• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    2012-12-21 06:33:56趙高峰王銀亮孫建敏王淵旭
    物理化學(xué)學(xué)報 2012年6期
    關(guān)鍵詞:電荷原子軌道

    趙高峰 王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    趙高峰*王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    采用基于密度泛函理論的第一性原理方法系統(tǒng)地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì).對團(tuán)簇的平均結(jié)合能、鑲嵌能、垂直離化勢、最高占據(jù)分子軌道(HOMO)和最低未占據(jù)分子軌道(LUMO)的能級差、電荷布居分析、自然鍵軌道(NBO)進(jìn)行了計算和討論.對于Au12M(M=Na,Mg,Al)團(tuán)簇,它們形成了內(nèi)含M原子的最穩(wěn)定的籠狀結(jié)構(gòu).然而對于Au12M(M=Si,P,S,Cl)團(tuán)簇,它們卻形成了以M元素為頂點(diǎn)的穩(wěn)定錐形結(jié)構(gòu).在這些團(tuán)簇中發(fā)現(xiàn)Au12S團(tuán)簇相對是最穩(wěn)定的,這是由于Au12S團(tuán)簇形成了穩(wěn)定的滿殼層的電子結(jié)構(gòu).自然電荷布居分析表明:對于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇電荷總是從Au原子轉(zhuǎn)向M原子.自然鍵軌道和HOMO分析表明Au12M團(tuán)簇中發(fā)生了Au原子的s-d軌道和M原子的p軌道間的雜化現(xiàn)象.

    密度泛函理論;團(tuán)簇;自然電荷布居分析;穩(wěn)定性;自然鍵軌道分析

    1 Introduction

    During the past two decades,coinage metal clusters have been intensively studied by both experimental and theoretical methods.Clustering occurs due to the facile hybridization of core d-electrons with outer s-electrons.Gold clusters have been of particular interest.Recently,Bulusu et al.1reported evidence of hollow cages of pure metal atoms.A novel Au20tetrahedral structure identified by photoelectron spectroscopy correlates with relativistic density functional theory(DFT)calculations.2Fa and Dong3identified a stable tube-like Aun(n= 26-28)cluster with scalar,relativistic,all-electron DFT.Highly stable“golden fullerene”Au32andAu42clusters have been reported,4,5and core-shell structures have been verified by recent studies on Au34and Au58clusters.6-8The existence of these high-symmetry clusters is attributed to the manifestation of aurophilicity,which can further enhance strong gold-gold interactions.9In addition,relativistic-effect-enhanced s-d hybridization and s-electron delocalization may also reflect the preference for high-symmetry structures.10-12

    Doping of gold clusters with impurity atoms is expected to open up new channels in which one can tailor properties by varying the nature of the dopant atom.13-15Since Pykko16and Li17et al.first reported the existence of highly stable Au12Wvia photoelectron spectroscopy,a considerable amount of experimental and theoretical work has been carried out on Au clusters doped with other impurity atoms.11,18-34Most of these studies have focused on Au12doped with transition-metal(TM)atoms.The high Ihor Ohsymmetry of the lowest-energy Au12TM clusters is attributed to the strong relativistic effect,aurophilic attraction,and 18-electron bonding to the 4s,5s,and 6s shells of the central heteroatom.16,35Furthermore,Au12TM clusters are more stable relative to icosahedral Au12and Au13cages,as verified by previous experimental17and theoretical11results.

    It is thus clear that the ground-state geometries of Au12TM clusters are icosahedral or octahedral,the reason being that TM atoms possess outer s electron shells.Although a number of studies have focused on the geometric structures and electronic properties of Au12TM clusters,there have been relatively few studies on gold clusters doped with non-transition elements.24,25,36-42In this paper,we perform first-principles studies of single atom impurities with 3s and 3p electrons in Au12clusters.These impurity atoms come from the same row of the Periodic Table,thus their principle quantum numbers remain the same while having an increasing number of valence electrons.When these atoms are embedded in Au12clusters,however,there are clear differences in their lowest-energy Au12M structures.

    2 Computational details

    All computations were performed by DFT with the unrestricted B3LYP exchange-correlation potential43-48and the effective core potential standard LanL2DZ basis sets.49-51The standard LanL2DZ basis sets are effective in calculating noble metals because they reduce difficulties in two-electron integral calculations caused by the heavy atoms.

    Calculations were performed with the Gaussian 03 program package.52For each stationary point of a cluster,the stability was examined by calculating the harmonic vibrational frequencies.If an imaginary frequency was found,a relaxation along the coordinates of the imaginary vibrational mode was carried out until a true local minimum was obtained.Therefore,all isomers for each cluster are guaranteed to be the local minimum. In addition,for the geometry optimization of each isomer,the spin multiplicity(SM)was at least 1,3,and 5 for even-electron clusters(Mg,Si,S,)and 2,4,and 6 for odd-electron clusters (Al,P,Cl).If the total energy decreases with increasing SM, we would use a higher spin state until the energy minimum was found.

