• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi3.25Nd0.75Ti3O12納米結(jié)構(gòu):可控合成及其可見光催化活性

    2012-12-11 09:33:32關(guān)慶豐李海波李洪吉巴春華鄧海德
    物理化學(xué)學(xué)報(bào) 2012年6期
    關(guān)鍵詞:慶豐環(huán)境友好四平

    林 雪 關(guān)慶豐 李海波 李洪吉 巴春華 鄧海德

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    Bi3.25Nd0.75Ti3O12納米結(jié)構(gòu):可控合成及其可見光催化活性

    林 雪1,2關(guān)慶豐1,*李海波3李洪吉2巴春華2鄧海德2

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    用水熱法制備不同形貌的摻釹鈦酸鉍(Bi3.25Nd0.75Ti3O12,BNdT)納米粉體.透射電子顯微鏡(TEM)結(jié)果表明,通過控制OH-濃度可以得到不同形貌的納米粉體.基于不同條件下制備的樣品微結(jié)構(gòu)分析,提出了這些不同形貌的形成機(jī)制.紫外-可見漫反射光譜(UV-Vis DRS)表明BNdT樣品的帶隙能(Eg)約為1.984 eV.利用可見光照射下甲基橙降解實(shí)驗(yàn)評(píng)價(jià)了BNdT樣品的光催化性能.結(jié)果表明,BNdT的光催化活性比商用TiO2催化劑P25和摻氮TiO2高得多.OH-濃度為10 mol·L-1時(shí)制備的BNdT納米線光催化效率最高,經(jīng)可見光照射360 min,濃度為0.01 mmol·L-1甲基橙溶液的降解率可達(dá)到93.0%,且循環(huán)使用4次后,其光催化活性并沒有明顯降低,表明BNdT是一種穩(wěn)定有效的可見光催化劑.

    鈦酸鉍;摻釹;納米結(jié)構(gòu);水熱合成;光催化降解;可見光照射

    1 Introduction

    Environmental and energy issues are very important topics on a global scale.Natural energy,such as sunlight,can be employed to help human being to curb the damage that polluted wastewater has on the environment.Semiconductor photocatalysis offers the potential technology for complete elimination of toxic chemicals through its efficiency and potentially broad applicability.1Various new compounds and materials for photocatalysis have been synthesized in the past few decades.2-6A successful example is TiO2,a metal oxide often used as a catalyst in photochemistry.7-12However,the band gap energy of the TiO2is 3.2 eV.It absorbs only the ultraviolet light(λ≤386.5 nm)which only accounts for about 4.0%of the sunlight.Therefore,studies on attempting to eliminate these drawbacks on photocatalysts have been performed.13-16

    In recent years,bismuth titanate photocatalysts,such as Bi12TiO20,17-19Bi2Ti2O7,20Bi20TiO32,21,22and Bi4Ti3O12,23,24have been widely studied as a class of promising photocatalysts which can respond under visible light.In heterogeneous photocatalysis,the morphology of the catalyst plays an important role in catalytic activity.25,26Nanowire photocatalyst has attracted extensive attention in environmental remediation due to its great specific surface area.27On the one hand,conventional film photocatalysts can be fixed and reclaimed easily,but their low surface areas decrease the photocatalytic activities.On the other hand,the application of particulate photocatalysts is limited owing to the difficulties in separation,which may repollute the treated water.Compared to film and particulate counterparts,nanowire photocatalysts not only possess large specific surface area,which allows for their surface active sites to be accessible for reactants more efficiently,but also owe high lengthto-diameter aspect ratio,which makes the separation of photocatalysts more easily.Furthermore,Metal element doping is one of the typical approaches to extend the spectral response of bismuth titanate photocatalysts by providing defect states in the band gap.28

    Methyl orange(MO)is an azo dye and also has a variety of uses in texitiles,paper,pulp and environment thus causing toxicity problems.Many efforts have been made to study the photodegradation of MO.Bi4Ti3O12is generally considered to be one of the promising photocatalysts and has the ability to detox water from MO.29To our knowledge,the morphological control of Bi4Ti3O12-related layered-perovskites nanostructures is relatively unexplored due to the lack of synthetic capability. On the basis of our previous work30on the preparation of bismuth titanate,we have introduced a low-temperature solution-phase route without the use of any surfactant and template to synthesize Bi3.25Nd0.75Ti3O12(BNdT)nanostructures with well controlled shapes.As stimulated by the promising applications, the synthesis of BNdT nanowires is a subject of considerable research interest.In this work,BNdT nanostructures with high photocatalytic activity have been successfully synthesized by means of a facile template-free hydrothermal method process. There are two significant aspects of the work described in this paper.Firstly,the synthesis of shape-controlled BNdT nanostructures has been found to be extremely evasive to date. Hence,the facile and template-free hydrothermal synthesis of BNdT nanostructures with well controlled shapes should be an important progress that may inspire subsequent catalytic materials synthesis.Secondly,catalysis by BNdT crystals has been studied recently,28but the test of BNdT nanowires associated optical properties and photocatalytic activities in the degradation of MO under visible-light irradiation has been rarely reported.Hence,this work may be of interest to both materials scientists and those working in the area of catalyst design.

    2 Experimental

    2.1 Preparation of BNdT photocatalysts

    All the chemicals were analytically graded(purchased from Shanghai Chemical Industrial Company)and used without further purification.A surfactant-free and template-free solutionphase synthesized route to BNdT samples is described below. Bismuth nitrate(Bi(NO3)3·5H2O),neodymium nitrate(Nd(NO3)3· 6H2O),and titanium tetrachloride(TiCl4)were chosen as starting materials with the bismuth:neodymium:titanium ions molar ratios of 3.25:0.75:3.00.TiCl4(10 mL)was dissolved in 50 mL cold H2O under vigorous stirring,then mixed with Bi(NO3)3· 5H2O and Nd(NO3)3·6H2O.

