• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    控制CO選擇氧化反應(yīng)中金催化劑熱點形成的新方法

    2012-12-12 02:42:56王彩紅李大枝
    物理化學(xué)學(xué)報 2012年6期
    關(guān)鍵詞:林種濱州物理化學(xué)

    王 芳 王彩紅 李大枝

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    1 Introduction

    Au supported catalysts have been applied widely on CO oxidation in the absence and presence of H2owing to their attractive catalytic properties.1-8Although factors that affect the performance of these catalysts,such as the Au particle size,the support,and the preparation method,have been studied extensively,studies focused on investigating formation of hot-spot in the process of CO oxidation reaction are relative scarce.9On one hand,a hot region can have a deleterious impact on the reactor performance and may deactivate the catalyst.Moreover, it may lead to severe safety problems by either initiating highly exothermic reactions,or by decreasing the material strength of the reactor wall.Base on the fact that CO and H2oxidations are highly exothermic reactions and the hydrogen oxidation being favored by higher temperautres,an effectively control of temperauture is an essential measure to ensure high CO2selectivity.In general,the appropriate temperature can be obtained by changing the structure of reactors.10-14Several design configurations have been proposed to carry out this process.Although multistaged reactors are able to handle this highly exothermic reaction system with acceptable selectivity,they have the disadvantage of requiring complex hardware to control temperatures,using staged air injections along the catalyst bed.In this paper,we mainly focus on the preparation of supported Au catalysts modified by the deposition-precipitation method.We can find that a FeOxmodified Au/Al2O3catalyst is highly efficient catalyst for CO oxidation in the presence and absence of H2. The temperature increase of catalyst bed can be effectively inhibited by addition of appropriate dopant and optimizing catalyst structure,which results in different product distribution.

    2 Experimental

    2.1 Catalyst preparation

    TheAl2O3-MOx(M=Fe and Zn)composite supports were prepared by the incipient-wetness impregnation method.First,the MOxprecursor of M(NO3)2(≥99.0%)were dissolved in 20 mL distilled water and mixed with calculated amount of γ-Al2O3powder(129 m2·g-1,30-45 mesh).The slurry thus prepared was taken into dryness by continuous stirring and heating (60-70°C).Then,the sample was dried at 120°C overnight, and was subsequently calcined in air at 600°C for 4 h.The goldcontaining catalysts were prepared by the deposition-precipitation method.The adequate amount of HAuCl4·3H2O(Alfa,≥99.99%)was dissolved in 150 mL of deionized water and the pH of the solution was adjusted to 8.0-9.0 by addition of 0.1 mol·L-1NaOH(≥85.0%).The solution was heated to 80°C and then the support was added and kept under continuous stirring for 2 h.The samples obtained were washed several times with deionized water(until the disappearance of Cl-and Na+ions),then dried overnight at 120°C.Fractions from the solids were finally calcined at 300°C for 3 h.The theoretical loading amount of Au is 1.0%(w,mass fraction)and that of MOxis 10%(w).

    2.2 Characterizations of catalysts

    Before each measurement,the samples were purged with dry air at 300°C for 1 h.Chemical states of Au nanoparticles on the catalysts surface were investigated by X-ray photoelectron spectroscopy(XPS)on a VG ESCALAB 210 Electron Spectrometer(Mg Karadiation;hv=1253.6 eV).XPS data were calibrated using the binding energy of C 1s(285.0 eV)as the standard.The transmission electron microscopy(TEM)images were obtained on a transmission electron microscope (JEM1200-EX,JEOL)with an accelerating voltage of 80 kV.A drop of the solution containing Au nanoparticles was put onto a carbon-supported copper mesh,which was dried at room temperature.High-resolution transmission electron microscopy (HRTEM)images were obtained on a transmission electron microscope(JEM2010,JEOL)with an accelerating voltage of 200 kV.The specific surface area of the catalyst was measured by the Brunauer-Emmett-Teller(BET)method on a Micromeritics ASAP-2010 apparatus at liquid nitrogen temperature with N2as the absorbent at 77 K.

    2.3 Activity measurement

    Catalytic test was carried out at atmospheric pressure in a fixed bed continuous flow quartz reactor(inner diameter,i.d.8 mm),consisting of a flow controller unit,a reactor unit,and an analysis unit.Typically,100 mg of the catalyst was used in each run.The total flow rate of the feed gas was 60 mL·min-1(gas hourly space velocity(GHSV)=36000 h-1).The feed gas consisted of 5%-20%(φ,volume fraction)of CO and 20%(φ) O2in N2balance.In the process of PROX,a gas mixture containing 55%-25%(φ)H2,2%-5%(φ)CO,and 1%-2%(φ)O2in N2was fed at the flow rate of 30 mL·min-1.Argon was used as the carrier gas and nitrogen was used as the internal standard for gas analysis.The gas phase effluents were analyzed on-line chromatographs equipped with thermal conductivity detector(TCD).At the end of the catalytic tests,the catalyst was cooled under an N2stream and stored for characterizations. The catalytic activities were defined in terms of conversion of CO(ηCO),conversion of O2(ηO2),and selectivity to CO2(S),and were calculated according to the corresponding equations:

    where[CO]inor[O2]inis intake concentration,[CO]outor[O2]outis outtake concentration,[CO2]is production CO2concentration.