    In order to test the validity of the computational method,we performed calculations on Au2and AuAl dimers.As illustrated in Table 1,our results are in good agreement with previous experimental and theoretical data.25,53-59

    3 Results and discussion

    3.1 Structures of clusters

    We examined a considerable number of low-lying isomers and determined the lowest-energy structures for Au12M(M= Na,Mg,Al,Si,P,Cl)clusters that are illustrated in Fig.1.For comparison,the icosahedral and octahedra cages for pure Au13clusters are also in Fig.1.In order to explain the structural features of these lowest-energy structures,we list the point group symmetry,the smallest bond length for Au-Au and Au-M, and the spin multiplicity in Table 2.

    Previous studies indicate that the ground-state structures of Au12TM clusters have TM encapsulated in the center of Au12icosahedral or octahedral cages with high Ihor Ohsymmetry.11,16,17,26,27In our work,the lowest-energy structures of Au12M (M=Na,Mg)clusters are similar to the octahedral structures of Au12TM clusters.However,the other Au12M(M=Al,Si,P,S, Cl)structures differ from theAu12TM structures.

    The ground state of the Au12Na cluster is an octahedral structure with the Na atom at its center,with D3dsymmetry,and a spin multiplicity of 2.The icosahedral structure also has the Na atom in the Au12cage center;however,its energy is 1.36 eVhigher than the ground state.In the octahedral structure,the shortest bond lengths of Au-Au and Au-Na are 0.284 and 0.291 nm,respectively,while the shortest bond lengths of Au-Au and Au-Na are 0.297 and 0.283 nm,respectively,for the icosahedral structure.When an Mg atom imbeds in the Au12cluster,it also forms an octahedral structure with the Mg in the center.However,the symmetry(Oh)of Au12Mg is higher than that(D3d)of Au12Na because all the Au—Au and Au—Mg bond lengths are the same(0.288 nm).The next higher energy isomer Au12Mg(b)in Fig.1 has S4point group symmetry with an energy very close to the ground-state structure(ΔE=0.59 eV). Recently,the geometric and electronic structures of clusters with a central 3d,4d,and 5d transition-metal atom encapsulated in an Au12cage have been investigated.11,26For encapsulated 3d and 4d transition-metals,the icosahedral clusters tend to be more stable than their octahedral isomers.But for 5d transitionmetals,the octahedral clusters tend to be more stable than their icosahedral isomers(except for Au12W).The octahedral structures of Au12Na and Au12Mg are more stable than their icosahedral isomers.Thus their ground state structures are similar to the clusters with a central 5d transition-metal(except for Au12W),but they differ from those with 3d,4d transition-metal impurities.In the case of Au12Al,the ground-state structure can be seen as a deformed octahedron with D2hsymmetry.Although the Al atom remains at the center,the outer Au12octahedral cage undergoes severe deformation.

    Table 1 Bond lengths(R),lowest harmonic vibrational frequencies(Freq),average binding energies(Eb),and vertical ionization potentials(VIPs)for the ground states ofAu2and AuAl dimers

    Table 2 Geometries of the lowest-energy isomers ofAu12M(M= Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    The first important change occurs in the lowest-energy structure of Au12Si,where the Si atom is now located at the top of a pyramid formed by the Au atoms.The pyramidal structure possesses Cssymmetry and a spin multiplicity of 1.The fact that the Si atom is not encapsulated in the Au12cage as for Au12Na and Au12Mg may be due to the bonding properties and the orbital hybridization between M and Au atoms.The octahedral Au12Si cluster has an energy that is 1.45 eV higher than the pyramidal isomer.The ground-state structure of Au12P is also a pyramid,however it has higher symmetry(C4v)compared to Au12Si.The shortest bond lengths of Au-P and Au-Au are 0.257 and 0.279 nm.As shown in Fig.1,the Au12P cluster is more compact than Au12Si,which may be attributed to different Au-Si andAu-P bondings.

    The lowest-energy structure for Au12S is an irregular flat pyramid with low symmetry(C1),with the S atom at the bottom (Fig.1).It is thus more flat and extended than Au12P and Au12Si. It can be argued that the structure of Au12S results from electron delocalization over all the atoms.Surprisingly,a planar rhombic structure of Au12S is also observed,where the S atom occupies the center of the plane.However,its energy is 1.38 eV higher than the ground-state structure.Finally,we note that the Au12Cl cluster has a lowest-energy structure that is basketlike with the Cl atom at the apex.