    The concentration of the alkali solution was adjusted using KOH,which in effect served as a capping agent.Before being transferred to a 20 mL stainless steel autoclave,the solution mixture was prepared under an ultrasonic water bath for 30 min in order to avoid the premature formation of bismuth titanate nuclei induced by the concentration of KOH and kept at a filling ratio of 70%(volume ratio).The autoclave was kept at 180°C for 24 h,and then cooled to room temperature.The precipitates were washed with deionized water and ethanol three times,separately.The final products were dried at 100°C for 2 h in a vacuum box.The sample prepared for comparison are(i) bismuth titanate(BIT)obtained according to our previous work30and(ii)N-doped TiO2(N-TiO2)synthesized according to literature.31

    2.2 Characterization of BNdT photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD,America PE,D/max 2500)with Cu Kαradiation.The chemical composition of the compound was determined by scanning electron microscope-X-ray energy dispersion spectrum(SEM-EDX,Japan JEOL,JSM-7001F).Trans-mission electron microscope(TEM)analysis of the samples was done using a JEM-2100F(Japan JEOL)instrument and the electron beam accelerating voltage was 200 kV.The surface areas of BNdT nanowires and nanosheets were measured by Tri-Star 3000-BET/BJH Surface Area.The infrared(IR)spectrum was measured by infrared spectrometer(America Perkin Elmer,Spectrum One).The UV-Vis diffuse reflectance spectra were recorded for the dry-pressed disk sample using a scan UV-Vis spectrophotometer(UV-Vis DRS,Japan SHIMADZU, UV-2550)equipped with an integrating sphere assembly.

    2.3 Photocatalytic activity test

    The photocatalytic degradation of MO was employed to evaluate the photocatalytic activities of the samples.A 300 W Xe lamp(λ>420 nm)was employed to provide visible light irradiation.About 0.1 g of photocatalyst was added to 100 mL of MO solution(0.01 mmol·L-1).Before irradiation,the suspensions were magnetically stirred in the dark for 30 min to ensure the adsorption-desorption equilibrium between the photocatalyst and MO.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of suspension was sampled and centrifuged to remove the photocatalyst particles.Then,the catalyst-free dye solution was analyzed by a UV-2550 spectrometer to record intensity of the maximum band at 462 nm in the UV-Vis absorption spectrum.

    3 Results and discussion

    3.1 XRD analysis

    XRD patterns of the as-prepared BNdT products synthesized at different OH-concentrations of 3,5,8,10 mol·L-1are shown in Fig.1.All the reflection peaks can be indexed according to the JCPDS card No.36-1486,suggesting that the as-prepared products are of layered-perovskite structure(Bi4Ti3O12). No peaks of impurities were detected from the patterns.The strong and sharp peaks indicate high crystallinities of BNdT samples.However,the intensities of the peaks of BNdT samples are different which proves that there are some differences among the samples prepared with different OH-concentrations.BNdT sample prepared at OH-concentration of 10 mol· L-1has stronger peak intensity,which means that the crystallinity of the sample was developing with the increase of OH-concentration.

    Fig.1 XRD patterns of samples BNdT and BIT(a)BIT,(b)BNdT(3 mol·L-1OH-),(c)BNdT(5 mol·L-1OH-), (d)BNdT(8 mol·L-1OH-),(e)BNdT(10 mol·L-1OH-).T=180°C,t=24 h

    3.2 TEM analysis

    The morphologies and structure details of BNdT products were studied by TEM,as shown in Fig.2.The influence of OH-concentration on the morphologies of BNdT crystals was presented using KOH with concentrations in the range from 3 to 10 mol·L-1.Fig.2a gives the TEM image of a typical example of nanosheets.In addition to nanosheets,nano-sized particles were also observed in the sample prepared at OH-concentration of 3 mol·L-1(Fig.2a).However,when the OH-concentration is increased to 5 mol·L-1,a large number of nanosheets of BNdT were formed,accompanied by the disappearance of the spherical particles(as illustrated in Fig.2b).When the OH-concentration is further increased to 8 mol·L-1,as shown in Fig.2c,BNdT nanowires as well as nanosheets were formed. Fig.2d shows BNdT sample obtained at OH-concentration of 10 mol·L-1.It shows that the as-prepared product consists of a large amount of nanowires with width of approximate 100 nm and lengths up to several micrometers.These results indicate that OH-concentration seems to play an important role in determining final morphologies of BNdT.Namely,morphology of BNdT powders can be controlled through varying the concentration of OH-.The relationship between the OH-concentration and morphology of BNdT crystals will be discussed later.

    Further structure details of BNdT nanostructures were obtained by TEM,as shown in Fig.3.It can be seen that BNdT products prepared at OH-concentration of 3 mol·L-1were composed of nanosheets as well as spherical nano-sized particles with average size of about 8 nm(as shown in Fig.3a). Fig.3b shows TEM image of BNdT nanosheets obtained at OH-concentrations of 5 mol·L-1.It reveals that BNdT nanos-heets are made up of nanoparticles with average size of about 5 nm.Fig.3(c,d)gives the TEM images of a typical example of nanowires.It also can be observed that BNdT nanowires are made up of nanoparticles with average size of 10 nm,approximately.

    Fig.2 TEM images of BNdT samples obtained at different concentrations of OH-c(OH-)/(mol·L-1):(a)3,(b)5,(c)8,(d)10

    Fig.3 TEM images of BNdT samples prepared at different concentrations of OH-c(OH-)/(mol·L-1):(a)3,(b)5,(c)8,(d)10

    Fig.4 High-resolution TEM image of BNdT nanowires

    In order to investigate the detailed crystal structure of as-prepared samples,HRTEM images for BNdT nanowires were measured as shown in Fig.4.It reveals the fringes with an interval of 0.3843 nm,which is in good agreement with the(111) lattice planes of the layered-perovskite Bi4Ti3O12.This result might indicate that the low concentration doping of Nd3+ions did not induce the formation of separate purity phases(neodymium metal).

    The SEM-EDX analysis reveals that BNdT has a homogenous atomic distribution with no other impure elements,as shown in Fig.5.An average atomic ratio of Bi:Nd:Ti(3.25:0.75: 3.00)for Bi3.25Nd0.75TiO12was obtained from measurements at different points.Based on the above results,we can conclude that the resulting materials are of high purity under our preparation conditions.