    3 Results and discussion

    3.1 Activity tests

    Traditionally,the temperature of catalyst bed measured by thermocouple,as shown in Fig.1(a),could be considered as the reaction temperature.Obviously,it is inaccurate because of external and internal heat transfer hysteresis.We modified the temperature measure system as shown in Fig.1(b),here,thin layer catalyst particles were sandwiched between two inactive quartz sands in tube reactor,the reaction tube was embedded in an adiabatic reactor.In this case,catalyst bed temperature can be obtained directly by thermocouple and its increase completely derives from the exothermic reactions.Although it is difficult to determine the catalyst bed absolutely because it is much dependent on the size,we think it is possible to obtain a relative tendency of the bed temperature behavior qualitatively.

    Fig.1 Schematic representation of different reactors

    The catalytic activities for CO oxidation in the presence and absence of H2on the original and MOx(M=Fe,Zn)doped Au/ Al2O3catalysts were investigated at ambient temperature.All catalysts exhibited attractive performances for CO oxidation in the absence of H2.CO could be eliminated even when its concentration increased to 20%.However,no measurable activity could be found over Au/Al2O3when H2was introduced in reaction stream.The stabilities of both catalysts dopanted by MOxwere tested in the reaction of CO selective oxidation in the presence of H2and the results were shown in Fig.2.CO could be converted completely and the CO2selectivities over Au/ FeOx-Al2O3and Au/ZnO-Al2O3were 95%and 92%,respectively,even after 100 h.In addition,effects of the volume ratio of O2/CO on CO conversion and CO2selectivity for PROX over Au/FeOx-Al2O3were also measured as shown in Fig.3.It can be found that CO conversion can be stabilized at 100%when the volume ratio of O2/CO increased from 0.5 to 1.0,however, the CO2selectivity decreased from 95%to 50%.

    Fig.2 Stability test of theAu/MOx-Al2O3(M=Fe,Zn) catalysts for CO selective oxidation in the presence of H2

    Fig.3 Effects of the volume ratio of O2/CO on CO conversion and CO2selectivity for PROX overAu/FeOx-Al2O3

    Based on their attractive catalytic performances,the surface temperatures over various Au catalysts were studied in CO oxidation reaction as shown in Fig.4.All catalyst surface temperatures were enhanced significantly by increasing CO concentration in the reaction stream,owing to reaction exotherm increase.The maximum temperature obtained from Au/Al2O3was 160°C when CO concentration was raised to 20%,whereas the corresponding temperature on the FeOxdoped catalyst was just 55°C.It is interesting to note that the Au/Al2O3catalyst surface temperature could be decreased dramatically by FeOxaddition,especially in higher CO concentration.However,their surface temperatures were enhanced obviously by ZnO addition,a maximum temperature of 170°C could be obtained.The surface temperatures over different Au catalysts in CO selective oxidation in the presence of H2for PROX reaction were also shown in Fig.5.Marwaha et al.15reported that heat generation and heat removal significantly determined the change of product distribution depending on the contact.In order to eliminate effect of contact time,the catalyst surface temperatures were studied in the same space velocity.No detectable temperature changes could be found on the Au/Al2O3catalyst surface because of its low catalytic activity for PROX reaction.However,the surface temperatures on both MOxmodified catalysts could be increased in a certain extent by raising H2concentration in the reaction stream.For the Au/FeOx-Al2O3catalyst,a maximum temperature of 55°C was obtained when CO and H2concentrations were 2.5%and 50%,respectively. However,the surface temperature of the Au/ZnO-Al2O3catalyst could achieve 105°C,and the high temperature resulted in decrease of the corresponding CO2selectivity.The surface temperature transformation of FeOxmodified catalyst was less than 5°C when H2concentrations were increased from 40%to 55%,while CO concentrations were decreased from 4%to 2.5%.These results proved further that the Au/FeOx-Al2O3catalyst is an appropriate candidate for CO oxidation in the absence and presence of H2.Furthermore,the surface temperatures were much dependent on the volume ratio of O2/CO, which might due to that higher ratios were beneficial to the oxidation of hydrogen as shown in Fig.3.