    Fig.2 Average binding energies(Eb)of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    3.2 Stabilities of clusters

    The average binding energy(Eb)of a given cluster is a measure of its thermodynamic stability,which is defined as the difference between the energy sum of all the free atoms constituting the cluster and the total energy of the cluster,as given by: where ET(M),ET(Au),and ET(Au12M)represent the total energies of the lowest-energy M,Au,and Au12M,respectively.As seen from Fig.2,the Ebfor the ground states of Au12M(M=Na, Mg,Al,Si,P,S,Cl)clusters are higher than that of the pure Au13cluster.The Au12S cluster,possessing the largest Eb,is also found to be the most stable under study.This is attributed to the closed-shell(18-electron shell-filling)rule,with one electron from eachAu atom and six electrons from the S atom.

    Fig.3 Embedding energies of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    Fig.4 HOMO-LUMO energy gaps in ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    To further understand the stabilities of Au12M clusters,we will discuss the embedding energy(Ed)of the ground-state structure,which is defined as: where ET(M),ET(Au12),and ET(Au12M)represent the total energies of the lowest-energy M,Au12,and Au12M clusters,respectively.As shown in Fig.3,Au12S possesses the highest embedding energy among Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.Hence,Au12S should be the most stable.

    The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMOLUMO)is a useful quantity when examining the chemical stability of clusters.A large energy gap correlates with a high barrier required to perturb the electronic structure.HOMOLUMO energy gaps for ground-state Au12M(M=Na,Mg,Al, Si,P,S,Cl)and Au13clusters are displayed in Fig.4.The largest energy gap(1.73 eV)is for Au12Mg,which indicates that it is the most chemically stable of these clusters.Meanwhile, Au12S has the second highest energy gap,and since it has the largest average binding energy among these clusters,it is both chemically and thermodynamically stable.

    Fig.5 VIPof ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    The vertical ionization potential(VIP)is yet another parameter used to assess the chemical stability of small clusters,and is given by: where ET(Au12M+)is the total energy of the ionic clusters at the optimized neutral geometry.Large VIPs indicate high chemical stability.As shown in Fig.5,the VIPs of Au12Mg,Au12Si,and Au12S clusters are surprisingly higher than those for Au12Na, Au12Al,Au12P,and Au12Cl.This trend may be attributed to the number of electrons;recall that Au12Mg,Au12Si,and Au12S possess electrons in closed-shells,while the other four have electrons in open-shells.It indicates that Au12M(M=Mg,Si,S) clusters are chemically more stable than the other Au12M(M= Na,Al,P,Cl)clusters.Additionally,the VIP of Au12S is the largest in this series,which can be explained on the basis of its full closed-shells(18-electron rule).60

    3.3 Electronic properties

    Charge-transfer phenomena in the Au12M clusters can be obtained by natural population analysis.The atomic charges of the M atoms in the ground-state Au12M(M=Na,Mg,Al,Si,P, S,Cl)clusters are listed in Table 3,where we see that charges always transfer from the Au atoms to the electron-accepting M atoms.This clearly differs from that observed for Au5M and Au6M(M=Na,Mg,Al,Si,P,S,Cl)clusters.24,25Thus an important finding is that the direction of charge-transfer in M-doped gold clusters depends on cluster size.

    Table 3 Natural charge population and the electron configurations for M atoms inAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters through natural bond orbital(NBO)analysis

    Fig.6 Spatial orientation of the highest occupied molecular orbitals of the ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    To examine hybridization between M(M=Na,Mg,Al,Si,P, S,Cl)atoms and Au in Au12M clusters,we present in Table 3 the natural electron configurations obtained from natural bond orbital(NBO)analysis.The valence electron configurations of the free atoms Na,Mg,Al,Si,P,S,and Cl are 3s1,3s2,3s23p1, 3s23p2,3s23p3,3s23p4,and 3s23p5,respectively.The NBO analysis in Table 3 reflects this s-p hybridization,where electrons transfer mainly from 3s to 3p orbitals in the M atoms.We also note that electrons transfer from 6s and 5d orbitals to 6p orbitals in the Au atoms,indicating sd-p hybridization.Since the 3p orbital gains more than the 3s orbital loses in the M atoms,it follows that the 6s and 5d orbitals in theAu atoms transfer electrons to the M 3p orbital.Thus hybridization does occur between the p orbital of the M atom and the s-d orbitals of the Au atoms.In order to further understand the chemical bonds in these systems,we plot in Fig.6 the spatial orientation of the HOMO energy levels for the Au12M clusters.The HOMOs show hybridization phenomena between p orbitals of the M atoms and the s-d orbitals of the Au atoms.These pictures are in good agreement with the NBO analysis.However,the hybridization of Au12M clusters differs from that in Au12TM,11which is attributed to the electronic properties of the dopant atoms.