    Fig.5 EDX spectrum of the as-prepared BNdT sample

    Fig.6 schematically outlines the possible mechanism involved in the hydrothermal synthesis.Although the crystal growth habit is mainly determined by the intrinsic structure,it is also affected by the external conditions such as pH value of the solution,saturation,temperature,etc.As we all know,OH-concentration in the precursor solution has been found to be very important for the microstructure.It has been reported that the morphologies of Bi2Ti2O7crystals can be controlled by adjusting the OH-concentrations suggesting that OH-ionscan behave as a surfactant,20obtaining a better understanding of the role of OH-ions in the hydrothermal process.On the basis of previous report about Na0.5Bi0.5TiO3nanostructure and Na0.5Bi0.5TiO3(NBT)nanoparticles and nanowires,32at lower concentration of OH-and for shorter reaction time,only nanoparticles were obtained.When the OH-concentrations increase,primary nanoparticles grow and aggregate,picking up freshly formed nanosheets.When the OH-concentration is further increased,nanowires were obtained.Our experimental results are in accordance with the above mechanism.Thus,the pH value plays an important role in controlling the formation of seeds and the growth rates to shape the BNdT particles.

    Fig.6 Schematic illustration of plausible mechanism involved in the synthesis

    In this work,the condition of the alkaline medium as a factor is considered to play a key part in the formation of BNdT nanowires.At lower OH-concentration(OH-concentration:3 mol·L-1),BNdT nuclei produced in solution can aggregate to form small particles.These particles may serve as crystal seeds to grow the nanosheet and nanowire structures.With the alkalinity increases continuing(OH-concentrations:8 and 10 mol· L-1),a large amount of BNdT nuclei produced in the solution lead to forming the very high supersaturation solution,which favors the formation of wire structure.When OH-concentration is relatively lower(OH-concentration:5 mol·L-1),only BNdT nanosheets are obtained because of lower driving force, which comes from the lower chemical potential.Hence,the special growth behavior formation of BNdT nanosheets and nanowires in the present route is attributed to the highly alkaline medium.33

    3.3 IR spectral analysis

    It has been reported that the type and number of OH groups revealed by infrared(IR)spectra depend on the sample origin as well as on the preparation conditions(temperature,water pressure,and OH-concentration)leading to different surface species or possibly to different morphologies.34In order to explore the further impact of OH-ions on the reactivity and interaction with the active phase,IR spectrum has been recorded. At the same time,many relevant IR spectroscopy studies show that some OH-stretching frequencies were observed between 3350 and 3500 cm-1,34which is in agreement with our experimental results.The absorption band of 3444 cm-1belongs to OH-stretching frequencies(as shown in Fig.7).35

    3.4 UV-Vis diffuse reflectance spectral analysis

    Fig.8 shows the UV-Vis diffuse reflectance spectrum of the prepared BNdT photocatalyst.As a comparison,the spectra of P25 TiO2,N-TiO2,and BIT were also measured.The absorption onset wavelength(λg)of BNdT sample is around 625 nm, which is shifted 125,175,and 200 nm to visible region compared to BIT,N-TiO2and P25 TiO2.It shows that the performance of BNdT is better.

    The absorption coefficient(α)as a function of photon energy can be expressed by the Tauc relation:28

    Fig.7 IR spectrum of the as-prepared BNdT sampleT=180°C,t=24 h

    Fig.8 UV-Vis diffuse reflectance spectra of different samples(a)P25 TiO2,(b)N-TiO2,(c)BIT,(d)BNdT.A:absorbance.The inset shows the plot of(Ahv)2as a function of photon energy(hv).

    where hv,C,and Egare the photon energy,a constant,and the band gap energy,respectively.And n is an index determined by the nature of the electron transition during the absorption process.It is well known that there are two types of fundamental optical transitions,namely direct(n=1/2)and indirect(n=2). For BNdT,it is a direct band gap semiconductor,so here n= 1/2.Since absorbance(A)is proportional to absorption coefficient α,we use absorbance A to substitute absorption coefficient α.The plot of(Ahv)2versus hv is presented in the inset of Fig.8.Thus,The band gap energy of BNdT is calculated to be 1.984 eV,which displays a marked red shift in the absorbance compared to P25 TiO2and N-TiO2due to the contribution of 6s electrons from Bi3+.28It indicates that BNdT photocatalyst has a suitable band gap for photocatalytic decomposition of organic contaminants under visible light irradiation.The DRS spectrum of BNdT photocatalyst has steep shape which shows that the absorption relevant to the band gap is due to the intrinsic transition of the nanomaterials.36

    3.5 Degradation of MO using BNdT photocatalysts

    Photodegradation experiments of MO were carried out under visible light irradiation in order to test the photocatalytic performance of BNdT photocatalysts.For comparison,the photodegradation of MO by N-doped TiO2,P25 TiO2,BIT,and that without any catalyst were also carried out.UV-Vis spectral changes of MO solution by BNdT are displayed in Fig.9A while the temporal courses of the photodegradation of MO in different catalyst aqueous dispersions are shown in Fig.9B.It shows that the peaks at 462 and 271 nm were reduced with the increase of irradiation time(as illustrated in Fig.9A).The results show that MO solution is stable under visible light irradiation in the absence of any catalyst(as illustrated in Fig.9B). When BNdT nanowires have been added to MO solution,the total degradation rate is over 93.0%within 360 min irradiation, much higher than those of P25 TiO2and N-TiO2,which only reach 18.0%and 50.0%,respectively.Thus,the addition of BNdT photocatalyst leads to the obvious degradation of MO. In comparison,the photocatalytic degradation rate of MO over BIT is about 80.0%.Thus,Nd doping is one of the typical approaches to improve the performance of BIT photocatalysts. Besides,as shown in Fig.9B,the degradation rate of MO by BNdT nanowires is higher than that of BNdT nanosheets, which reaches 85.0%of the total degradation,approximately. However,as the BET surface area of the samples increases, there is a resulting increase in adsorption percentages of MO molecules.The BET surface area of BNdT nanosheets is 11.2 m2·g-1,which is relatively lower than that of nanowires.The larger BET surface area(15.0 m2·g-1)of BNdT nanowires provides more active sites for photocatalytic reaction,resulting in the superior photocatalytic activity.Besides,crystallinity also has important influence on the activity of degrading MO.36Based on the above analysis,it can be deduced that the better photocatalytic performance of BNdT nanowires is due to the higher crystallinity and larger BET surface area.

