• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    控制CO選擇氧化反應(yīng)中金催化劑熱點形成的新方法

    2012-12-12 02:42:56王彩紅李大枝
    物理化學(xué)學(xué)報 2012年6期
    關(guān)鍵詞:林種濱州物理化學(xué)

    王 芳 王彩紅 李大枝

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    1 Introduction

    Au supported catalysts have been applied widely on CO oxidation in the absence and presence of H2owing to their attractive catalytic properties.1-8Although factors that affect the performance of these catalysts,such as the Au particle size,the support,and the preparation method,have been studied extensively,studies focused on investigating formation of hot-spot in the process of CO oxidation reaction are relative scarce.9On one hand,a hot region can have a deleterious impact on the reactor performance and may deactivate the catalyst.Moreover, it may lead to severe safety problems by either initiating highly exothermic reactions,or by decreasing the material strength of the reactor wall.Base on the fact that CO and H2oxidations are highly exothermic reactions and the hydrogen oxidation being favored by higher temperautres,an effectively control of temperauture is an essential measure to ensure high CO2selectivity.In general,the appropriate temperature can be obtained by changing the structure of reactors.10-14Several design configurations have been proposed to carry out this process.Although multistaged reactors are able to handle this highly exothermic reaction system with acceptable selectivity,they have the disadvantage of requiring complex hardware to control temperatures,using staged air injections along the catalyst bed.In this paper,we mainly focus on the preparation of supported Au catalysts modified by the deposition-precipitation method.We can find that a FeOxmodified Au/Al2O3catalyst is highly efficient catalyst for CO oxidation in the presence and absence of H2. The temperature increase of catalyst bed can be effectively inhibited by addition of appropriate dopant and optimizing catalyst structure,which results in different product distribution.

    2 Experimental

    2.1 Catalyst preparation

    TheAl2O3-MOx(M=Fe and Zn)composite supports were prepared by the incipient-wetness impregnation method.First,the MOxprecursor of M(NO3)2(≥99.0%)were dissolved in 20 mL distilled water and mixed with calculated amount of γ-Al2O3powder(129 m2·g-1,30-45 mesh).The slurry thus prepared was taken into dryness by continuous stirring and heating (60-70°C).Then,the sample was dried at 120°C overnight, and was subsequently calcined in air at 600°C for 4 h.The goldcontaining catalysts were prepared by the deposition-precipitation method.The adequate amount of HAuCl4·3H2O(Alfa,≥99.99%)was dissolved in 150 mL of deionized water and the pH of the solution was adjusted to 8.0-9.0 by addition of 0.1 mol·L-1NaOH(≥85.0%).The solution was heated to 80°C and then the support was added and kept under continuous stirring for 2 h.The samples obtained were washed several times with deionized water(until the disappearance of Cl-and Na+ions),then dried overnight at 120°C.Fractions from the solids were finally calcined at 300°C for 3 h.The theoretical loading amount of Au is 1.0%(w,mass fraction)and that of MOxis 10%(w).

    2.2 Characterizations of catalysts

    Before each measurement,the samples were purged with dry air at 300°C for 1 h.Chemical states of Au nanoparticles on the catalysts surface were investigated by X-ray photoelectron spectroscopy(XPS)on a VG ESCALAB 210 Electron Spectrometer(Mg Karadiation;hv=1253.6 eV).XPS data were calibrated using the binding energy of C 1s(285.0 eV)as the standard.The transmission electron microscopy(TEM)images were obtained on a transmission electron microscope (JEM1200-EX,JEOL)with an accelerating voltage of 80 kV.A drop of the solution containing Au nanoparticles was put onto a carbon-supported copper mesh,which was dried at room temperature.High-resolution transmission electron microscopy (HRTEM)images were obtained on a transmission electron microscope(JEM2010,JEOL)with an accelerating voltage of 200 kV.The specific surface area of the catalyst was measured by the Brunauer-Emmett-Teller(BET)method on a Micromeritics ASAP-2010 apparatus at liquid nitrogen temperature with N2as the absorbent at 77 K.

    2.3 Activity measurement

    Catalytic test was carried out at atmospheric pressure in a fixed bed continuous flow quartz reactor(inner diameter,i.d.8 mm),consisting of a flow controller unit,a reactor unit,and an analysis unit.Typically,100 mg of the catalyst was used in each run.The total flow rate of the feed gas was 60 mL·min-1(gas hourly space velocity(GHSV)=36000 h-1).The feed gas consisted of 5%-20%(φ,volume fraction)of CO and 20%(φ) O2in N2balance.In the process of PROX,a gas mixture containing 55%-25%(φ)H2,2%-5%(φ)CO,and 1%-2%(φ)O2in N2was fed at the flow rate of 30 mL·min-1.Argon was used as the carrier gas and nitrogen was used as the internal standard for gas analysis.The gas phase effluents were analyzed on-line chromatographs equipped with thermal conductivity detector(TCD).At the end of the catalytic tests,the catalyst was cooled under an N2stream and stored for characterizations. The catalytic activities were defined in terms of conversion of CO(ηCO),conversion of O2(ηO2),and selectivity to CO2(S),and were calculated according to the corresponding equations:

    where[CO]inor[O2]inis intake concentration,[CO]outor[O2]outis outtake concentration,[CO2]is production CO2concentration.