    4 Summary

    We have carried out a first-principles investigation using DFT to systematically study the geometries and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.The Au12M(M=Na,Mg,Al)clusters form the lowest-energy cage structures with the M atom encapsulated in the center,while Au12M(M=Si,P,S,Cl)clusters form pyramids with the M atom at the apex.The lowest-energy geometries of Au12M(except Au12Na and Au12Mg clusters)are different from the high symmetry structure of 3d,4d,and 5d transition-metals in Au12TM clusters.This indicates that impurity atoms play a critical role in determining the structures and properties of Au12M clusters.The Au12S cluster,having full closed-shell orbitals,not only possesses a relatively high average binding energy and doping energy,but also a high VIP and HOMO-LUMO energy gap.Thus it is more stable than the other Au12M clusters.Finally,we note that an NBO analysis reveals that hybridization between the s-d orbitals in Au atoms and the p orbitals of the M impurities occurs inAu12M clusters.

    (1) Bulusu,S.;Li,X.;Wang,L.S.;Zeng,X.C.Proc.Natl.Acad. Sci.U.S.A.2006,103,8326.

    (2) Li,J.;Li,X.;Zhai,H.J.;Wang,L.S.Science 2003,299,864.

    (3)Fa,W.;Dong,J.M.J.Chem.Phys.2006,124,114310.

    (4)Johansson,M.P.;Sundholm,D.;Vaara,J.Angew.Chem.Int. Edit.2004,43,2678.

    (5)Gao,Y.;Zeng,X.C.J.Am.Chem.Soc.2005,127,3698.

    (6)Gu,X.;Bulusu,S.;Li,X.;Zeng,X.C.;Li,J.;Gong,X.G.; Wang,L.S.J.Phys.Chem.C 2007,111,8228.

    (7)Huang,W.;Ji,M.;Dong,C.D.;Gu,X.;Wang,L.M.;Gong,X. G.;Wang,L.S.ACS Nano 2008,2,897.

    (8)Dong,C.D.;Gong,X.G.J.Chem.Phys.2010,132,104301.

    (9)Scherbaum,F.;Grohmann,A.;Huber,B.;Krueger,C.; Schmidbaur,H.Angew.Chem.1988,100,1602.

    (10) Pyykko,P.Chem.Rev.1988,88,563.

    (11) Wang,S.Y.;Yu,J.Z.;Mizuseki,H.;Sun,Q.;Wang,C.Y.; Kawazoe,Y.Phys.Rev.B 2004,70,165413.

    (12)Hakkinen,H.;Moseler,M.;Kostko,O.;Morgner,N.; Hoffmann,M.A.;Issendorff,B.V.Phys.Rev.Lett 2004,93, 093401.

    (13)Yu,Y.J.;Wang,H.Y.;Yang,C.L.;Chen,J.N.ActaPhys.-Chim. Sin.2011,27,808.[于永江,王華陽,楊傳路,陳建農(nóng).物理化學(xué)學(xué)報,2011,27,808.]

    (14) Qian,H.F.;Barry,E.;Zhu,Y.;Jin,R.C.Acta Phys.-Chim.Sin. 2011,27,513.

    (15)Liang,W.H.;Wang,X.L.;Ding,X.C.;Chu,L.Z.;Deng,Z.C.; Fu,G.S.;Wang,Y.L.Acta Phys.-Chim.Sin.2011,27,1615. [梁偉華,王秀麗,丁學(xué)成,禇立志,鄧澤超,傅廣生,王英龍.物理化學(xué)學(xué)報,2011,27,1615.]

    (16)Pykko,P.;Runeberg,N.Angew.Chem.2002,41,2174.

    (17)Li,X.;Kiran,B.;Li,H.;Zhai,H.J.;Wang,L.S.Angew.Chem. Int.Edit.2002,41,4786.

    (18)Chen,M.X.;Yan,X.H.J.Chem.Phys.2008,128,174305.

    (19) Heinebrodt,M.;Malinowski,N.;Tast,F.;Branz,W.;Billas,I. M.L.;Martin,T.P.J.Chem.Phys.1996,110,9915.

    (20)Huang,W.;Wang,L.S.Phys.Rev.Lett.2009,102,153401.

    (21)Wang,L.M.;Pal,R.;Huang,W.;Zeng,X.C.;Wang,L.S. J.Chem.Phys.2010,132,114306.

    (22)Ferrighi,L.;Hammer,B.;Madsen,G.K.H.J.Am.Chem.Soc. 2009,131,10605.

    (23)Zhang,M.;He,L.M.;Zhao,L.X.;Feng,X.J.;Luo,Y.H. J.Phys.Chem.C 2009,113,6491.

    (24)Majumder,C.K.;Kandalam,A.K.;Jena,P.Phys.Rev.B 2006, 74,205437.

    (25)Zhang,M.;Chen,S.;Deng,Q.M.;He,L.M.;Zhao,L.N.;Luo, Y.H.Eur.Phys.J.D 2010,58,117.

    (26)Long,J.;Qiu,Y.X.;Chen,X.Y.;Wang,S.G.J.Phys.Chem.C 2008,112,12646.