    3.6 Stability of BNdT as the photocatalyst

    Fig.10 indicates the XRD patterns of the BNdT sample after 360 min of visible light irradiation.Both the position and the intensity of the peaks in the XRD patterns are almost the same to those of BNdT before irradiation.As shown in this result, BNdT photocatalyst is considered to be relatively stable to visible light irradiation under the present experimental conditions. This result indicates a possibility for application of BNdT photocatalyst in the waste water treatment.

    Fig.10 XRD patterns of BNdT before and after visible light irradiation

    The stability tests were also investigated by carrying out recycling reactions four times for the photodegradation of MO over BNdT photocatalyst under visible light irradiation,and the results are shown in Fig.11.No significant decrease in catalytic activity was observed in the recycling reactions.Combined with the XRD patterns,all evidences demonstrate that the BNdT photocatalyst has good stability.

    3.7 Photocatalytic activity mechanism

    In a typical photodegradation of organic pollutants process, when the semiconductor is irradiated by light,the photoexcited electrons can be transferred to the conduction band(CB)from the valence band(VB)and whilst the holes form in the VB. Then the photoexcited holes in the VB can form·OH(hydroxyl radical)that can oxidize the organic pollutants and the electrons in the CB participate in the reduction process.Thus,the photocatalytic activity of the semiconductor is very closely related to its corresponding band structure.The band gap of oxides is generally defined by the O 2p level and transition metal d level.22

    Fig.11 Stability evaluation for BNdTfour reaction cycles for photodegradation of MO under visible light irradiation

    As calculated by Goto37and Cai38et al.the CB and VB of BNdT consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and Nd 5d.These bands meet the potential requirements of organic oxidation.Therefore,in the present hybridized valence band com-posed of O 2p and Bi 6s,the photogenerated carriers may own a high mobility.Then it will reduce the recombination opportunities of the photogenerated electron-hole pairs that could effectively move to the crystal surface to degrade the absorbed MO molecules.Based on the above consideration,the possible photocatalytic mechanism of BNdT is established and a schematic diagram is shown in Fig.12.The higher photocatalytic activity of BNdT over TiO2and BIT is attributed to the suitable band gap and stable electron-hole pair formation in the VB formed by the hybrid orbitals of Bi 6s,Nd 5d,and O 2p and the CB of Ti 3d.

    Fig.12 Schematic diagram of photocatalytic mechanism for BNdT sample

    4 Conclusions

    In summary,Bi3.25Nd0.75Ti3O12nanostructures were synthesized by a facile hydrothermal process without the use of any surfactant or template.The optical band gap energy of BNdT nanowires was estimated to be about 1.984 eV,which proved that BNdT photocatalyst can respond to the visible light.Besides,based on the structural analysis of samples obtained at different conditions,we also proposed a possible mechanism for the formation of these distinctive morphologies.Most importantly,BNdT photocatalysts with good stability exhibited higher photocatalytic performance in the degradation of methyl orange under visible light irradiation than traditional N-doped TiO2and commercial P25 TiO2.

    (1) Uyguner-Demirel,C.S.;Bekbolet,M.Chemosphere 2011,84, 1009.

    (2)Yu,J.G.;Xiang,Q.J.;Zhou,M.H.Appl.Catal.B:Environ. 2009,90,595.

    (3)Xu,D.;Gao,A.M.;Deng,W.L.Acta Phys.-Chim.Sin.2008, 24(7),1219. [許 迪,高愛梅,鄧文禮.物理化學(xué)學(xué)報(bào),2008, 24(7),1219.]

    (4) Xie,J.;Wang,H.;Duan,M.Acta Phys.-Chim.Sin.2011,27(1), 193. [謝 娟,王 虎,段 明.物理化學(xué)學(xué)報(bào),2011,27(1), 193.]

    (5) Yang,X.H.;Liu,C.;Liu,J.K.;Zhu,Z.C.Acta Phys.-Chim. Sin.2011,27(12),2939.[楊小紅,劉 暢,劉金庫(kù),朱子春.物理化學(xué)學(xué)報(bào),2011,27(12),2939.]

    (6) Hu,Y.F.;Li,Y.X.;Peng,S.Q.;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報(bào),2008,24(11),2071.]

    (7) Li,A.C.;Li,G.H.;Zheng,Y.;Feng,L.L.;Zheng,Y.J.Acta Phys.-Chim.Sin.2012,28(2),457.[李愛昌,李桂花,鄭 琰,馮玲玲,鄭彥俊.物理化學(xué)學(xué)報(bào),2012,28(2),457.]

    (8)Zhang,Q.;He,Y.Q.;Chen,X.G.;Hu,D.H.;Li,L.J.;Yin,T.; Ji,L.L.Acta Phys.-Chim.Sin.2010,26(3),654.[張 瓊,賀蘊(yùn)秋,陳小剛,胡棟虎,李林江,尹 婷,季伶俐.物理化學(xué)學(xué)報(bào),2010,26(3),654.]

    (9) Shen,J.J.;Liu,C.;Zhu,Y.D.;Li,W.;Feng,X.;Lu,X.H.Acta Phys.-Chim.Sin.2009,25(5),1013.[沈晶晶,劉 暢,朱育丹,李 偉,馮 新,陸小華.物理化學(xué)學(xué)報(bào),2009,25(5), 1013.]

    (10) Ghorai,T.K.;Biswas,S.K.;Pramanik,P.Appl.Surf.Sci.2008, 254,7498.

    (11)Wang,H.Q.;Wu,Z.B.;Liu,Y.;Wang,Y.J.Chemosphere 2008, 74,773.

    (12) Zhang,J.W.;Jin,Z.S.;Feng,C.X.;Yu,L.G.;Zhang,J.W.; Zhang,Z.J.J.Solid State Chem.2011,184,3066.

