroel,O.J.;Laboren,I.E.;Bellert,D.J.J.Phys.Chem.A 2012,116(12),3081.doi:10.1021/jp2047135

    (17) Gennari,M.;Retegan,M.;DeBeer,S.;Pécaut,J.;Neese,F.; Collomb,M.;Duboc,C.Inorg.Chem.2011,50(20),10047. doi:10.1021/ic200899w

    (18) Chandrasekhar,V.;Senapati,T.;Dey,A,;Das,S.;Kalisz,M.; Clérac,R.Inorg.Chem.2012,51(4),2031.doi:10.1021/ ic201463g

    (19)Yang,X.;Yu,S.;Li,T.;Yao,L.;Hu,D.;Xie,X.J.Mol. Struct.-Theochem 2009,901(1/3),34.

    (20) Gao,S.L.;Xu,J.L.;Xie,X.G.Chem.Phys.2005,312,187. doi:10.1016/j.chemphys.2004.11.040

    (21) Xie,X.;Gao,S.;Xu,J.J.Mol.Struct.-Theochem 2005,715 (1/3),65.

    (22) Yu,S.;Li,T.;Yao,L.;Yang,X.;Xie,X.J.Mol.Struct.-Theochem 2009,901(1/3),249.

    (23)Goudbout,N.;Salahub,D.R.;Andzelm,J.;Wimmer,E.Can.J. Chem.1992,70,560.doi:10.1139/v92-079

    (24) Chase,M.W.;Davies,C.A.;Downey,J.R.;Frurip,D.J.; McDonald,R.A.;Syverud,A.N.J.Phys.Chem.Ref.Data 1985,14(Suppl.1),1112.

    (25) Niu,S.;Hall,M.B.Chem.Rev.2000,100,353.doi:10.1021/ cr980404y

    (26) Read,A.E.;Curtiss,L.A.;Weinhold,F.Chem.Rev.1988,88, 899.doi:10.1021/cr00088a005

    (27) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision B.03;Gaussian Inc.:Pittsburgh,PA,2003.

    (28) Kretzschmar,I.;Schr?der,D.;Schwarz,H.;Armentrout,P.B. Advances in Metal and Semi-Conductor Clusters:Metal-Ligand Bonding and Metal-Ion Solvation,1st ed.;Elsevier:New York, 2001;Vol.5,p347.

    February 7,2012;Revised:May 24,2012;Published on Web:May 24,2012.

    Theoretical Study on Gas-Phase Reaction of YS+(1Σ+,3Φ)with COS of YS++COS→+CO

    YANG Shu1,2YANG Xiao-Mei3XIE Xiao-Guang1,*
    (1School of Chemical Science and Technology,Yunnan University,Kunming 650091,P.R.China;2Faculty of Science,Kunming University of Science and Technology,Kunming 650093,P.R.China;
    3Yunnan University of Traditional Chinese Medicine,Kunming 650091,P.R.China)

    The gas-phase reaction of YS+(1Σ+,3Φ)with an S-transfer reagent(COS),YS++COS→+ CO,was studied using density functional theory at the B3LYP/6-311+G*level.Four parallel reaction pathways were identified on both the ground-and excited-state surfaces.The mechanisms and the geometrical change trends on the different surfaces are quite different,except in the case of one reaction channel.The experimentally observed endothermic feature of the formation ofcan be attributed to three reaction paths,A,B,and C,with calculation barriers of 28.3,140.5,and 120.2 kJ·mol-1,respectively, on the ground singlet surface.Our calculation results show that the title reaction has no two-state reactivity and the exothermic feature of thecross-section observed in the experiments is attributed to reaction of the residual excited-state of YS+in the reactants.

    Yttrium sulfide cation;COS;Reaction mechanism;B3LYP

    10.3866/PKU.WHXB201205241

    ?Corresponding author.Email:xgxie@ynu.edu.cn;Tel:+86-871-5033769.

    The project was supported by the National Natural Science Foundation of China(30930074).