    (27) Zhai,H.J.;Li,J.;Wang,L.S.J.Chem.Phys.2004,121,8369.

    (28)Gao,Y.;Bulusu,S.;Zeng,X.C.ChemPhysChem 2006,7,2275. (29) Li,X.;Kiran,B.;Cui,L.F.;Wang,L.S.Phys.Rev.Lett.2005, 95,253401.

    (30)Yang,A.P.;Fa,W.;Dong,J.M.J.Phys.Chem.A 2010,114, 4031.

    (31)Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.ACS Nano 2008,2, 341.

    (32)Wang,L.M.;Bai,J.;Lechtken,A.;Huang,W.;Schooss,D.; Kappes,M.M.;Zeng,X.C.;Wang,L.S.Phys.Rev.B 2009,79, 033413.

    (33) Neukermans,S.;Janssens,E.;Tanaka,H.;Silverans,R.E.; Lievens,P.Phys.Rev.Lett.2003,90,033401.

    (34)Walter,M.;Hakkinen,H.Phys.Chem.Chem.Phys.2006,8, 5407.

    (35) Autschbach,J.;Hess,B.A.;Johansson,M.P.;Neugebauer,J.; Patzschke,M.;Pyykko,P.;Reiher,M.;Sundholm,D.Phys. Chem.Chem.Phys.2004,6,11.

    (36)Zhao,L.X.;Cao,T.T.;Feng,X.J.;Liang,X.;Lei,Y.M.;Luo, Y.H.J.Mol.Struct.-Theochem 2009,895,92.

    (37) Graciela,B.P.;Ignacio,L.G.J.Mol.Struct.-Theochem 2002, 619,79.

    (38) Banerjee,A.;Ghanty,T.K.;Chakrabarti,A.;Kamal,C.J.Phys. Chem.C 2012,116,193.

    (39)Chen,D.D.;Kuang,X.Y.;Zhao,Y.R.;Shao,P.;Li,Y.F.Chin. Phys.B 2011,20,063601.

    (40)Li,Y.F.;Kuang,X.Y.;Wang,S.J.J.Phys.Chem.A 2010,114, 11691.

    (41) Jayasekharan,T.;Ghanty,T.K.J.Phys.Chem.C 2010,114, 8787.

    (42) Zhao,L.X.;Feng,X.J.;Cao,T.T.;Liang,X.;Luo,Y.H.Chin. Phys.B 2009,18,2709.

    (43) Becke,A.D.J.Chem.Phys.1986,84,4524.

    (44) Becke,A.D.J.Chem.Phys.1988,88,2547.

    (45) Becke,A.D.J.Chem.Phys.1988,88,1053.

    (46)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (47)Becke,A.D.J.Chem.Phys.1993,98,5468.

    (48)Kohn,W.;Sham,L.J.Phys.Rev.A 1965,140,1133.

    (49)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,270.

    (50)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,299.

    (51)Wadt,W.R.;Hay,P.J.J.Chem.Phys.1985,82,284.

    (52) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.03;Gaussian Inc.:Pittsburgh,PA,2003.

    (53) Zhao,G.F.;Zeng,Z.J.Chem.Phys.2006,125,014303.

    (54)Morse,M.D.Chem.Rev.1986,86,1049.

    (55)Negishi,Y.;Nakamura,Y.;Nakajima,A.;Kaya,K.J.Chem. Phys.2001,115,3657.

    (56) Simard,B.;Hackett,P.A.J.Mol.Spectrosc.1990,142,310.

    (57)Gingerich,K.A.;Blue,G.D.J.Chem.Phys.1973,59,185.

    (58) Ho,J.;Ervin,K.;Lineberger,W.J.Chem.Phys.1990,93,6987.

    (59) Taylor,K.;Pettitte-Hall,C.;Cheshnovsky,O.;Smalley,R. J.Chem.Phys.1992,96,3319.

    (60)Tomlman,C.A.Chem.Soc.Rev.1972,1,337.

    February 14,2012;Revised:April 5,2012;Published on Web:April 6,2012.

    Geometries,Stabilities and Electronic Properties of Au12M (M=Na,Mg,Al,Si,P,S,Cl)Clusters

    ZHAO Gao-Feng*WANG Yin-Liang SUN Jian-Min WANG Yuan-Xu
    (Institute of Computational Materials Science,Henan University,Kaifeng 475004,Henan Province,P.R.China)

    The geometries,stabilities,and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl) clusters were systematically investigated by using first-principlescalculationsbased on density functional theory(DFT).For each cluster,the average binding energy,the embedding energy,the vertical ionization potential,the energy gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),the natural charge population analysis,and the natural bond orbital analysis(NBO)were calculated.The lowest-energy structures of Au12M(M=Na,Mg,Al) clusters are cages with M encapsulated in the center,while structures of Au12M(M=Si,P,S,Cl)clusters are pyramidal with M at the apex.The Au12S cluster,having the full closed-shells,is the most stable. Furthermore,from the natural population analysis,it follows that charges transfer from Au to M in all the clusters.The NBO and HOMO analyses reveal that hybridization occurs between the Au s-d orbitals and the M p orbitals.