    (13) Liu,D.R.;Jiang,Y.S.;Gao,G.M.Chemosphere 2011,83, 1546.

    (14) Yu,J.Q.;Zhang,Y.;Kudo,A.J.Solid State Chem.2009,182, 223.

    (15) Zhang,L.;Cao,X.F.;Chen,X.T.;Xue,Z.L.J.Colloid Interface Sci.2011,354,630.

    (16) Zhang,L.S.;Wang,H.L.;Chen,Z.G.;Wong,P.K.;Liu,J.S. Appl.Catal.B:Environ.2011,106,1.

    (17) Hou,J.G.;Wang,Z.;Jiao,S.Q.;Zhu,H.M.J.Hazard.Mater. 2011,192,1772.

    (18)Hou,J.G.;Cao,R.;Jiao,S.Q.;Zhu,H.M.;Kumar,R.V.Appl. Catal.B:Environ.2011,104,399.

    (19)Thanabodeekij,N.;Gulari,E.;Wongkasemjit,S.Powder Technol.2005,160,203.

    (20) Hou,J.G.;Jiao,S.Q.;Zhu,H.M.;Kumar,R.V.J.Solid State Chem.2011,184,154.

    (21) Zhou,T.F.;Hu,J.C.Environ.Sci.Technol.2010,44,8698.

    (22)Cheng,H.F.;Huang,B.B.;Dai,Y.;Qin,X.Y.;Zhang,X.Y.; Wang,Z.Y.;Jiang,M.H.J.Solid State Chem.2009,182,2274.

    (23) Lin,X.;Guan,Q.F.;Liu,Y.;Li,H.B.Chin.Phys.B 2010,19, 107701.

    (24) Lin,X.;Guan,Q.F.;Li,H.B.;Liu,Y.;Zou,G.T.Sci. China-Phys.Mech.Astron.2012,55,33.

    (25) Xu,J.J.;Chen,M.D.;Fu,D.G.Appl.Surf.Sci.2011,257, 7381.

    (26) Xu,J.;Wang,W.Z.;Shang,M.;Gao,E.P.;Zhang,Z.J.;Ren,J. J.Hazard.Mater.2011,196,426.

    (27)Yu,H.G.;Yu,J.G.;Cheng,B.Chemosphere 2007,66,2050.

    (28)Wang,Z.Z.;Qi,Y.J.;Qi,H.Y.;Lu,C.J.;Wang,S.M.J.Mater. Sci.:Mater.Electron.2010,21,523.

    (29)Yao,W.F.;Xu,X.H.;Wang,H.;Zhou,J.T.;Yang,X.N.; Zhang,Y.;Shang,S.X.;Huang,B.B.Appl.Catal.B:Environ. 2004,52,109.

    (30) Xu,G.C.;Pan,L.;Guan,Q.F.;Zou,G.T.Acta Physica Sinica 2006,55,3080. [徐國(guó)成,潘 玲,關(guān)慶豐,鄒廣田.物理學(xué)報(bào),2006,55,3080.]

    (31)Hou,Y.D.;Wang,X.C.;Wu,L.;Chen,X.F.;Ding,Z.X.; Wang,X.X.;Fu,X.Z.Chemosphere 2008,72,414.

    (32) Jiang,X.P.;Lin,M.;Tu,N.;Chen,C.;Zhou,S.L.;Zhan,H.Q. J.Alloy.Compd.2011,509,9346.

    (33) Yang,J.H.;Zheng,J.H.;Zhai,H.J.;Yang,L.L.;Lang,J.H.; Gao,M.J.Alloy.Compd.2009,481,628.

    (34)Arrouvel,C.;Digne,M.;Breysse,M.;Toulhoat,H.;Raybaud,P. J.Catal.2004,222,152.

    (35)Hou,L.;Hou,Y.D.;Song,X.M.;Zhu,M.K.;Wang,H.;Yan, H.Mater.Res.Bull.2006,41,1330.

    (36) Zhu,X.Q.;Zhang,J.L.;Chen,F.Chemosphere 2010,78,1350.

    (37)Goto,T.;Noguchi,Y.;Soga,M.;Miyayama,M.Mater.Res. Bull.2005,40,1044.

    (38)Cai,M.Q.;Yin,Z.;Zhang,M.S.;Li,Y.Z.Chem.Phys.Lett. 2004,399,89.

    February 13,2012;Revised:March 29,2012;Published on Web:March 31,2012.

    Bi3.25Nd0.75Ti3O12Nanostructures:Controllable Synthesis and Visible-Light Photocatalytic Activities

    LIN Xue1,2GUAN Qing-Feng1,*LI Hai-Bo3LI Hong-Ji2BA Chun-Hua2DENG Hai-De2
    (1School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Province,P.R.China;2College of Chemistry,Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education,Jilin Normal University,Siping 136000,Jilin Province,P.R.China;3College of Physics,Jilin Normal University, Siping 136000,Jilin Province,P.R.China)

    Neodymium-doped bismuth titanate(Bi3.25Nd0.75Ti3O12,BNdT)nanostructures with different morphologies were synthesized hydrothermally without using surfactant or template.Transmission electron microscopy(TEM)results showed that different morphologies could be fabricated simply by manipulating the concentration of OH-ions during hydrothermal synthesis.Hydroxide ions played an important role in controlling the formation of seeds and the growth rate of BNdT particles.On the basis of structural analysis of samples obtained under different conditions,a possible mechanism for the formation of these distinctive morphologies was proposed.A UV-visible diffuse reflectance spectrum(UV-Vis DRS)of an as-prepared BNdT sample revealed that its band gap energy(Eg)was about 1.984 eV.BNdT photocatalysts exhibited higher photocatalytic activities for the degradation of methyl orange(MO)under visible light irradiation than those for traditional commercial P25 TiO2and N-doped TiO2(N-TiO2).BNdT nanowires prepared using a hydroxide concentration of 10 mol·L-1showed the highest photocatalytic activity among the samples.Over this catalyst,93.0%degradation of MO(0.01 mmol·L-1)was obtained after irradiation with visible light for 360 min.In addition,there was no significant decrease in photocatalytic activity after the catalyst was used 4 times,indicating that BNdT is a stable photocatalyst for degradation of MO under visible light irradiation.