    3 Results and discussion

    3.1 Activity tests

    Traditionally,the temperature of catalyst bed measured by thermocouple,as shown in Fig.1(a),could be considered as the reaction temperature.Obviously,it is inaccurate because of external and internal heat transfer hysteresis.We modified the temperature measure system as shown in Fig.1(b),here,thin layer catalyst particles were sandwiched between two inactive quartz sands in tube reactor,the reaction tube was embedded in an adiabatic reactor.In this case,catalyst bed temperature can be obtained directly by thermocouple and its increase completely derives from the exothermic reactions.Although it is difficult to determine the catalyst bed absolutely because it is much dependent on the size,we think it is possible to obtain a relative tendency of the bed temperature behavior qualitatively.

    Fig.1 Schematic representation of different reactors

    The catalytic activities for CO oxidation in the presence and absence of H2on the original and MOx(M=Fe,Zn)doped Au/ Al2O3catalysts were investigated at ambient temperature.All catalysts exhibited attractive performances for CO oxidation in the absence of H2.CO could be eliminated even when its concentration increased to 20%.However,no measurable activity could be found over Au/Al2O3when H2was introduced in reaction stream.The stabilities of both catalysts dopanted by MOxwere tested in the reaction of CO selective oxidation in the presence of H2and the results were shown in Fig.2.CO could be converted completely and the CO2selectivities over Au/ FeOx-Al2O3and Au/ZnO-Al2O3were 95%and 92%,respectively,even after 100 h.In addition,effects of the volume ratio of O2/CO on CO conversion and CO2selectivity for PROX over Au/FeOx-Al2O3were also measured as shown in Fig.3.It can be found that CO conversion can be stabilized at 100%when the volume ratio of O2/CO increased from 0.5 to 1.0,however, the CO2selectivity decreased from 95%to 50%.

    Fig.2 Stability test of theAu/MOx-Al2O3(M=Fe,Zn) catalysts for CO selective oxidation in the presence of H2

    Fig.3 Effects of the volume ratio of O2/CO on CO conversion and CO2selectivity for PROX overAu/FeOx-Al2O3

    Based on their attractive catalytic performances,the surface temperatures over various Au catalysts were studied in CO oxidation reaction as shown in Fig.4.All catalyst surface temperatures were enhanced significantly by increasing CO concentration in the reaction stream,owing to reaction exotherm increase.The maximum temperature obtained from Au/Al2O3was 160°C when CO concentration was raised to 20%,whereas the corresponding temperature on the FeOxdoped catalyst was just 55°C.It is interesting to note that the Au/Al2O3catalyst surface temperature could be decreased dramatically by FeOxaddition,especially in higher CO concentration.However,their surface temperatures were enhanced obviously by ZnO addition,a maximum temperature of 170°C could be obtained.The surface temperatures over different Au catalysts in CO selective oxidation in the presence of H2for PROX reaction were also shown in Fig.5.Marwaha et al.15reported that heat generation and heat removal significantly determined the change of product distribution depending on the contact.In order to eliminate effect of contact time,the catalyst surface temperatures were studied in the same space velocity.No detectable temperature changes could be found on the Au/Al2O3catalyst surface because of its low catalytic activity for PROX reaction.However,the surface temperatures on both MOxmodified catalysts could be increased in a certain extent by raising H2concentration in the reaction stream.For the Au/FeOx-Al2O3catalyst,a maximum temperature of 55°C was obtained when CO and H2concentrations were 2.5%and 50%,respectively. However,the surface temperature of the Au/ZnO-Al2O3catalyst could achieve 105°C,and the high temperature resulted in decrease of the corresponding CO2selectivity.The surface temperature transformation of FeOxmodified catalyst was less than 5°C when H2concentrations were increased from 40%to 55%,while CO concentrations were decreased from 4%to 2.5%.These results proved further that the Au/FeOx-Al2O3catalyst is an appropriate candidate for CO oxidation in the absence and presence of H2.Furthermore,the surface temperatures were much dependent on the volume ratio of O2/CO, which might due to that higher ratios were beneficial to the oxidation of hydrogen as shown in Fig.3.