    Density functional theory;Cluster;Natural charge population analysis;Stability; Natural bond orbital analysis

    10.3866/PKU.WHXB201204063

    ?Corresponding author.Email:zgf@henu.edu.cn;Tel:+86-378-3881602.

    The project was supported by the National Natural Science Foundation of China(10804027,11011140321)and Natural Science Foundation of Education Department of Henan Province,China(2011A140003).

    國家自然科學(xué)基金(10804027,11011140321)和河南省教育廳自然科學(xué)基金(2011A140003)資助項目

    O641

    猜你喜歡
    電荷原子軌道
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    原子究竟有多???
    原子可以結(jié)合嗎?
    帶你認(rèn)識原子
    電荷知識知多少
    電荷守恒在化學(xué)解題中的應(yīng)用
    基于單純形法的TLE軌道確定
    CryoSat提升軌道高度與ICESat-2同步運(yùn)行
    朝美重回“相互羞辱軌道”?
    靜電現(xiàn)象有什么用?
    少妇 在线观看| 午夜激情av网站| 在线观看免费高清a一片| 久久影院123| 中文字幕最新亚洲高清| 久久国产精品人妻蜜桃| 又黄又粗又硬又大视频| 咕卡用的链子| 欧美成人午夜精品| 一a级毛片在线观看| 免费高清在线观看日韩| 国产精品美女特级片免费视频播放器 | 日本黄色日本黄色录像| 男人的好看免费观看在线视频 | 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频 | 亚洲中文av在线| 高清毛片免费观看视频网站 | 亚洲美女黄片视频| 久久久精品欧美日韩精品| av福利片在线| 国产成人av激情在线播放| 亚洲一区中文字幕在线| 搡老岳熟女国产| 国产av精品麻豆| 国产极品粉嫩免费观看在线| av国产精品久久久久影院| 一区二区三区激情视频| 午夜免费观看网址| 亚洲一区二区三区欧美精品| 成人18禁在线播放| 国产精品一区二区精品视频观看| 男女下面进入的视频免费午夜 | av欧美777| 亚洲欧美一区二区三区黑人| www国产在线视频色| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 久久人人97超碰香蕉20202| 在线观看免费视频网站a站| 成人三级黄色视频| 欧美日韩福利视频一区二区| 亚洲七黄色美女视频| 午夜精品在线福利| 18禁黄网站禁片午夜丰满| 欧美成人免费av一区二区三区| 两个人看的免费小视频| 午夜福利影视在线免费观看| 中文字幕av电影在线播放| 欧美另类亚洲清纯唯美| 色综合欧美亚洲国产小说| 多毛熟女@视频| 免费观看精品视频网站| 久久精品亚洲熟妇少妇任你| av电影中文网址| 国产成人精品久久二区二区免费| 91在线观看av| 又紧又爽又黄一区二区| 欧美精品亚洲一区二区| 亚洲欧美日韩另类电影网站| 在线观看66精品国产| 午夜视频精品福利| 免费看a级黄色片| 美女午夜性视频免费| 丰满的人妻完整版| 国产精品一区二区三区四区久久 | 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 国产成人av激情在线播放| 欧美 亚洲 国产 日韩一| 村上凉子中文字幕在线| 久久人妻熟女aⅴ| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 在线视频色国产色| cao死你这个sao货| 成人18禁在线播放| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 真人一进一出gif抽搐免费| xxxhd国产人妻xxx| 亚洲 国产 在线| 亚洲av电影在线进入| 操美女的视频在线观看| 国产精品久久久久成人av| 国产在线观看jvid| 免费人成视频x8x8入口观看| 伦理电影免费视频| 亚洲精品中文字幕在线视频| videosex国产| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免费看| 色精品久久人妻99蜜桃| 9色porny在线观看| 亚洲 国产 在线| 99精国产麻豆久久婷婷| 亚洲一区高清亚洲精品| 欧美人与性动交α欧美软件| 久热这里只有精品99| 国产黄色免费在线视频| 91老司机精品| 少妇 在线观看| 亚洲少妇的诱惑av| 亚洲成人精品中文字幕电影 | 国产成人精品无人区| 成年人黄色毛片网站| 一级片'在线观看视频| 国产人伦9x9x在线观看| 久久 成人 亚洲| 50天的宝宝边吃奶边哭怎么回事| 欧美久久黑人一区二区| 好看av亚洲va欧美ⅴa在| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品国产一区二区电影| 