    Bismuth titanate;Neodymium doping;Nanostructure;Hydrothermal synthesis; Photocatalytic degradation; Visible light irradiation

    10.3866/PKU.WHXB201203313

    ?Corresponding author.Email:guanqf@ujs.edu.cn;Tel:+86-13852904936;Fax:+86-434-3290363.

    The project was supported by the Key Laboratory of Preparation andApplication Environmentally Friendly Materials of the Ministry of Education of China,Scientific Research Innovation Plan for Young Talented Person and Plans of Scientific Research Innovation for Postgraduates of Jilin Normal University,China.

    環(huán)境友好材料制備與應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室項(xiàng)目和吉林師范大學(xué)青年科研創(chuàng)新計(jì)劃創(chuàng)新人才項(xiàng)目、研究生科研創(chuàng)新項(xiàng)目資助

    O643

    猜你喜歡
    慶豐環(huán)境友好四平
    “搖擺不定”等十三則
    雜文月刊(2022年1期)2022-02-05 00:21:55
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    “食物將成為副產(chǎn)品”:愛爾蘭農(nóng)民創(chuàng)造環(huán)境友好型田地
    環(huán)境友好型阻燃劑的合成及性能研究
    環(huán)境友好型社會(huì)文化的法制建設(shè)思考
    大眾文藝(2015年4期)2015-07-13 06:33:40
    環(huán)境友好的CLEAN THROUGH水系洗滌劑
    AltBOC navigation signal quality assessment and measurement*
    A new algorithm for wireless sensor network based on NS-2*
    袁慶豐教授簡(jiǎn)介
    對(duì)四平保衛(wèi)戰(zhàn)的沉思
    軍事歷史(1996年3期)1996-08-16 03:05:12
    国产xxxxx性猛交| 亚洲欧美清纯卡通| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三区av网在线观看 | 亚洲精品av麻豆狂野| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 日本午夜av视频| 99久久精品国产亚洲精品| 日韩大片免费观看网站| 久久国产精品人妻蜜桃| 亚洲欧美日韩高清在线视频 | 18禁国产床啪视频网站| 美女脱内裤让男人舔精品视频| 亚洲av日韩在线播放| 最近最新中文字幕大全免费视频 | 麻豆乱淫一区二区| 侵犯人妻中文字幕一二三四区| 国产精品国产三级国产专区5o| 国产日韩欧美亚洲二区| 亚洲国产精品999| 亚洲国产日韩一区二区| 久久久久精品人妻al黑| 老司机影院毛片| 亚洲av欧美aⅴ国产| 欧美日韩福利视频一区二区| 制服人妻中文乱码| 丝袜脚勾引网站| 中文字幕亚洲精品专区| 久久天堂一区二区三区四区| 欧美老熟妇乱子伦牲交| 精品人妻在线不人妻| 久久久久精品人妻al黑| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx| 中国国产av一级| 天天躁日日躁夜夜躁夜夜| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 捣出白浆h1v1| 免费看十八禁软件| 亚洲 欧美一区二区三区| 欧美日韩av久久| 一本久久精品| 亚洲色图综合在线观看| 黄色毛片三级朝国网站| 中文字幕精品免费在线观看视频| 性色av一级| 国产免费又黄又爽又色| 亚洲国产精品一区二区三区在线| 各种免费的搞黄视频| 色视频在线一区二区三区| 亚洲 国产 在线| 午夜影院在线不卡| 国产av精品麻豆| 成人手机av| 久久99精品国语久久久| 日韩中文字幕视频在线看片| 欧美日韩国产mv在线观看视频| 国产亚洲av高清不卡| 国产亚洲精品第一综合不卡| 久久女婷五月综合色啪小说| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 亚洲欧美精品综合一区二区三区| 亚洲欧美色中文字幕在线| 成年人黄色毛片网站| 老鸭窝网址在线观看| 18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 亚洲国产中文字幕在线视频| 欧美国产精品va在线观看不卡| 建设人人有责人人尽责人人享有的| 精品少妇一区二区三区视频日本电影| 欧美精品高潮呻吟av久久| 捣出白浆h1v1| 婷婷色综合大香蕉| 一区二区三区四区激情视频| 国产日韩欧美视频二区| 国产精品香港三级国产av潘金莲 | 亚洲综合色网址| 免费一级毛片在线播放高清视频 | 大陆偷拍与自拍| 国产一区二区在线观看av| av在线播放精品| 亚洲熟女毛片儿| 日本91视频免费播放| 香蕉丝袜av| 久久精品久久久久久噜噜老黄| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区 | 中文精品一卡2卡3卡4更新| 午夜福利视频精品| 久久久久网色| 考比视频在线观看| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 脱女人内裤的视频| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 亚洲熟女毛片儿| videos熟女内射| 看十八女毛片水多多多| 精品国产乱码久久久久久小说| 国产精品欧美亚洲77777| 丰满人妻熟妇乱又伦精品不卡| 超碰成人久久| 亚洲伊人色综图| 国产精品二区激情视频| 婷婷色麻豆天堂久久| 欧美亚洲 丝袜 人妻 在线| 后天国语完整版免费观看| 黄色片一级片一级黄色片| 一区二区av电影网| 欧美少妇被猛烈插入视频| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 三上悠亚av全集在线观看| 80岁老熟妇乱子伦牲交| 亚洲七黄色美女视频| e午夜精品久久久久久久| 婷婷丁香在线五月| 不卡av一区二区三区| 97在线人人人人妻| 久热这里只有精品99| 中文字幕人妻丝袜制服| 国产一区二区在线观看av| 天堂8中文在线网| 黄色视频在线播放观看不卡| 波多野结衣av一区二区av| 成年人免费黄色播放视频| 国产精品 国内视频| 亚洲伊人久久精品综合| 亚洲,一卡二卡三卡| 免费看av在线观看网站| 国产精品香港三级国产av潘金莲 | 99热网站在线观看| 亚洲av片天天在线观看| 午夜福利视频在线观看免费| 99国产综合亚洲精品| 美女主播在线视频| 色视频在线一区二区三区| 