    國家自然科學(xué)基金(30930074)資助項目

    O643

    猜你喜歡
    理學(xué)院中醫(yī)學(xué)院云南大學(xué)
    云南大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:40:56
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    《云南大學(xué)學(xué)報(自然科學(xué)報)》論文版權(quán)授權(quán)確認書
    《云南大學(xué)學(xué)報(自然科學(xué)版)》2020年評選優(yōu)秀學(xué)術(shù)論文
    云南大學(xué)歷史博物館簡介(續(xù))
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    一名老委員的五年提案和一批中醫(yī)學(xué)院的更名歷程——訪全國政協(xié)委員、河南中醫(yī)學(xué)院科技成果推廣中心主任司富春教授
    《云南中醫(yī)學(xué)院學(xué)報》稿約
    《云南中醫(yī)學(xué)院學(xué)報》稿約
    日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 国产精品二区激情视频| 国产精品熟女久久久久浪| 一级毛片我不卡| av在线播放精品| 亚洲国产最新在线播放| 美国免费a级毛片| 97人妻天天添夜夜摸| 另类精品久久| 天天躁夜夜躁狠狠躁躁| 女人高潮潮喷娇喘18禁视频| 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 久久久久久久久久久免费av| 亚洲欧美精品自产自拍| 1024视频免费在线观看| 男女高潮啪啪啪动态图| 99热全是精品| 男女国产视频网站| 国产精品99久久99久久久不卡 | 国产一区有黄有色的免费视频| 精品少妇黑人巨大在线播放| 亚洲精品aⅴ在线观看| 99热网站在线观看| 亚洲,一卡二卡三卡| 啦啦啦啦在线视频资源| 欧美激情极品国产一区二区三区| 青草久久国产| 综合色丁香网| 日韩制服丝袜自拍偷拍| 老司机影院毛片| 欧美精品一区二区大全| 久久这里只有精品19| 黑人猛操日本美女一级片| 2022亚洲国产成人精品| 美女国产高潮福利片在线看| 一级毛片 在线播放| 婷婷色综合大香蕉| 最新中文字幕久久久久| 欧美日韩一级在线毛片| 在线观看三级黄色| 人成视频在线观看免费观看| 国产精品成人在线| 国产片内射在线| 中文乱码字字幕精品一区二区三区| 免费看av在线观看网站| 秋霞伦理黄片| 天堂中文最新版在线下载| 最新中文字幕久久久久| 欧美精品av麻豆av| 日日爽夜夜爽网站| 一区二区三区激情视频| 赤兔流量卡办理| 欧美+日韩+精品| 高清黄色对白视频在线免费看| 亚洲天堂av无毛| 一级毛片电影观看| 精品国产国语对白av| 激情视频va一区二区三区| 成人午夜精彩视频在线观看| 精品国产一区二区三区久久久樱花| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 一级片'在线观看视频| 午夜91福利影院| 999久久久国产精品视频| 超碰97精品在线观看| 精品人妻一区二区三区麻豆| 精品少妇黑人巨大在线播放| 青草久久国产| 黄片播放在线免费| 久久精品久久精品一区二区三区| 在线免费观看不下载黄p国产| 自线自在国产av| 亚洲精品美女久久久久99蜜臀 | 高清欧美精品videossex| 欧美成人精品欧美一级黄| 国产一区有黄有色的免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 十分钟在线观看高清视频www| 9191精品国产免费久久| 18禁观看日本| 国产精品.久久久| 国产黄频视频在线观看| 亚洲av国产av综合av卡| 精品福利永久在线观看| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 免费少妇av软件| 狠狠婷婷综合久久久久久88av| 国产精品 国内视频| 亚洲精品,欧美精品| 国产精品亚洲av一区麻豆 | 国产精品久久久久久av不卡| 建设人人有责人人尽责人人享有的| av在线老鸭窝| h视频一区二区三区| 成人免费观看视频高清| 久久久亚洲精品成人影院| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 777久久人妻少妇嫩草av网站| 伊人久久国产一区二区| 国产精品二区激情视频| 一级,二级,三级黄色视频| 日韩三级伦理在线观看| 丝袜美足系列| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区久久| 一本大道久久a久久精品| 2022亚洲国产成人精品| 有码 亚洲区| 9191精品国产免费久久| 亚洲精品国产av蜜桃| 国产一区二区三区综合在线观看| 婷婷色麻豆天堂久久| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 一级爰片在线观看| 久久女婷五月综合色啪小说| 五月伊人婷婷丁香| 黄色怎么调成土黄色| 最近2019中文字幕mv第一页| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 男女边吃奶边做爰视频| 日韩 亚洲 欧美在线| 最近手机中文字幕大全| 9191精品国产免费久久| 久久精品国产a三级三级三级| 亚洲经典国产精华液单| 久久久久精品久久久久真实原创| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件| 中文字幕制服av| 天天影视国产精品| 久久国产精品大桥未久av| 免费人妻精品一区二区三区视频| www.