亚洲国产精品sss在线观看 | 色精品久久人妻99蜜桃| 日本一区二区免费在线视频| 欧美丝袜亚洲另类 | 免费在线观看黄色视频的| 国产激情欧美一区二区| 国产亚洲精品第一综合不卡| 日韩av在线大香蕉| 国产人伦9x9x在线观看| 日韩免费av在线播放| 久久久精品欧美日韩精品| 欧美一级毛片孕妇| 一边摸一边做爽爽视频免费| av有码第一页| 成年女人毛片免费观看观看9| 97人妻天天添夜夜摸| 午夜免费观看网址| 99久久国产精品久久久| 老司机亚洲免费影院| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 亚洲午夜理论影院| 午夜福利欧美成人| 一区二区三区精品91| 欧美最黄视频在线播放免费 | 女人被躁到高潮嗷嗷叫费观| 久99久视频精品免费| 国产成人欧美在线观看| 中文字幕高清在线视频| 999精品在线视频| 他把我摸到了高潮在线观看| 久久久久久久久久久久大奶| 99久久国产精品久久久| 成人三级做爰电影| 国产精品野战在线观看 | 色综合站精品国产| 日韩高清综合在线| 国产成人欧美在线观看| av国产精品久久久久影院| 人人妻,人人澡人人爽秒播| 亚洲成人国产一区在线观看| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 看免费av毛片| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 一进一出抽搐动态| 午夜免费鲁丝| a级毛片黄视频| 动漫黄色视频在线观看| 亚洲成人精品中文字幕电影 | 国产av又大| 成人18禁在线播放| 亚洲va日本ⅴa欧美va伊人久久| 日韩免费av在线播放| 国产精品九九99| 91av网站免费观看| 操出白浆在线播放| 国产片内射在线| 国产成人欧美| 男女下面进入的视频免费午夜 | 国产成人精品在线电影| 久久久国产精品麻豆| 久久香蕉激情| 国产精品一区二区免费欧美| 丰满饥渴人妻一区二区三| 亚洲片人在线观看| 欧美日韩乱码在线| 成人国语在线视频| 欧美日韩国产mv在线观看视频| 欧美日韩黄片免| 国产精品国产av在线观看| 久久久久国内视频| 亚洲欧洲精品一区二区精品久久久| 99久久99久久久精品蜜桃| 久久久久久人人人人人| 日韩欧美三级三区| 亚洲精华国产精华精| e午夜精品久久久久久久| 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 免费在线观看完整版高清| 香蕉丝袜av| 国产成人av教育| 久久久久久久久免费视频了| 水蜜桃什么品种好| 精品久久久久久,| 国产亚洲欧美在线一区二区| 欧美乱妇无乱码| 国产激情久久老熟女| 成人永久免费在线观看视频| 欧美+亚洲+日韩+国产| 深夜精品福利| 亚洲一区二区三区欧美精品| 校园春色视频在线观看| 丝袜美足系列| 亚洲 国产 在线| 天堂√8在线中文| 久久久久九九精品影院| 精品第一国产精品| 热re99久久精品国产66热6| 一二三四社区在线视频社区8| 他把我摸到了高潮在线观看| 日韩欧美国产一区二区入口| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区精品| 在线观看免费高清a一片| 亚洲自拍偷在线| 欧美亚洲日本最大视频资源| 国产在线观看jvid| 免费搜索国产男女视频| 亚洲成国产人片在线观看| 咕卡用的链子| 久热这里只有精品99| 天堂中文最新版在线下载| 大码成人一级视频| 又黄又爽又免费观看的视频| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 国产熟女午夜一区二区三区| 精品久久久久久久久久免费视频 | 美女午夜性视频免费| cao死你这个sao货| 欧美另类亚洲清纯唯美| 精品卡一卡二卡四卡免费| 丰满饥渴人妻一区二区三| 精品国产美女av久久久久小说| 欧美成人性av电影在线观看| 亚洲免费av在线视频| 国产精品免费视频内射| www.999成人在线观看| 很黄的视频免费| 久久 成人 亚洲| 亚洲五月色婷婷综合| 天堂动漫精品| 欧美精品一区二区免费开放| 最新美女视频免费是黄的| 一区二区三区激情视频| 天堂√8在线中文| av福利片在线| 久久热在线av| 欧美性长视频在线观看| 日韩精品青青久久久久久| 国产一区二区三区综合在线观看| 黄片大片在线免费观看| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 在线观看一区二区三区| а√天堂www在线а√下载| 日本wwww免费看| 国产精品1区2区在线观看.