精品少妇一区二区三区视频日本电影| 精品视频人人做人人爽| 久久99一区二区三区| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 欧美人与善性xxx| 18在线观看网站| 多毛熟女@视频| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡| 日本欧美视频一区| 久久久久久久久久久久大奶| 国产片内射在线| 中文字幕亚洲精品专区| 国产av精品麻豆| 操美女的视频在线观看| 老司机深夜福利视频在线观看 | 欧美人与性动交α欧美精品济南到| 男女国产视频网站| 最近手机中文字幕大全| 国产91精品成人一区二区三区 | 国产高清videossex| 亚洲美女黄色视频免费看| 欧美久久黑人一区二区| 欧美成人午夜精品| 亚洲国产精品999| 永久免费av网站大全| xxx大片免费视频| 我要看黄色一级片免费的| 午夜福利视频在线观看免费| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| 成年人午夜在线观看视频| 无遮挡黄片免费观看| 国产av精品麻豆| 桃花免费在线播放| 五月天丁香电影| 欧美日韩av久久| 久久狼人影院| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 久久久精品免费免费高清| 久久国产精品大桥未久av| 菩萨蛮人人尽说江南好唐韦庄| 色播在线永久视频| av线在线观看网站| 免费观看人在逋| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 精品第一国产精品| 好男人电影高清在线观看| 精品久久久久久久毛片微露脸 | 亚洲九九香蕉| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区 | 精品一区在线观看国产| 亚洲伊人久久精品综合| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av综合色区一区| a级片在线免费高清观看视频| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 天天躁夜夜躁狠狠躁躁| 大话2 男鬼变身卡| 国产视频首页在线观看| 中文欧美无线码| 国精品久久久久久国模美| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 99国产精品一区二区蜜桃av | av片东京热男人的天堂| 美女国产高潮福利片在线看| 亚洲成色77777| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 美女中出高潮动态图| 午夜福利在线免费观看网站| 一级片'在线观看视频| 欧美日韩av久久| 免费看不卡的av| 国产精品一国产av| 丰满少妇做爰视频| 精品人妻在线不人妻| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 久久天堂一区二区三区四区| 香蕉丝袜av| 久久ye,这里只有精品| 97人妻天天添夜夜摸| 亚洲自偷自拍图片 自拍| 啦啦啦中文免费视频观看日本| 久久人妻熟女aⅴ| 麻豆av在线久日| 99热国产这里只有精品6| 18禁观看日本| 肉色欧美久久久久久久蜜桃| 大码成人一级视频| 亚洲国产最新在线播放| 少妇精品久久久久久久| 亚洲av国产av综合av卡| av天堂久久9| 成人国产一区最新在线观看 | 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 青春草视频在线免费观看| 国产在线视频一区二区| 亚洲国产av影院在线观看| 精品福利观看| 久久亚洲国产成人精品v| 中国美女看黄片| 狂野欧美激情性xxxx| 天堂俺去俺来也www色官网| 考比视频在线观看| 青草久久国产| 精品少妇内射三级| 国产淫语在线视频| 99香蕉大伊视频| 国产成人av激情在线播放| 老司机在亚洲福利影院| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| av网站在线播放免费| 日韩免费高清中文字幕av| av欧美777| 超色免费av| 精品高清国产在线一区| 人妻 亚洲 视频| 青草久久国产| 国产成人精品久久二区二区免费| 在线观看人妻少妇| 我的亚洲天堂| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 亚洲人成网站在线观看播放| 黄色一级大片看看| 国产免费福利视频在线观看| 久9热在线精品视频| 精品欧美一区二区三区在线| 国产片内射在线| 免费在线观看日本一区| 高清欧美精品videossex| 久久国产精品影院| 十八禁高潮呻吟视频| 亚洲视频免费观看视频| 国产成人精品在线电影| 又大又爽又粗| 99热国产这里只有精品6| 一级黄片播放器| 人妻人人澡人人爽人人| 亚洲欧美中文字幕日韩二区| 999精品在线视频| av欧美777| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久久久久婷婷小说| 99久久精品国产亚洲精品| 国产高清国产精品国产三级| 色播在线永久视频| 日韩中文字幕欧美一区二区 | 亚洲av日韩在线播放| 午夜老司机福利片| 亚洲国产精品一区三区| av不卡在线播放| 纯流量卡能插随身wifi吗| 日本欧美视频一区| 一二三四社区在线视频社区8| 在线看a的网站| 少妇人妻 视频| 丰满迷人的少妇在线观看| 婷婷色综合www| 丰满饥渴人妻一区二区三| 中文字幕亚洲精品专区| 国产午夜精品一二区理论片| 国产av精品麻豆| 一区在线观看完整版| 91麻豆av在线| 91精品伊人久久大香线蕉| 丰满饥渴人妻一区二区三| 欧美在线黄色| 99精国产麻豆久久婷婷| 日本色播在线视频| 成人三级做爰电影| netflix在线观看网站| 婷婷色av中文字幕| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 两性夫妻黄色片| 啦啦啦在线观看免费高清www| 丝袜美足系列| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区三 | 久久久久久人人人人人| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频 | 97人妻天天添夜夜摸| 亚洲av美国av| 美女主播在线视频| 亚洲精品国产av成人精品| 在线观看人妻少妇| 黄色视频不卡| 69精品国产乱码久久久| 一级毛片电影观看| 亚洲国产精品一区三区| 国产老妇伦熟女老妇高清| 亚洲图色成人| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品麻豆人妻色哟哟久久| 日韩视频在线欧美| av欧美777| 欧美老熟妇乱子伦牲交| 一二三四社区在线视频社区8| 国产免费现黄频在线看| 只有这里有精品99| 青春草亚洲视频在线观看| 9191精品国产免费久久| 国产1区2区3区精品| 日日摸夜夜添夜夜爱| 黄色毛片三级朝国网站| 一区二区三区四区激情视频| 制服人妻中文乱码| 亚洲欧洲精品一区二区精品久久久| www.