    Fig.4 Catalyst surface temperatures in CO oxidation reaction

    Fig.5 Catalyst surface temperatures in PROX reaction

    Five main reactions involved in a PROX reactor include:

    In order to reduce the complexity,only the reactions with significant rates were considered(CO and H2oxidation).The catalyst surface temperature in the adiabatic reactor can be calculated according to the equations16below:

    where Tsis catalyst surface temperature,Tgis reaction mixedgas temperature,asis coefficient of heat transfer,amis effective external surface area of catalyst bed per quality unit,and ΔHris exotherm from CO and H2oxidation reactions.Cpis heat capacity of the reaction mixture under constant pressure,and jHis heat transfer factor,while kAand G are reaction rate and mass rate of the reaction mixed-gas.In this case,we consider that the influence of αsand ΔHron Au catalysts surface temperature can be negligeable.It is,however,Tsrather than Tgcontrols the reaction rate kAand also the selectivity of a heterogeneous catalytic process through the Arrhenius equation(K=Aexp(-Ea/ RTs)).17The exponential in Arrhenius?expression for a rate constant has,in fact,not one but two variables,Eaand Ts,which could vary with the imposed experimental conditions and the resulting reaction rates.The traditional interpretation is that the activation energy Eacan be calculated from Tsand the corresponding reaction rates or rate constants.Thus,kAand amare the factors that can affect the catalyst surface temperature.

    3.2 Characterization of catalyst

    In order to investigate the relationship between various catalyst structures and their surface temperature,a series of characterizations were carried out on various Au catalysts.XPS spectra of Au 4f over the original and MOxdoped Au/Al2O3catalysts are shown in Fig.6.The line shape and width of Au 4f over the original Au/Al2O3catalyst matched well with those of the metallic Au,indicating that zerovalence gold was the active center for CO oxidation at low-temperature.By comparison, the Au 4f features obtained from MOxmodified Au/Al2O3were quite broad,both zerovalence and cationic gold could be found,which wereconsistent with the Au/Fe2O3catalyst reportedpreviously.18In addition,we can find that the AuIII/Au0molar ratio was 53%over Au/ZnO-Al2O3,while that increased to 74%over Au/FeOx-Al2O3catalyst.The result indicated that the valent state of gold particles on the catalyst surface could be changed by MOxaddition.It is already well proven that both AuIIIand Au0species are active for CO oxidation.19Once the catalyst is exposed to a CO/O2mixture,the AuIII/Au0molar ratio decreases and after a sufficiently long exposure only metallic gold is left.This result proves that the lattice oxygen of cationic gold does participate in the reaction of CO oxidation. However,it is should be noted that the decline in activity was not observed when high CO flow rates were employed even for 100 h.The XPS result from Au/FeOx-Al2O3catalyst showed that no AuIII/Au0ratio decline could be found.We consider that cationic gold species does not participate in CO oxidation at low temperature,which maybe play an important role at higher temperature.In other words,the decline in activity caused by the decrease of AuIII/Au0molar ratios can be inhibitted by controlling the hot spot temperature.

    Fig.6 XPS speatra of Au 4f on various catalysts(a)Au/Al2O3,(b)Au/ZnO-Al2O3,(c)Au/FeOx-Al2O3

    TEM and HRTEM images from different supported Au catalysts are shown in Fig.7 and Fig.8.The Au nanoparticles on all catalysts had a uniform size around 5 nm and were well dispersed and embedded in mesostructured support matrix.The fringes in Fig.8(a)gave a d-spacing of 0.24 nm,corresponding to the(111)atomic planes of gold lattice.This result shows that the catalysts surface temperature difference can not be attributed to the active component particle size,which is distinguished from NiO/Al2O3catalyst reported previously.20Both polycrystal and single crystal of gold particles coexisted over Au/FeOx-Al2O3,the degree of crystallinity was much lower than that on the Au/Al2O3catalyst.Furthmore,the Au lattice on Au/FeOx-Al2O3preferred to become strongly distorted so as to adopt the lattice dimensions of the mixed-oxide support,which is similar to Au nanoparticles supported on TiO2.21These results indicated that there was a strong interaction between Au and FeOx.Density functional theory(DFT)calculations have shown that lattice strain may enhance surface reactivity.22It has been suggested to explain the unusually high low-temperature CO oxidation activity of small Au particles.In addition,the pore structure parameters of all catalysts from the N2adsorption-desorption isotherms are given in Table 1.The surface area,pore volume,and average pore size of the Au/Al2O3catalyst are 185.0 m2·g-1,0.43 cm3·g-1,and 8.8 nm,respectively.The surface area and average pore size were decreased slightly by ZnO addition.However,it is interesting to note that the surface area of Au/FeOx-Al2O3is smaller than that of the Au/Al2O3catalyst,whereas its average pore size is obviously larger,which maybe due to that FeOxinhibitted part small pores ofAl2O3.