熟女人妻精品国产| 九色亚洲精品在线播放| 久久狼人影院| 老鸭窝网址在线观看| 亚洲欧洲日产国产| 秋霞在线观看毛片| 国产不卡av网站在线观看| 亚洲精品自拍成人| 国产精品免费大片| 美女国产高潮福利片在线看| 美女午夜性视频免费| 亚洲成人av在线免费| av免费在线看不卡| 亚洲欧美一区二区三区久久| 免费黄频网站在线观看国产| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | av女优亚洲男人天堂| 亚洲精品久久成人aⅴ小说| 午夜福利网站1000一区二区三区| 中国三级夫妇交换| 久久国内精品自在自线图片| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 韩国av在线不卡| 中文字幕人妻丝袜一区二区 | 少妇人妻 视频| av在线播放精品| www.自偷自拍.com| 欧美日韩综合久久久久久| 日韩大片免费观看网站| 99久国产av精品国产电影| 新久久久久国产一级毛片| 国产免费现黄频在线看| 观看av在线不卡| 亚洲精品国产色婷婷电影| 欧美国产精品va在线观看不卡| 精品人妻一区二区三区麻豆| av.在线天堂| 男女边吃奶边做爰视频| 午夜激情av网站| 日韩一区二区视频免费看| 精品国产露脸久久av麻豆| 性少妇av在线| 久久青草综合色| 欧美成人午夜免费资源| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 你懂的网址亚洲精品在线观看| 国产一区二区在线观看av| 久久韩国三级中文字幕| 婷婷成人精品国产| 国产精品二区激情视频| 国产精品成人在线| 在线观看美女被高潮喷水网站| 丰满饥渴人妻一区二区三| 欧美av亚洲av综合av国产av | 日本91视频免费播放| 成人亚洲精品一区在线观看| 天天躁夜夜躁狠狠久久av| 可以免费在线观看a视频的电影网站 | 午夜福利网站1000一区二区三区| 色哟哟·www| 成年人午夜在线观看视频| 久久狼人影院| 中文天堂在线官网| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| videos熟女内射| 在线天堂最新版资源| 最新中文字幕久久久久| 久久精品国产综合久久久| 中文字幕制服av| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 一个人免费看片子| 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区三区| 精品少妇一区二区三区视频日本电影 | 一级片'在线观看视频| 亚洲国产欧美网| 久久人人97超碰香蕉20202| 亚洲欧美成人精品一区二区| 香蕉丝袜av| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲 | 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 精品国产乱码久久久久久小说| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲国产一区二区在线观看 | 大陆偷拍与自拍| 久久热在线av| 免费黄网站久久成人精品| 欧美xxⅹ黑人| 好男人视频免费观看在线| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 老熟女久久久| 久久久久精品久久久久真实原创| 老汉色∧v一级毛片| 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| 五月开心婷婷网| 激情五月婷婷亚洲| 精品一区二区三卡| 一级毛片 在线播放| 如何舔出高潮| 国产黄频视频在线观看| 欧美成人午夜精品| 久久久亚洲精品成人影院| 亚洲综合精品二区| 黑丝袜美女国产一区| 日本av手机在线免费观看| 精品一品国产午夜福利视频| av片东京热男人的天堂| 国产爽快片一区二区三区| 麻豆av在线久日| 2021少妇久久久久久久久久久| av有码第一页| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 成年女人毛片免费观看观看9 | 免费观看无遮挡的男女| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 国产不卡av网站在线观看| 亚洲综合色网址| 亚洲伊人色综图| 成人手机av| 国产 