精华液| 欧美少妇被猛烈插入视频| 乱人伦中国视频| 国产在线一区二区三区精| 看十八女毛片水多多多| bbb黄色大片| 国产免费视频播放在线视频| 欧美日韩亚洲高清精品| 人妻一区二区av| 日韩av在线免费看完整版不卡| 亚洲综合色网址| 日韩 欧美 亚洲 中文字幕| 97精品久久久久久久久久精品| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 国产成人av教育| av在线播放精品| 久久久久久久大尺度免费视频| 人人妻人人爽人人添夜夜欢视频| 欧美在线一区亚洲| 狂野欧美激情性xxxx| av不卡在线播放| 欧美在线黄色| 男女免费视频国产| 少妇的丰满在线观看| 国产免费视频播放在线视频| 亚洲专区中文字幕在线| 亚洲av电影在线进入| av福利片在线| 久久99热这里只频精品6学生| 国产一级毛片在线| 国产在线免费精品| 国产成人av教育| 午夜日韩欧美国产| av线在线观看网站| av有码第一页| 日韩伦理黄色片| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 黄色一级大片看看| 国产成人av教育| 91九色精品人成在线观看| 午夜免费成人在线视频| 欧美日韩综合久久久久久| 如日韩欧美国产精品一区二区三区| 精品国产一区二区久久| av网站在线播放免费| 日本av手机在线免费观看| 一级毛片我不卡| 水蜜桃什么品种好| 国产无遮挡羞羞视频在线观看| 97在线人人人人妻| 久久毛片免费看一区二区三区| 国产在线免费精品| 99国产精品一区二区蜜桃av | 国产成人91sexporn| www.熟女人妻精品国产| av国产久精品久网站免费入址| 亚洲欧美日韩另类电影网站| 91字幕亚洲| 欧美变态另类bdsm刘玥| 久久国产精品大桥未久av| 成人手机av| 亚洲,一卡二卡三卡| 黑人巨大精品欧美一区二区蜜桃| 久久人妻福利社区极品人妻图片 | 亚洲精品一区蜜桃| 免费观看人在逋| www.精华液| 啦啦啦啦在线视频资源| www.av在线官网国产| 在线av久久热| 777久久人妻少妇嫩草av网站| 欧美老熟妇乱子伦牲交| 免费在线观看黄色视频的| 老司机深夜福利视频在线观看 | 人人妻,人人澡人人爽秒播 | 亚洲人成电影免费在线| 精品国产国语对白av| 日本欧美视频一区| 只有这里有精品99| 男男h啪啪无遮挡| 国产成人系列免费观看| 日韩av不卡免费在线播放| 国产99久久九九免费精品| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| 中国国产av一级| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 欧美中文综合在线视频| 一区二区三区激情视频| 亚洲av电影在线进入| 国产亚洲欧美精品永久| 韩国高清视频一区二区三区| 波野结衣二区三区在线| 一边亲一边摸免费视频| 免费在线观看影片大全网站 | 大香蕉久久成人网| 热re99久久国产66热| 日韩视频在线欧美| 午夜av观看不卡| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 成人午夜精彩视频在线观看| 国产一区二区三区av在线| 亚洲欧美一区二区三区久久| 久久毛片免费看一区二区三区| 大型av网站在线播放| 中文字幕最新亚洲高清| 久久精品国产亚洲av涩爱| 亚洲美女黄色视频免费看| 亚洲精品国产av成人精品| 18禁国产床啪视频网站| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 国产精品三级大全| 伊人久久大香线蕉亚洲五| 男的添女的下面高潮视频| 国产精品香港三级国产av潘金莲 | 免费看十八禁软件| 热re99久久国产66热| 午夜免费观看性视频| 日韩伦理黄色片| 777久久人妻少妇嫩草av网站| www.av在线官网国产| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 男女边摸边吃奶| netflix在线观看网站| 亚洲视频免费观看视频| 99久久精品国产亚洲精品| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 成人影院久久| 午夜福利视频在线观看免费| 国产精品成人在线| 99国产精品一区二区三区| 久久天堂一区二区三区四区| 国产成人免费观看mmmm| 久久久精品区二区三区| 少妇裸体淫交视频免费看高清 | 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 一本大道久久a久久精品| 看免费成人av毛片| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 超色免费av| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 欧美av亚洲av综合av国产av| 别揉我奶头~嗯~啊~动态视频 | 丝袜脚勾引网站| 最近中文字幕2019免费版| 黄色怎么调成土黄色| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 日本av免费视频播放| 老司机在亚洲福利影院| 国产精品av久久久久免费| 久久精品久久精品一区二区三区| 亚洲人成网站在线观看播放| 可以免费在线观看a视频的电影网站| 三上悠亚av全集在线观看| 免费人妻精品一区二区三区视频| 我要看黄色一级片免费的| 久久精品人人爽人人爽视色| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 大香蕉久久成人网| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 欧美精品av麻豆av| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 午夜免费成人在线视频| 久久精品久久久久久噜噜老黄| 亚洲精品在线美女| 又大又爽又粗| 狂野欧美激情性bbbbbb| 大型av网站在线播放| 免费在线观看视频国产中文字幕亚洲 | 韩国高清视频一区二区三区| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区| 91老司机精品| 亚洲国产精品999| 中文字幕最新亚洲高清| 久久久精品免费免费高清| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 亚洲免费av在线视频| av天堂在线播放| 菩萨蛮人人尽说江南好唐韦庄| 天天躁夜夜躁狠狠躁躁| 99香蕉大伊视频| 久久久久久人人人人人| 亚洲天堂av无毛| 国产一级毛片在线| 波多野结衣一区麻豆| 婷婷成人精品国产| 亚洲美女黄色视频免费看| 精品国产超薄肉色丝袜足j| 只有这里有精品99| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 久久精品久久久久久久性| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 亚洲五月婷婷丁香| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| 超色免费av| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 少妇人妻 视频| 伊人久久大香线蕉亚洲五| 国产男人的电影天堂91| www.999成人在线观看| 亚洲国产最新在线播放| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 巨乳人妻的诱惑在线观看| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 人妻一区二区av| 午夜日韩欧美国产| 久久免费观看电影|