    Fig.7 TEM images of different catalysts(a)Au/Al2O3;(b)Au/FeOx-Al2O3;(c)Au/ZnO-Al2O3

    Fig.8 HRTEM images of various catalysts(a)Au/Al2O3,(b)Au/FeOx-Al2O3;Inset in Fig.8 shows the corresponding selected area electron diffraction pattern.

    Based on the foregoing observations and discussions,we can summarize schematically the adsorption of CO,O2,and/or H2on both catalysts.The difference of the catalyst surface temeratures might mainly due to various active centers,which can result in different reaction mechanisms.With respect to the Au/ Al2O3catalyst,support Al2O3usually can be regarded as chemical inert for CO oxidation.The role of the support material is limited to the stablization of very small gold particles.Thus, oxygen adsorption and dissociation must be possible on the metallic Au nanoparticles.In this case,the activity seems to de-pend very critically on the diameter of the gold particles and only extremely small particles cause highly active samples.No PROX reaction occurs because the active sites are fully covered with H2or CO strongly adsorbed on the Au/Al2O3catalyst due to blocked access of O2to the reaction sites.This strongly indicates that a dissociative adsorption of O2and the following surface reaction with preadsorbed CO are essential for PROX reaction,similarto Langmuir-Hinshelwood mechanism.23While for the Au/FeOx-Al2O3catalyst,on one hand,CO oxidation reaction can occur at the interface between Au and FeOx, just as the Au/Fe2O3catalyst.24Moreover,the addition of FeOxcan enhance the oxygen vacancy,which is in favor of the adsorption of CO and active oxygen species.Therefore,the Au/ FeOx-Al2O3catalyst is very effective for the inhibition of the hot spot formation in CO oxidation reaction,mainly due to the low oxygen affinity of Au,25which results from FeOxmodification.Furthermore,the low temperature of hot spot may be also related to the enhancement of effective external surface area of catalyst bed per quality unit.Herein,we think that there maybe a so-called bi-founctional mechanism existed over the Au/ FeOx-Al2O3catalyst in PROX reaction,just as the Pt-Fe/mordenite catalysts reported previously.26Where Au sites are available for the adsorption of CO as well as H2,and the FeOxsite acts as an O2dissociative-adsoption site.CO adsorbed on a Au site and O2adsorbed on an Fe site react immediately at low temperature once both reactants sit on such neighboring site. The mechanism could not only well explain the excellent catalytic performance of the Au/FeOx-Al2O3catalyst,but also might be responsible for the surface temperature difference between FeOxand ZnO modified catalysts.

    Table 1 Textural properties of different catalysts obtained by N2adsorption

    4 Conclusions

    In summary,the Au/MOx-Al2O3(M=Zn,Fe)catalysts with high CO oxidation catalytic perfomances in the absence and presence of H2have been synthesized successfully.The temperature increase of catalyst bed can be effectively inhibited by addition of appropriate dopant and optimizing catalyst structure, which results in different product distribution.Reaction path of CO oxidation over alumina supported gold catalyst can be well controlled by the addition of FeOxthrough regulating the oxidation state of Au species.The result opens an alternative line in the investigations on better and more selective catalyst materials.

    (1)Yu,J.;Wu,G.S.;Mao,D.S.;Lu,G.Z.Acta Phys.-Chim.Sin. 2008,24,1751.[俞 俊,吳貴升,毛東森,盧冠忠.物理化學(xué)學(xué)報,2008,24,1751.]

    (2)Wen,L.;Lin,Z.Y.;Zhou,J.Z.;Gu,P.Y.;Fu,J.K.;Lin,Z.H. Acta Phys.-Chim.Sin.2008,24,581.[文 莉,林種玉,周劍章,古萍英,傅錦坤,林仲華.物理化學(xué)學(xué)報,2008,24,581.]

    (3)Ye,Q.;Huo,F.F.;Yan,L.N.;Wang,J.;Cheng,S.Y.;Kang,T. F.Acta Phys.-Chim.Sin.2011,27,2872.[葉 青,霍飛飛,閆立娜,王 娟,程水源,康天放.物理化學(xué)學(xué)報,2011,27,2872.]

    (4)Wang,S.R.;Wu,S.H.;Shi,J.;Zheng,X.C.;Huang,W.P.Acta Phys.-Chim.Sin.2004,20,428.[王淑榮,吳世華,石 娟,鄭修成,黃唯平.物理化學(xué)學(xué)報,2004,20,428.]

    (5) Liu,Y.L.;You,C.R.;Li,Y.;He,T.;Zhang,X.Q.;Suo,Z.H. Acta Phys.-Chim.Sin.2010,26,2455.[劉玉良,由翠榮,李楊,何 濤,張香芹,索掌懷.物理化學(xué)學(xué)報,2010,26,2455.]