    Fig.4 Catalyst surface temperatures in CO oxidation reaction

    Fig.5 Catalyst surface temperatures in PROX reaction

    Five main reactions involved in a PROX reactor include:

    In order to reduce the complexity,only the reactions with significant rates were considered(CO and H2oxidation).The catalyst surface temperature in the adiabatic reactor can be calculated according to the equations16below:

    where Tsis catalyst surface temperature,Tgis reaction mixedgas temperature,asis coefficient of heat transfer,amis effective external surface area of catalyst bed per quality unit,and ΔHris exotherm from CO and H2oxidation reactions.Cpis heat capacity of the reaction mixture under constant pressure,and jHis heat transfer factor,while kAand G are reaction rate and mass rate of the reaction mixed-gas.In this case,we consider that the influence of αsand ΔHron Au catalysts surface temperature can be negligeable.It is,however,Tsrather than Tgcontrols the reaction rate kAand also the selectivity of a heterogeneous catalytic process through the Arrhenius equation(K=Aexp(-Ea/ RTs)).17The exponential in Arrhenius?expression for a rate constant has,in fact,not one but two variables,Eaand Ts,which could vary with the imposed experimental conditions and the resulting reaction rates.The traditional interpretation is that the activation energy Eacan be calculated from Tsand the corresponding reaction rates or rate constants.Thus,kAand amare the factors that can affect the catalyst surface temperature.

    3.2 Characterization of catalyst

    In order to investigate the relationship between various catalyst structures and their surface temperature,a series of characterizations were carried out on various Au catalysts.XPS spectra of Au 4f over the original and MOxdoped Au/Al2O3catalysts are shown in Fig.6.The line shape and width of Au 4f over the original Au/Al2O3catalyst matched well with those of the metallic Au,indicating that zerovalence gold was the active center for CO oxidation at low-temperature.By comparison, the Au 4f features obtained from MOxmodified Au/Al2O3were quite broad,both zerovalence and cationic gold could be found,which wereconsistent with the Au/Fe2O3catalyst reportedpreviously.18In addition,we can find that the AuIII/Au0molar ratio was 53%over Au/ZnO-Al2O3,while that increased to 74%over Au/FeOx-Al2O3catalyst.The result indicated that the valent state of gold particles on the catalyst surface could be changed by MOxaddition.It is already well proven that both AuIIIand Au0species are active for CO oxidation.19Once the catalyst is exposed to a CO/O2mixture,the AuIII/Au0molar ratio decreases and after a sufficiently long exposure only metallic gold is left.This result proves that the lattice oxygen of cationic gold does participate in the reaction of CO oxidation. However,it is should be noted that the decline in activity was not observed when high CO flow rates were employed even for 100 h.The XPS result from Au/FeOx-Al2O3catalyst showed that no AuIII/Au0ratio decline could be found.We consider that cationic gold species does not participate in CO oxidation at low temperature,which maybe play an important role at higher temperature.In other words,the decline in activity caused by the decrease of AuIII/Au0molar ratios can be inhibitted by controlling the hot spot temperature.

    Fig.6 XPS speatra of Au 4f on various catalysts(a)Au/Al2O3,(b)Au/ZnO-Al2O3,(c)Au/FeOx-Al2O3

    TEM and HRTEM images from different supported Au catalysts are shown in Fig.7 and Fig.8.The Au nanoparticles on all catalysts had a uniform size around 5 nm and were well dispersed and embedded in mesostructured support matrix.The fringes in Fig.8(a)gave a d-spacing of 0.24 nm,corresponding to the(111)atomic planes of gold lattice.This result shows that the catalysts surface temperature difference can not be attributed to the active component particle size,which is distinguished from NiO/Al2O3catalyst reported previously.20Both polycrystal and single crystal of gold particles coexisted over Au/FeOx-Al2O3,the degree of crystallinity was much lower than that on the Au/Al2O3catalyst.Furthmore,the Au lattice on Au/FeOx-Al2O3preferred to become strongly distorted so as to adopt the lattice dimensions of the mixed-oxide support,which is similar to Au nanoparticles supported on TiO2.21These results indicated that there was a strong interaction between Au and FeOx.Density functional theory(DFT)calculations have shown that lattice strain may enhance surface reactivity.22It has been suggested to explain the unusually high low-temperature CO oxidation activity of small Au particles.In addition,the pore structure parameters of all catalysts from the N2adsorption-desorption isotherms are given in Table 1.The surface area,pore volume,and average pore size of the Au/Al2O3catalyst are 185.0 m2·g-1,0.43 cm3·g-1,and 8.8 nm,respectively.The surface area and average pore size were decreased slightly by ZnO addition.However,it is interesting to note that the surface area of Au/FeOx-Al2O3is smaller than that of the Au/Al2O3catalyst,whereas its average pore size is obviously larger,which maybe due to that FeOxinhibitted part small pores ofAl2O3.