精品1| 99国产综合亚洲精品| 国产综合精华液| 精品一品国产午夜福利视频| 日韩av免费高清视频| 涩涩av久久男人的天堂| 亚洲国产av影院在线观看| 久久精品久久久久久久性| 久久免费观看电影| 曰老女人黄片| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| 男女国产视频网站| 亚洲人成网站在线观看播放| 激情五月婷婷亚洲| 80岁老熟妇乱子伦牲交| 色哟哟·www| 欧美在线黄色| xxx大片免费视频| 国产日韩欧美亚洲二区| 国产一区二区在线观看av| 久久久久久人人人人人| 最黄视频免费看| 妹子高潮喷水视频| 免费人妻精品一区二区三区视频| 青春草国产在线视频| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 一级毛片黄色毛片免费观看视频| 国产在视频线精品| 免费观看在线日韩| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 美国免费a级毛片| videosex国产| 久久99热这里只频精品6学生| 黄片小视频在线播放| 日韩av免费高清视频| 免费少妇av软件| 亚洲一级一片aⅴ在线观看| 国产深夜福利视频在线观看| 香蕉国产在线看| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 飞空精品影院首页| 亚洲国产精品一区二区三区在线| 可以免费在线观看a视频的电影网站 | 亚洲综合色惰| 女性被躁到高潮视频| 亚洲成av片中文字幕在线观看 | av国产久精品久网站免费入址| 国产淫语在线视频| 日本午夜av视频| 老司机影院成人| 亚洲,欧美,日韩| av片东京热男人的天堂| 人妻系列 视频| 国产精品av久久久久免费| 久久久久人妻精品一区果冻| 99久久人妻综合| freevideosex欧美| 人妻人人澡人人爽人人| 热99久久久久精品小说推荐| 菩萨蛮人人尽说江南好唐韦庄| 少妇人妻精品综合一区二区| 亚洲成色77777| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂| 亚洲国产av影院在线观看| 九九爱精品视频在线观看| 最新中文字幕久久久久| 成年av动漫网址| 又大又黄又爽视频免费| 99久久人妻综合| 亚洲国产av影院在线观看| 韩国精品一区二区三区| 亚洲伊人久久精品综合| 欧美精品高潮呻吟av久久| 中国三级夫妇交换| 青春草视频在线免费观看| 日韩av免费高清视频| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区三区四区第35| 有码 亚洲区| 久久久精品免费免费高清| 欧美中文综合在线视频| 国产不卡av网站在线观看| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 亚洲内射少妇av| 99久久人妻综合| 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 天天躁夜夜躁狠狠久久av| 老司机亚洲免费影院| 亚洲av电影在线进入| 91在线精品国自产拍蜜月| 18禁国产床啪视频网站| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 妹子高潮喷水视频| 天天操日日干夜夜撸| 丝袜美足系列| 日韩在线高清观看一区二区三区| 久久久久国产一级毛片高清牌| 成年av动漫网址| 久久狼人影院| 伊人久久国产一区二区| 欧美亚洲日本最大视频资源| 久久99蜜桃精品久久| 咕卡用的链子| 伦理电影大哥的女人| 精品一区在线观看国产| 日韩电影二区| 色哟哟·www| 亚洲精品一区蜜桃| av免费在线看不卡| 免费少妇av软件| 啦啦啦在线观看免费高清www| 亚洲国产欧美日韩在线播放| 如日韩欧美国产精品一区二区三区| 9热在线视频观看99| 美女大奶头黄色视频| 亚洲欧美清纯卡通| 黄频高清免费视频| 99久国产av精品国产电影| 成年美女黄网站色视频大全免费| 我要看黄色一级片免费的| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 久久久久久久久久人人人人人人| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| 高清黄色对白视频在线免费看| 性色avwww在线观看| 久久人妻熟女aⅴ| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 超碰成人久久| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 一二三四在线观看免费中文在| 午夜福利网站1000一区二区三区| 最近的中文字幕免费完整| 久久国内精品自在自线图片| av有码第一页| 人妻人人澡人人爽人人| av网站免费在线观看视频| 最近2019中文字幕mv第一页| 青草久久国产| 国产爽快片一区二区三区| 亚洲国产av新网站| 国产一区有黄有色的免费视频| av网站在线播放免费| 国产av一区二区精品久久| 青春草亚洲视频在线观看| 