    (6) Xu,C.X.;Su,J.X.;Xu,J.H.;Liu,P.P.;Zhao,H.J.;Tian,F.; Ding,Y.J.Am.Chem.Soc.2007,129,42.

    (7) Wang,F.;Lu,G.X.Catal.Lett.2007,115,46.

    (8) Panzera,G.;Modafferi,V.;Candamano,S.;Donato,A.; Frusteri,F.;Antonucci,P.L.J.Power Sources 2004,135,177.

    (9) Zhang,M.H.;Hong,Y.;Ding,S.J.;Hu,J.J.;Fan,Y.X.; Voevodin,A.A.;Su,M.Nanoscale 2010,2,2790.

    (10) Kahlich,M.;Gasteiger,H.;Behm,R.J.New Mater. Electrochem.Syst.1998,1,39.

    (11) Echigo,M.;Tabata,T.Catal.Today 2004,90,269.

    (12) Morillo,A.;Merten,C.;Eigenberger,G.;Hermann,I.;Lemken, D.Chem.Ing.Tech.2003,75,68.

    (13) Gritsch,A.;Kolios,G.;Eigenberger,G.Chem.Ing.Tech.2004, 76,722.

    (14) Pinkerton,B.;Luss,D.Ind.Eng.Chem.Res.2007,46,1898.

    (15) Marwaha,B.;Annamalai,J.;Luss,D.Chem.Eng.Sci.2001,56, 89.

    (16) Li,S.F.Chemistry and Catalytic Reaction Engineering; Chemical Industry Press:Beijing,1986;pp 199-202. [李紹芬.化學(xué)與催化反應(yīng)工程.北京:化學(xué)工業(yè)出版社,1986: 199-202.]

    (17) Zhu,L.J.;Frens,G.J.Phys.Chem.B 2006,110,18307.

    (18) Haruta,M.;Yamada,N.;Kobayash,T.;Iijima,S.J.Catal.1989, 115,301.

    (19)Visco,A.M.;Neri,F.;Neri,G.;Donato,A.;Milone,C.; Galvagno,S.Phys.Chem.Chem.Phys.1999,1,2869.

    (20) Li,B.T.;Maruyama,K.J.;Nurunnabi,M.;Kunimori,K.; Tomishige,K.Ind.Eng.Chem.Res.2005,44,485.

    (21) Graciani,J.;Oviedo,J.;Sanz,J.F.J.Phys.Chem.B 2006,110, 11600.

    (22) Mavrikakis,M.;Hammer,B.;N?rskov,J.K.Phys.Rev.Lett. 1998,81,2819.

    (23) Morisset,S.;Aguillon,F.;Sizun,M.;Sidis,V.J.Chem.Phys. 2005,122,194702.

    (24)Tripathy,A.K.;Kamble,V.S.;Gupta,N.M.J.Catal.1999, 187,332.

    (25) Reed,T.B.Free Energy Formation of Binary Compounds;MIT Press:Cambridge,1971.

    (26) Kotobuki,M.;Watanabe,A.;Uchida,H.;Yamashita,H.; Watanabe,M.J.Catal.2005,236,262.