    Fig.7 TEM images of different catalysts(a)Au/Al2O3;(b)Au/FeOx-Al2O3;(c)Au/ZnO-Al2O3

    Fig.8 HRTEM images of various catalysts(a)Au/Al2O3,(b)Au/FeOx-Al2O3;Inset in Fig.8 shows the corresponding selected area electron diffraction pattern.

    Based on the foregoing observations and discussions,we can summarize schematically the adsorption of CO,O2,and/or H2on both catalysts.The difference of the catalyst surface temeratures might mainly due to various active centers,which can result in different reaction mechanisms.With respect to the Au/ Al2O3catalyst,support Al2O3usually can be regarded as chemical inert for CO oxidation.The role of the support material is limited to the stablization of very small gold particles.Thus, oxygen adsorption and dissociation must be possible on the metallic Au nanoparticles.In this case,the activity seems to de-pend very critically on the diameter of the gold particles and only extremely small particles cause highly active samples.No PROX reaction occurs because the active sites are fully covered with H2or CO strongly adsorbed on the Au/Al2O3catalyst due to blocked access of O2to the reaction sites.This strongly indicates that a dissociative adsorption of O2and the following surface reaction with preadsorbed CO are essential for PROX reaction,similarto Langmuir-Hinshelwood mechanism.23While for the Au/FeOx-Al2O3catalyst,on one hand,CO oxidation reaction can occur at the interface between Au and FeOx, just as the Au/Fe2O3catalyst.24Moreover,the addition of FeOxcan enhance the oxygen vacancy,which is in favor of the adsorption of CO and active oxygen species.Therefore,the Au/ FeOx-Al2O3catalyst is very effective for the inhibition of the hot spot formation in CO oxidation reaction,mainly due to the low oxygen affinity of Au,25which results from FeOxmodification.Furthermore,the low temperature of hot spot may be also related to the enhancement of effective external surface area of catalyst bed per quality unit.Herein,we think that there maybe a so-called bi-founctional mechanism existed over the Au/ FeOx-Al2O3catalyst in PROX reaction,just as the Pt-Fe/mordenite catalysts reported previously.26Where Au sites are available for the adsorption of CO as well as H2,and the FeOxsite acts as an O2dissociative-adsoption site.CO adsorbed on a Au site and O2adsorbed on an Fe site react immediately at low temperature once both reactants sit on such neighboring site. The mechanism could not only well explain the excellent catalytic performance of the Au/FeOx-Al2O3catalyst,but also might be responsible for the surface temperature difference between FeOxand ZnO modified catalysts.

    Table 1 Textural properties of different catalysts obtained by N2adsorption

    4 Conclusions

    In summary,the Au/MOx-Al2O3(M=Zn,Fe)catalysts with high CO oxidation catalytic perfomances in the absence and presence of H2have been synthesized successfully.The temperature increase of catalyst bed can be effectively inhibited by addition of appropriate dopant and optimizing catalyst structure, which results in different product distribution.Reaction path of CO oxidation over alumina supported gold catalyst can be well controlled by the addition of FeOxthrough regulating the oxidation state of Au species.The result opens an alternative line in the investigations on better and more selective catalyst materials.

    (1)Yu,J.;Wu,G.S.;Mao,D.S.;Lu,G.Z.Acta Phys.-Chim.Sin. 2008,24,1751.[俞 俊,吳貴升,毛東森,盧冠忠.物理化學(xué)學(xué)報,2008,24,1751.]

    (2)Wen,L.;Lin,Z.Y.;Zhou,J.Z.;Gu,P.Y.;Fu,J.K.;Lin,Z.H. Acta Phys.-Chim.Sin.2008,24,581.[文 莉,林種玉,周劍章,古萍英,傅錦坤,林仲華.物理化學(xué)學(xué)報,2008,24,581.]

    (3)Ye,Q.;Huo,F.F.;Yan,L.N.;Wang,J.;Cheng,S.Y.;Kang,T. F.Acta Phys.-Chim.Sin.2011,27,2872.[葉 青,霍飛飛,閆立娜,王 娟,程水源,康天放.物理化學(xué)學(xué)報,2011,27,2872.]

    (4)Wang,S.R.;Wu,S.H.;Shi,J.;Zheng,X.C.;Huang,W.P.Acta Phys.-Chim.Sin.2004,20,428.[王淑榮,吳世華,石 娟,鄭修成,黃唯平.物理化學(xué)學(xué)報,2004,20,428.]

    (5) Liu,Y.L.;You,C.R.;Li,Y.;He,T.;Zhang,X.Q.;Suo,Z.H. Acta Phys.-Chim.Sin.2010,26,2455.[劉玉良,由翠榮,李楊,何 濤,張香芹,索掌懷.物理化學(xué)學(xué)報,2010,26,2455.]