久久亚洲国产成人精品v| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 美国免费a级毛片| 国产成人精品久久久久久| 最近2019中文字幕mv第一页| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 国产麻豆69| 午夜福利视频在线观看免费| 欧美中文综合在线视频| 久久av网站| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 在现免费观看毛片| 2022亚洲国产成人精品| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 成年女人在线观看亚洲视频| 精品第一国产精品| 国产白丝娇喘喷水9色精品| 一本大道久久a久久精品| 久久精品国产亚洲av高清一级| 侵犯人妻中文字幕一二三四区| 久久99蜜桃精品久久| 自线自在国产av| 精品久久蜜臀av无| 欧美变态另类bdsm刘玥| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| xxxhd国产人妻xxx| 美女脱内裤让男人舔精品视频| 久久久久网色| 街头女战士在线观看网站| 999久久久国产精品视频| 日本vs欧美在线观看视频| 欧美在线黄色| 两个人看的免费小视频| 久久女婷五月综合色啪小说| 在线 av 中文字幕| 欧美日韩成人在线一区二区| 香蕉精品网在线| 日日撸夜夜添| h视频一区二区三区| 黄片播放在线免费| 久久久国产精品麻豆| 在线 av 中文字幕| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 七月丁香在线播放| 欧美变态另类bdsm刘玥| 啦啦啦在线免费观看视频4| 国产在线免费精品| 热99国产精品久久久久久7| 亚洲精品,欧美精品| 在线亚洲精品国产二区图片欧美| 免费不卡的大黄色大毛片视频在线观看| 赤兔流量卡办理| 人人妻人人添人人爽欧美一区卜| 99国产综合亚洲精品| 水蜜桃什么品种好| 欧美日韩一级在线毛片| 久久久国产欧美日韩av| 亚洲欧洲精品一区二区精品久久久 | 一级片免费观看大全| 一区二区三区激情视频| 亚洲国产av新网站| 少妇的逼水好多| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 日韩精品有码人妻一区| 国产xxxxx性猛交| 黑人欧美特级aaaaaa片| 国产av精品麻豆| a 毛片基地| 亚洲色图 男人天堂 中文字幕| 极品少妇高潮喷水抽搐| 男女高潮啪啪啪动态图| 波野结衣二区三区在线| 曰老女人黄片| 观看av在线不卡| 午夜影院在线不卡| 久久久久久久久免费视频了| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院| 少妇猛男粗大的猛烈进出视频| 伊人亚洲综合成人网| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 精品国产国语对白av| 久久免费观看电影| 国产爽快片一区二区三区| 男女边吃奶边做爰视频| 亚洲中文av在线| 亚洲国产精品成人久久小说| 美女主播在线视频| 午夜免费观看性视频| 中文字幕av电影在线播放| 伊人亚洲综合成人网| 九九爱精品视频在线观看| av网站在线播放免费| 国产成人精品福利久久| 久久久久精品性色| 中文字幕人妻熟女乱码| 国产淫语在线视频| 一区二区三区四区激情视频| 精品人妻偷拍中文字幕| 久久人人97超碰香蕉20202| 有码 亚洲区| 美女高潮到喷水免费观看| 丝袜脚勾引网站| 国产极品粉嫩免费观看在线| 国产成人精品一,二区| 色视频在线一区二区三区| 国产福利在线免费观看视频| 午夜激情av网站| 少妇人妻久久综合中文| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 另类精品久久| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 啦啦啦啦在线视频资源| 一区二区三区精品91| 人妻系列 视频| 久久99精品国语久久久| 国产乱来视频区| 1024视频免费在线观看| 青春草国产在线视频| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 青草久久国产| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区黑人 | 老女人水多毛片| 久久久精品国产亚洲av高清涩受| 丝袜在线中文字幕| 五月伊人婷婷丁香| 国产精品蜜桃在线观看| 两性夫妻黄色片| 中文字幕制服av| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 午夜激情久久久久久久| 欧美精品高潮呻吟av久久| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 男女国产视频网站| 宅男免费午夜| 天美传媒精品一区二区| 亚洲中文av在线| 一本久久精品| 亚洲国产精品一区二区三区在线| 欧美日韩av久久|