    猜你喜歡
    林種濱州物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    山東濱州沃華生物工程有限公司
    飛閱濱州
    金橋(2020年11期)2020-12-14 07:52:50
    魯?shù)檎鸷罅謽I(yè)生態(tài)恢復(fù)對策探究
    海倫市雙河林場森林資源現(xiàn)狀及特點
    Chemical Concepts from Density Functional Theory
    淺析農(nóng)田防護林的功效
    因戶制宜 一戶一策 濱州結(jié)對幫扶注重“造血”
    工會信息(2016年1期)2016-04-16 02:38:45
    安陸市樹種資源現(xiàn)狀及其利用
    av卡一久久| 在线播放无遮挡| 国产成人精品福利久久| 深夜a级毛片| 91久久精品国产一区二区三区| 亚洲国产最新在线播放| 内地一区二区视频在线| 十八禁网站网址无遮挡 | 亚洲一级一片aⅴ在线观看| 91精品国产国语对白视频| 成年免费大片在线观看| 在线精品无人区一区二区三 | 啦啦啦啦在线视频资源| 免费看光身美女| 日韩一本色道免费dvd| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 高清av免费在线| 一区二区三区乱码不卡18| 晚上一个人看的免费电影| 欧美成人午夜免费资源| 伊人久久国产一区二区| 国产日韩欧美亚洲二区| 一级爰片在线观看| 尾随美女入室| 欧美最新免费一区二区三区| 男女边摸边吃奶| 国产亚洲91精品色在线| 久久久久精品性色| 欧美97在线视频| 精品熟女少妇av免费看| 日本猛色少妇xxxxx猛交久久| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久免费av| 亚洲av.av天堂| 国产精品一区二区在线不卡| 美女xxoo啪啪120秒动态图| 97热精品久久久久久| 欧美极品一区二区三区四区| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 欧美日韩视频高清一区二区三区二| 韩国av在线不卡| 少妇的逼水好多| 22中文网久久字幕| 久久久久人妻精品一区果冻| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 男女边摸边吃奶| 国产精品欧美亚洲77777| 人妻少妇偷人精品九色| 亚洲国产精品999| 蜜臀久久99精品久久宅男| 国产亚洲最大av| 狂野欧美激情性bbbbbb| 国产成人午夜福利电影在线观看| 欧美亚洲 丝袜 人妻 在线| 精品一区在线观看国产| 国产精品久久久久久精品古装| 亚洲国产精品999| 亚洲美女黄色视频免费看| 欧美日韩视频高清一区二区三区二| 性色av一级| 人妻一区二区av| 国产午夜精品久久久久久一区二区三区| 国产视频首页在线观看| 香蕉精品网在线| 伊人久久精品亚洲午夜| 亚洲国产精品专区欧美| 在现免费观看毛片| 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 有码 亚洲区| 狂野欧美激情性bbbbbb| www.av在线官网国产| 精品国产三级普通话版| 国产精品久久久久成人av| 少妇精品久久久久久久| 日韩人妻高清精品专区| 日本av手机在线免费观看| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| 一级黄片播放器| 人妻一区二区av| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 久久久久久久国产电影| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 国产片特级美女逼逼视频| 日韩电影二区| 久久热精品热| 91在线精品国自产拍蜜月| 国产91av在线免费观看| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 韩国av在线不卡| 亚洲久久久国产精品| 五月伊人婷婷丁香| 一区二区三区免费毛片| 精品久久久噜噜| 午夜福利高清视频| 久久久久久久精品精品| av黄色大香蕉| 久久久亚洲精品成人影院| 舔av片在线| 久久精品久久久久久久性| 黄色配什么色好看| 97超视频在线观看视频| 久久久国产一区二区| av不卡在线播放| av专区在线播放| 婷婷色麻豆天堂久久| 综合色丁香网| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 午夜免费鲁丝| 国产亚洲av片在线观看秒播厂| 日韩欧美 国产精品| 黑人猛操日本美女一级片| 狂野欧美白嫩少妇大欣赏| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 直男gayav资源| 免费观看在线日韩| 久久综合国产亚洲精品| videos熟女内射| 午夜福利在线观看免费完整高清在| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 亚洲最大成人中文| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩另类电影网站 | 久久久久久伊人网av| 久久久色成人| 日韩国内少妇激情av| 99久久精品热视频| 国产成人aa在线观看| 久久久久久久久久成人| 亚州av有码| 最近的中文字幕免费完整| 国产伦在线观看视频一区| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 免费人成在线观看视频色| 国产精品成人在线| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 国产伦精品一区二区三区视频9| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 五月伊人婷婷丁香| 简卡轻食公司| 黄色日韩在线| 欧美国产精品一级二级三级 | 岛国毛片在线播放| 大片电影免费在线观看免费| 久久久久久久国产电影| 亚洲精品自拍成人| 一区二区三区四区激情视频| 国产欧美日韩精品一区二区| 少妇人妻 视频| 2021少妇久久久久久久久久久| 人人妻人人看人人澡| 日韩中字成人| 久久久久网色| 伊人久久精品亚洲午夜| 夫妻午夜视频| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 国产av国产精品国产| 