    (6) Xu,C.X.;Su,J.X.;Xu,J.H.;Liu,P.P.;Zhao,H.J.;Tian,F.; Ding,Y.J.Am.Chem.Soc.2007,129,42.

    (7) Wang,F.;Lu,G.X.Catal.Lett.2007,115,46.

    (8) Panzera,G.;Modafferi,V.;Candamano,S.;Donato,A.; Frusteri,F.;Antonucci,P.L.J.Power Sources 2004,135,177.

    (9) Zhang,M.H.;Hong,Y.;Ding,S.J.;Hu,J.J.;Fan,Y.X.; Voevodin,A.A.;Su,M.Nanoscale 2010,2,2790.

    (10) Kahlich,M.;Gasteiger,H.;Behm,R.J.New Mater. Electrochem.Syst.1998,1,39.

    (11) Echigo,M.;Tabata,T.Catal.Today 2004,90,269.

    (12) Morillo,A.;Merten,C.;Eigenberger,G.;Hermann,I.;Lemken, D.Chem.Ing.Tech.2003,75,68.

    (13) Gritsch,A.;Kolios,G.;Eigenberger,G.Chem.Ing.Tech.2004, 76,722.

    (14) Pinkerton,B.;Luss,D.Ind.Eng.Chem.Res.2007,46,1898.

    (15) Marwaha,B.;Annamalai,J.;Luss,D.Chem.Eng.Sci.2001,56, 89.

    (16) Li,S.F.Chemistry and Catalytic Reaction Engineering; Chemical Industry Press:Beijing,1986;pp 199-202. [李紹芬.化學(xué)與催化反應(yīng)工程.北京:化學(xué)工業(yè)出版社,1986: 199-202.]

    (17) Zhu,L.J.;Frens,G.J.Phys.Chem.B 2006,110,18307.

    (18) Haruta,M.;Yamada,N.;Kobayash,T.;Iijima,S.J.Catal.1989, 115,301.

    (19)Visco,A.M.;Neri,F.;Neri,G.;Donato,A.;Milone,C.; Galvagno,S.Phys.Chem.Chem.Phys.1999,1,2869.

    (20) Li,B.T.;Maruyama,K.J.;Nurunnabi,M.;Kunimori,K.; Tomishige,K.Ind.Eng.Chem.Res.2005,44,485.

    (21) Graciani,J.;Oviedo,J.;Sanz,J.F.J.Phys.Chem.B 2006,110, 11600.

    (22) Mavrikakis,M.;Hammer,B.;N?rskov,J.K.Phys.Rev.Lett. 1998,81,2819.

    (23) Morisset,S.;Aguillon,F.;Sizun,M.;Sidis,V.J.Chem.Phys. 2005,122,194702.

    (24)Tripathy,A.K.;Kamble,V.S.;Gupta,N.M.J.Catal.1999, 187,332.

    (25) Reed,T.B.Free Energy Formation of Binary Compounds;MIT Press:Cambridge,1971.

    (26) Kotobuki,M.;Watanabe,A.;Uchida,H.;Yamashita,H.; Watanabe,M.J.Catal.2005,236,262.

    猜你喜歡
    林種濱州物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    山東濱州沃華生物工程有限公司
    飛閱濱州
    金橋(2020年11期)2020-12-14 07:52:50
    魯?shù)檎鸷罅謽I(yè)生態(tài)恢復(fù)對策探究
    海倫市雙河林場森林資源現(xiàn)狀及特點
    Chemical Concepts from Density Functional Theory
    淺析農(nóng)田防護林的功效
    因戶制宜 一戶一策 濱州結(jié)對幫扶注重“造血”
    工會信息(2016年1期)2016-04-16 02:38:45
    安陸市樹種資源現(xiàn)狀及其利用
    国产麻豆69| 精品一区二区三区av网在线观看| 一级毛片精品| 久久久精品区二区三区| 国产91精品成人一区二区三区| 一夜夜www| 制服诱惑二区| 黄色怎么调成土黄色| 精品少妇一区二区三区视频日本电影| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 亚洲人成伊人成综合网2020| 99国产精品99久久久久| 国产精品综合久久久久久久免费 | 精品国产乱子伦一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| 中文字幕人妻丝袜制服| 欧美黄色淫秽网站| 亚洲自偷自拍图片 自拍| 老汉色∧v一级毛片| 国产高清激情床上av| 国产伦人伦偷精品视频| 久久草成人影院| 在线国产一区二区在线| 国产高清视频在线播放一区| 久久久久久久午夜电影 | 精品久久久久久久久久免费视频 | 日韩制服丝袜自拍偷拍| 大香蕉久久网| 久久久精品国产亚洲av高清涩受| 91大片在线观看| 在线观看免费高清a一片| 欧美精品亚洲一区二区| 婷婷成人精品国产| 国产精品九九99| 男人操女人黄网站| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 丁香六月欧美| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区久久久樱花| 99久久国产精品久久久| 91九色精品人成在线观看| 91字幕亚洲| 国产精品九九99| 中文字幕人妻熟女乱码| 亚洲av成人一区二区三| 在线视频色国产色| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看 | 欧美性长视频在线观看| 成年动漫av网址| 大型av网站在线播放| 91麻豆av在线| 99国产精品一区二区三区| 国产在线观看jvid| 中国美女看黄片| 久久久久精品国产欧美久久久| 9热在线视频观看99| 国产精品一区二区免费欧美| 午夜激情av网站| 无遮挡黄片免费观看| 国产免费现黄频在线看| 国产成人av教育| 99国产精品99久久久久| 亚洲欧美色中文字幕在线| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 精品福利观看| 午夜福利,免费看| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 视频区欧美日本亚洲| 人人妻人人澡人人看| 成人精品一区二区免费| 亚洲欧美色中文字幕在线| 在线看a的网站| 亚洲综合色网址| a级毛片黄视频| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 国产精品永久免费网站| 999精品在线视频| 五月开心婷婷网| 精品无人区乱码1区二区| 9191精品国产免费久久| 国产真人三级小视频在线观看| 人成视频在线观看免费观看| 丰满迷人的少妇在线观看| 国产成人欧美| 一个人免费在线观看的高清视频| 亚洲综合色网址| 国产精品免费视频内射| 捣出白浆h1v1| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 亚洲美女黄片视频| av网站免费在线观看视频| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 9热在线视频观看99| 久久天堂一区二区三区四区| 日本一区二区免费在线视频| 久久精品亚洲熟妇少妇任你| 亚洲成人国产一区在线观看| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 久久久国产成人免费| 久久青草综合色| 久久人人97超碰香蕉20202| 国产精品自产拍在线观看55亚洲 | 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 看片在线看免费视频| 男女午夜视频在线观看| 午夜福利在线观看吧| 9色porny在线观看| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 欧美大码av| 美女视频免费永久观看网站| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| 日韩免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 免费人成视频x8x8入口观看| xxx96com| 亚洲欧美色中文字幕在线| 日韩人妻精品一区2区三区| 国产在线精品亚洲第一网站| 精品亚洲成国产av| 男人的好看免费观看在线视频 | 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 精品久久久久久久久久免费视频 | 久久精品aⅴ一区二区三区四区| a在线观看视频网站| 人人澡人人妻人| 777久久人妻少妇嫩草av网站| 高清av免费在线| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 一级毛片女人18水好多| netflix在线观看网站| 欧美日韩瑟瑟在线播放| 欧美日韩黄片免| 啦啦啦免费观看视频1| 女人久久www免费人成看片| 中亚洲国语对白在线视频| 久久久久久亚洲精品国产蜜桃av| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 岛国毛片在线播放| 最近最新免费中文字幕在线| 国产成人欧美在线观看 | 精品亚洲成a人片在线观看| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 欧美丝袜亚洲另类 | 夜夜爽天天搞| 日日爽夜夜爽网站| 啦啦啦免费观看视频1| 一区二区三区精品91| 91精品国产国语对白视频| 国产精品久久久av美女十八| 欧美人与性动交α欧美精品济南到| 黑人操中国人逼视频| av在线播放免费不卡| 国产色视频综合| 亚洲av成人一区二区三| 黄色女人牲交| 