高清在线视频一区二区三区| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 99久久精品一区二区三区| av在线观看视频网站免费| 美女福利国产在线 | 亚洲伊人久久精品综合| 午夜激情福利司机影院| 三级经典国产精品| 偷拍熟女少妇极品色| av在线app专区| 中文字幕av成人在线电影| 国产高清有码在线观看视频| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 免费看日本二区| 亚洲国产高清在线一区二区三| 激情 狠狠 欧美| 久久久久久久久久久丰满| 亚洲av欧美aⅴ国产| 一区二区三区四区激情视频| 18+在线观看网站| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 国产精品久久久久久av不卡| 人妻一区二区av| 中国三级夫妇交换| 亚洲人成网站在线播| 交换朋友夫妻互换小说| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 成人无遮挡网站| 18+在线观看网站| 久久久久久久久大av| 99热全是精品| 欧美xxⅹ黑人| 亚洲,一卡二卡三卡| 观看免费一级毛片| 亚洲欧美精品专区久久| 国产成人aa在线观看| 久久久久久久久久久免费av| 视频中文字幕在线观看| 国产日韩欧美在线精品| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| 精品少妇黑人巨大在线播放| 免费av中文字幕在线| 国产深夜福利视频在线观看| 亚洲美女黄色视频免费看| 毛片女人毛片| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| av不卡在线播放| 人妻制服诱惑在线中文字幕| 久久影院123| videos熟女内射| 亚洲av中文av极速乱| 丰满迷人的少妇在线观看| 国产一级毛片在线| 国产精品.久久久| 免费av中文字幕在线| 又爽又黄a免费视频| av在线观看视频网站免费| 大香蕉97超碰在线| 99国产精品免费福利视频| 亚洲自偷自拍三级| 97在线人人人人妻| 欧美精品一区二区免费开放| 99热6这里只有精品| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 在线观看人妻少妇| 精品一区二区免费观看| 成年av动漫网址| 蜜臀久久99精品久久宅男| 大香蕉97超碰在线| 国产熟女欧美一区二区| 高清不卡的av网站| 免费看光身美女| 久久久精品94久久精品| 成人综合一区亚洲| 最近最新中文字幕免费大全7| 亚洲精品中文字幕在线视频 | 亚洲天堂av无毛| 欧美精品亚洲一区二区| 国产伦精品一区二区三区四那| 国产成人91sexporn| 性色av一级| 欧美精品一区二区大全| 高清欧美精品videossex| 岛国毛片在线播放| 91在线精品国自产拍蜜月| av视频免费观看在线观看| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 欧美xxⅹ黑人| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 久久青草综合色| 久久毛片免费看一区二区三区| 亚洲精品色激情综合| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 97在线视频观看| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区| 久久久亚洲精品成人影院| 亚洲四区av| 国产男女超爽视频在线观看| av国产精品久久久久影院| kizo精华| 久久影院123| 秋霞伦理黄片| 精品久久国产蜜桃| 秋霞伦理黄片| 多毛熟女@视频| 亚洲第一av免费看| 亚洲自偷自拍三级| 精品亚洲乱码少妇综合久久| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 少妇人妻一区二区三区视频| 天堂俺去俺来也www色官网| av网站免费在线观看视频| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 99国产精品免费福利视频| 国产精品爽爽va在线观看网站| 成人一区二区视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 九九爱精品视频在线观看| 国产 一区精品| 一级黄片播放器| 22中文网久久字幕| 51国产日韩欧美| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 免费看光身美女| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 中国国产av一级| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 国产又色又爽无遮挡免| 精品久久国产蜜桃| 赤兔流量卡办理| 国产精品欧美亚洲77777| 成年女人在线观看亚洲视频| 夫妻午夜视频| 国产精品人妻久久久久久| 免费av中文字幕在线| 久久婷婷青草| 激情五月婷婷亚洲| 日韩在线高清观看一区二区三区| 深爱激情五月婷婷| 熟女av电影| 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 全区人妻精品视频| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 国产精品熟女久久久久浪| 亚洲国产高清在线一区二区三| 一本久久精品| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 永久网站在线| 国产人妻一区二区三区在| 国产高潮美女av| 老司机影院成人| 成人毛片60女人毛片免费| 久久久久精品性色| 午夜福利在线在线| 男人狂女人下面高潮的视频| 又大又黄又爽视频免费| 涩涩av久久男人的天堂| 亚洲精品色激情综合| 免费少妇av软件| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 少妇的逼水好多| 国产精品一区二区在线不卡| 日韩国内少妇激情av| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 高清午夜精品一区二区三区| 亚洲精品日本国产第一区| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 午夜福利在线在线| 香蕉精品网在线| 日韩精品有码人妻一区| 