18禁裸乳无遮挡动漫免费视频| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区 | 精品国产美女av久久久久小说| 亚洲人成电影免费在线| 黄色成人免费大全| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 日本五十路高清| 电影成人av| 欧美大码av| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 国产精品电影一区二区三区 | 精品第一国产精品| 国产在线观看jvid| 美女 人体艺术 gogo| 欧美日韩av久久| 久久香蕉国产精品| 亚洲欧洲精品一区二区精品久久久| 国产高清视频在线播放一区| 在线观看午夜福利视频| 日韩免费高清中文字幕av| 1024香蕉在线观看| 免费不卡黄色视频| 欧美 日韩 精品 国产| 亚洲av第一区精品v没综合| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 日本一区二区免费在线视频| 精品国产亚洲在线| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 色在线成人网| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 天天添夜夜摸| av国产精品久久久久影院| 精品视频人人做人人爽| 最新在线观看一区二区三区| 欧美日韩黄片免| 久久精品国产亚洲av高清一级| 人人澡人人妻人| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 亚洲熟女毛片儿| 免费观看人在逋| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 大码成人一级视频| 乱人伦中国视频| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 亚洲成人国产一区在线观看| 欧美中文综合在线视频| 无遮挡黄片免费观看| 久久久国产成人免费| 国产乱人伦免费视频| 捣出白浆h1v1| 久久国产精品人妻蜜桃| 黄色女人牲交| 777米奇影视久久| 国产高清视频在线播放一区| 两性夫妻黄色片| 女性被躁到高潮视频| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品第一综合不卡| 三级毛片av免费| 少妇 在线观看| 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| a级毛片在线看网站| 欧美乱码精品一区二区三区| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 亚洲精品一二三| 老司机午夜福利在线观看视频| 男人舔女人的私密视频| 国产熟女午夜一区二区三区| 亚洲三区欧美一区| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 中文字幕av电影在线播放| 人妻 亚洲 视频| 亚洲成a人片在线一区二区| 美女视频免费永久观看网站| 国产色视频综合| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 王馨瑶露胸无遮挡在线观看| 国产午夜精品久久久久久| av一本久久久久| 波多野结衣av一区二区av| 久久香蕉激情| 不卡一级毛片| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲熟妇少妇任你| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 亚洲性夜色夜夜综合| 怎么达到女性高潮| 天堂动漫精品| 9色porny在线观看| 精品乱码久久久久久99久播| 国产片内射在线| 亚洲国产毛片av蜜桃av| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 亚洲成a人片在线一区二区| 纯流量卡能插随身wifi吗| 又大又爽又粗| 欧美成人午夜精品| 十八禁人妻一区二区| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 成人精品一区二区免费| 视频区欧美日本亚洲| 黄色怎么调成土黄色| 亚洲精品一二三| 亚洲国产中文字幕在线视频| 99re在线观看精品视频| 精品欧美一区二区三区在线| 国产xxxxx性猛交| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 高清毛片免费观看视频网站 | 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 成人手机av| 亚洲av片天天在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 精品视频人人做人人爽| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色 | 大码成人一级视频| 国产一区在线观看成人免费| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 国产成人免费观看mmmm| 国产野战对白在线观看| aaaaa片日本免费| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 国产野战对白在线观看| 成年女人毛片免费观看观看9 | 69精品国产乱码久久久| 成人av一区二区三区在线看| 69精品国产乱码久久久| 18禁观看日本| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区激情| 777米奇影视久久| 在线观看一区二区三区激情| 校园春色视频在线观看| 久热这里只有精品99| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 国产男女内射视频| 午夜福利一区二区在线看| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 色尼玛亚洲综合影院| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 亚洲七黄色美女视频| 亚洲av片天天在线观看| 日韩欧美免费精品| 又黄又爽又免费观看的视频| 色精品久久人妻99蜜桃| 一二三四在线观看免费中文在| 国产精品 国内视频| 国产精品98久久久久久宅男小说| 天天操日日干夜夜撸| 亚洲国产精品合色在线| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一小说 | 制服诱惑二区| 午夜两性在线视频| 后天国语完整版免费观看| 老汉色∧v一级毛片| 久久香蕉激情| av天堂在线播放| 国产97色在线日韩免费| 亚洲国产看品久久| 国产精品永久免费网站| 