蜜桃久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 国产高清不卡午夜福利| 在现免费观看毛片| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的 | 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 日韩三级伦理在线观看| 99久久精品一区二区三区| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲色图综合在线观看| 美女脱内裤让男人舔精品视频| 99久久精品国产国产毛片| 亚洲欧美一区二区三区黑人 | 国产精品国产av在线观看| 伦理电影免费视频| 国产一区二区三区综合在线观看 | 欧美精品人与动牲交sv欧美| 麻豆乱淫一区二区| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 日本欧美视频一区| 伦理电影免费视频| 黄色配什么色好看| 亚洲va在线va天堂va国产| 天堂中文最新版在线下载| 黄色视频在线播放观看不卡| 国产精品成人在线| av线在线观看网站| 中文精品一卡2卡3卡4更新| av视频免费观看在线观看| 久久人人爽av亚洲精品天堂 | 国产精品嫩草影院av在线观看| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| av免费观看日本| 国产在线一区二区三区精| 免费不卡的大黄色大毛片视频在线观看| 精品视频人人做人人爽| 99九九线精品视频在线观看视频| 色综合色国产| 亚洲欧美清纯卡通| 男人舔奶头视频| 婷婷色av中文字幕| 亚洲国产精品专区欧美| 国产欧美日韩精品一区二区| 人人妻人人添人人爽欧美一区卜 | 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 在线亚洲精品国产二区图片欧美 | 在线观看一区二区三区| 国产成人a区在线观看| 国国产精品蜜臀av免费| 成人免费观看视频高清| av不卡在线播放| 午夜日本视频在线| 成年av动漫网址| 日韩三级伦理在线观看| 亚洲欧美一区二区三区黑人 | 精品亚洲成国产av| 久久久久久久久大av| 久久精品熟女亚洲av麻豆精品| 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| 好男人视频免费观看在线| 在线看a的网站| 建设人人有责人人尽责人人享有的 | 成人特级av手机在线观看| 十八禁网站网址无遮挡 | 国产一区有黄有色的免费视频| 国产精品免费大片| 99国产精品免费福利视频| videossex国产| 两个人的视频大全免费| 久久久久性生活片| 亚洲欧洲国产日韩| h视频一区二区三区| 一级毛片久久久久久久久女| 人体艺术视频欧美日本| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 中国美白少妇内射xxxbb| av卡一久久| 欧美三级亚洲精品| 色视频www国产| 亚洲怡红院男人天堂| h视频一区二区三区| 嫩草影院新地址| 免费观看av网站的网址| 成年免费大片在线观看| 日本vs欧美在线观看视频 | 亚洲精品自拍成人| 高清毛片免费看| 一边亲一边摸免费视频| 人妻制服诱惑在线中文字幕| 国产精品嫩草影院av在线观看| 在线观看免费日韩欧美大片 | 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91 | 日本午夜av视频| 最近最新中文字幕大全电影3| 国产视频首页在线观看| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 男女下面进入的视频免费午夜| 欧美97在线视频| 精品少妇久久久久久888优播| 你懂的网址亚洲精品在线观看| 少妇熟女欧美另类| 久久久久久伊人网av| 少妇的逼水好多| 天天躁日日操中文字幕| 久久久久久九九精品二区国产| 国产v大片淫在线免费观看| 国产精品人妻久久久影院| 伦精品一区二区三区| 婷婷色综合www| 国产精品福利在线免费观看| 一个人免费看片子| 久久人人爽av亚洲精品天堂 | 国产精品国产三级国产专区5o| 久久99热这里只有精品18| 赤兔流量卡办理| 亚洲成人手机| 这个男人来自地球电影免费观看 | 国产精品久久久久久久久免| xxx大片免费视频| 日韩国内少妇激情av| 久久久色成人| 国产一区二区在线观看日韩| 亚洲丝袜综合中文字幕| 91精品伊人久久大香线蕉| 日韩人妻高清精品专区| 国产在线一区二区三区精| 国产精品爽爽va在线观看网站| av福利片在线观看| 三级国产精品片| 国产成人免费观看mmmm| 亚洲性久久影院| 日本欧美国产在线视频| 日韩中字成人| 久久久精品免费免费高清| 大片免费播放器 马上看| 这个男人来自地球电影免费观看 | 久久久久久人妻| 欧美国产精品一级二级三级 | 99久久中文字幕三级久久日本| 尾随美女入室| 2021少妇久久久久久久久久久| 成人黄色视频免费在线看| 欧美一级a爱片免费观看看| av国产精品久久久久影院| av网站免费在线观看视频| 亚洲美女搞黄在线观看| 亚洲精品国产成人久久av| 99精国产麻豆久久婷婷| 国产亚洲一区二区精品| 亚洲精品色激情综合| 国产在线视频一区二区| 乱系列少妇在线播放| 日本wwww免费看| 中文资源天堂在线| 亚洲四区av| 少妇丰满av| 人人妻人人看人人澡| 日韩免费高清中文字幕av| 亚洲欧美日韩无卡精品| 日韩视频在线欧美| 天天躁日日操中文字幕| 只有这里有精品99| 日韩视频在线欧美| 国产精品久久久久久av不卡| 国产精品国产三级专区第一集| 免费黄频网站在线观看国产| 最近中文字幕高清免费大全6| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 深爱激情五月婷婷| 两个人的视频大全免费| 国产在线一区二区三区精| 一级毛片久久久久久久久女| 两个人的视频大全免费| 直男gayav资源| 天堂8中文在线网| 国产免费一级a男人的天堂| 熟妇人妻不卡中文字幕| 国产精品精品国产色婷婷| 男女免费视频国产| 国产久久久一区二区三区| 亚洲精品成人av观看孕妇| 日韩中字成人| 国产精品人妻久久久久久| av不卡在线播放| 精品国产三级普通话版| 中文资源天堂在线| 国产淫片久久久久久久久| 亚洲国产av新网站| 国产成人一区二区在线| a 毛片基地| 色吧在线观看| 久久鲁丝午夜福利片| 国产中年淑女户外野战色| 亚洲一级一片aⅴ在线观看| 国产成人精品福利久久| 麻豆乱淫一区二区| 午夜激情久久久久久久| 免费av不卡在线播放| 欧美3d第一页| 欧美另类一区|