人人妻人人爽人人添夜夜欢视频| 人妻丰满熟妇av一区二区三区 | 搡老乐熟女国产| 在线免费观看的www视频| 欧美久久黑人一区二区| 日韩三级视频一区二区三区| 9191精品国产免费久久| 亚洲av日韩在线播放| 欧美激情久久久久久爽电影 | 亚洲精品中文字幕一二三四区| 欧美精品啪啪一区二区三区| 亚洲精华国产精华精| 欧美成人午夜精品| 午夜精品久久久久久毛片777| 午夜视频精品福利| 国产亚洲欧美98| 在线视频色国产色| 欧美国产精品一级二级三级| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 老司机在亚洲福利影院| 超色免费av| 国产无遮挡羞羞视频在线观看| tocl精华| 亚洲伊人色综图| 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| √禁漫天堂资源中文www| 亚洲精品一二三| 夜夜躁狠狠躁天天躁| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区| 国产精华一区二区三区| 日韩免费av在线播放| 99热网站在线观看| 亚洲片人在线观看| 黄片播放在线免费| 露出奶头的视频| 国产亚洲精品一区二区www | 久久久久久免费高清国产稀缺| 亚洲熟女精品中文字幕| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 最新美女视频免费是黄的| 啦啦啦 在线观看视频| 9191精品国产免费久久| 天天操日日干夜夜撸| 久久香蕉精品热| 亚洲一卡2卡3卡4卡5卡精品中文| 日本五十路高清| 亚洲综合色网址| 欧美午夜高清在线| 久久国产亚洲av麻豆专区| 久久中文字幕一级| 一级a爱视频在线免费观看| 亚洲人成电影观看| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 大香蕉久久成人网| av线在线观看网站| 欧美成人免费av一区二区三区 | 精品午夜福利视频在线观看一区| 精品人妻在线不人妻| 我的亚洲天堂| 精品久久久久久久毛片微露脸| 热99国产精品久久久久久7| 国产精品 国内视频| 国产一区二区三区视频了| 国产麻豆69| 午夜福利欧美成人| 黑人欧美特级aaaaaa片| 午夜福利在线免费观看网站| 欧美日韩精品网址| 成年人黄色毛片网站| 99久久人妻综合| 精品欧美一区二区三区在线| 99热只有精品国产| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 亚洲欧美日韩高清在线视频| 日韩欧美免费精品| 午夜两性在线视频| 亚洲欧美激情综合另类| av视频免费观看在线观看| 99精品在免费线老司机午夜| 天堂中文最新版在线下载| 久久香蕉精品热| 黄色片一级片一级黄色片| 精品国产一区二区三区四区第35| 久久热在线av| 老司机影院毛片| 国产精品国产高清国产av | 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 亚洲av日韩精品久久久久久密| 欧美精品啪啪一区二区三区| 国产av又大| 精品亚洲成国产av| 最近最新中文字幕大全电影3 | 亚洲 欧美一区二区三区| 99国产综合亚洲精品| 一级黄色大片毛片| 久久久精品国产亚洲av高清涩受| 国产主播在线观看一区二区| 中文字幕av电影在线播放| 亚洲七黄色美女视频| 热re99久久精品国产66热6| 精品久久久久久电影网| 在线永久观看黄色视频| 男男h啪啪无遮挡| 欧美在线一区亚洲| 黄色 视频免费看| 最新在线观看一区二区三区| 久久中文看片网| 91在线观看av| 久久久久国内视频| 老熟女久久久| 校园春色视频在线观看| 国产欧美亚洲国产| 手机成人av网站| 久久香蕉激情| 成年动漫av网址| 丁香六月欧美| 电影成人av| 亚洲 国产 在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品.久久久| a级毛片黄视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区 | 999精品在线视频| 狂野欧美激情性xxxx| 国产精品二区激情视频| 久久精品亚洲熟妇少妇任你| 成人黄色视频免费在线看| 丁香欧美五月| 脱女人内裤的视频| 亚洲国产精品一区二区三区在线| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 天堂动漫精品| 亚洲一区中文字幕在线| 日韩有码中文字幕| 久久精品熟女亚洲av麻豆精品| 免费在线观看日本一区| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 法律面前人人平等表现在哪些方面| av有码第一页| 黄色成人免费大全| av片东京热男人的天堂| 美女高潮喷水抽搐中文字幕| 免费日韩欧美在线观看| 久久久国产成人免费| av在线播放免费不卡| 国产成人免费无遮挡视频| 日韩人妻精品一区2区三区| 国产深夜福利视频在线观看| 国产高清videossex| 一个人免费在线观看的高清视频| 麻豆乱淫一区二区| 亚洲精品乱久久久久久| 日本黄色日本黄色录像| 美女国产高潮福利片在线看| 国产成人av教育| 久久精品国产清高在天天线| 中文字幕精品免费在线观看视频| 久久九九热精品免费| 亚洲第一av免费看| 久久 成人 亚洲| 1024视频免费在线观看| 精品亚洲成a人片在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| 亚洲专区中文字幕在线| 国产片内射在线| 欧美激情高清一区二区三区| 丝袜在线中文字幕| 亚洲avbb在线观看| 一个人免费在线观看的高清视频| 一区二区三区激情视频| 色综合欧美亚洲国产小说| 视频区欧美日本亚洲| 亚洲熟女毛片儿| 91麻豆av在线| 国产免费现黄频在线看| 天堂俺去俺来也www色官网| 精品高清国产在线一区| 这个男人来自地球电影免费观看| 亚洲国产精品sss在线观看 | www日本在线高清视频| 国产国语露脸激情在线看| 另类亚洲欧美激情| 成人永久免费在线观看视频| 成人黄色视频免费在线看| 国产高清激情床上av| 精品久久久精品久久久| 免费观看a级毛片全部| 午夜福利一区二区在线看| 亚洲一区二区三区不卡视频| 午夜精品久久久久久毛片777| 国产精品久久久人人做人人爽| 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 久热这里只有精品99| 亚洲专区字幕在线| 99热国产这里只有精品6| 精品国产美女av久久久久小说| 超碰成人久久| 国产国语露脸激情在线看| 免费在线观看完整版高清| 欧美不卡视频在线免费观看 | 欧美性长视频在线观看| 三级毛片av免费| 亚洲成av片中文字幕在线观看| 国产精品99久久99久久久不卡| 18禁裸乳无遮挡动漫免费视频| 国产精品.久久久|