| 国产成年人精品一区二区 | 777久久人妻少妇嫩草av网站| 久久人人精品亚洲av| 最近最新中文字幕大全免费视频| av天堂久久9| 一进一出抽搐gif免费好疼 | 热99国产精品久久久久久7| a级片在线免费高清观看视频| 日韩人妻精品一区2区三区| 久久热在线av| 久久久久亚洲av毛片大全| 一夜夜www| bbb黄色大片| 午夜91福利影院| 亚洲伊人色综图| 琪琪午夜伦伦电影理论片6080| 99热国产这里只有精品6| 免费一级毛片在线播放高清视频 | 免费少妇av软件| 日日干狠狠操夜夜爽| 亚洲avbb在线观看| 97人妻天天添夜夜摸| 欧美午夜高清在线| www.www免费av| 怎么达到女性高潮| 纯流量卡能插随身wifi吗| 88av欧美| av福利片在线| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 波多野结衣一区麻豆| 好看av亚洲va欧美ⅴa在| 天堂√8在线中文| 欧美大码av| 在线观看免费视频网站a站| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 欧美日韩视频精品一区| 亚洲精品在线美女| 久久精品91无色码中文字幕| 国产精品国产高清国产av| 香蕉丝袜av| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 中出人妻视频一区二区| 身体一侧抽搐| 午夜福利,免费看| 黄片大片在线免费观看| 看免费av毛片| 日韩精品青青久久久久久| 亚洲一码二码三码区别大吗| 50天的宝宝边吃奶边哭怎么回事| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 最好的美女福利视频网| 在线观看日韩欧美| 色哟哟哟哟哟哟| 黄片大片在线免费观看| 中文亚洲av片在线观看爽| 夜夜爽天天搞| 欧美精品亚洲一区二区| 一个人观看的视频www高清免费观看 | 免费久久久久久久精品成人欧美视频| 国产一区在线观看成人免费| 女人被狂操c到高潮| 人人妻,人人澡人人爽秒播| 国产熟女午夜一区二区三区| 国产精品国产高清国产av| 无遮挡黄片免费观看| 日韩精品青青久久久久久| 欧美午夜高清在线| 极品人妻少妇av视频| 激情在线观看视频在线高清| 天天躁狠狠躁夜夜躁狠狠躁| 黄频高清免费视频| 制服人妻中文乱码| 超碰97精品在线观看| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 手机成人av网站| 亚洲第一青青草原| 99香蕉大伊视频| 不卡av一区二区三区| 日韩欧美三级三区| bbb黄色大片| 757午夜福利合集在线观看| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 97人妻天天添夜夜摸| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区| 欧美激情久久久久久爽电影 | 乱人伦中国视频| 最近最新免费中文字幕在线| 精品少妇一区二区三区视频日本电影| 在线观看午夜福利视频| 黄色成人免费大全| 久久久久九九精品影院| 老汉色∧v一级毛片| 青草久久国产| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 黄色 视频免费看| 真人一进一出gif抽搐免费| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 91字幕亚洲| 国产精品秋霞免费鲁丝片| 日韩欧美国产一区二区入口| 成人国语在线视频| 在线观看一区二区三区| 正在播放国产对白刺激| 欧美黑人欧美精品刺激| 国产成人免费无遮挡视频| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 久久精品亚洲av国产电影网| 日韩欧美在线二视频| 热99国产精品久久久久久7| 国产精品九九99| 国产精品 欧美亚洲| 91字幕亚洲| 午夜免费激情av| 久久 成人 亚洲| 国产不卡一卡二| a在线观看视频网站| 丝袜美足系列| 国产av一区二区精品久久| 99久久国产精品久久久| 国产精品乱码一区二三区的特点 | 十八禁人妻一区二区| 国产高清videossex| 精品人妻1区二区| 又大又爽又粗| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 欧美日韩福利视频一区二区| 美女国产高潮福利片在线看| 久久久久久大精品| 夫妻午夜视频| 日本五十路高清| 桃色一区二区三区在线观看| 一a级毛片在线观看| 免费av中文字幕在线| 国产精品国产av在线观看| 久久热在线av| 亚洲av日韩精品久久久久久密| 午夜91福利影院| 免费女性裸体啪啪无遮挡网站| 久久久久国产精品人妻aⅴ院| 电影成人av| 亚洲欧美激情在线| 久99久视频精品免费| 91字幕亚洲| 麻豆国产av国片精品| 亚洲人成网站在线播放欧美日韩| 国产精品九九99| 琪琪午夜伦伦电影理论片6080| 久9热在线精品视频| 9热在线视频观看99| 90打野战视频偷拍视频| 级片在线观看| 男女下面进入的视频免费午夜 | 级片在线观看| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 亚洲一区二区三区不卡视频| 88av欧美| 在线av久久热| 国产99白浆流出| 在线观看午夜福利视频| 色婷婷久久久亚洲欧美| 久久久精品欧美日韩精品| 日韩免费高清中文字幕av| 日韩av在线大香蕉| 妹子高潮喷水视频| 日本vs欧美在线观看视频| 精品一区二区三卡| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 一级a爱视频在线免费观看| 国产精华一区二区三区| 97碰自拍视频| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 成人精品一区二区免费| 大型av网站在线播放| 亚洲三区欧美一区| 热99re8久久精品国产| 在线观看一区二区三区激情| 久久午夜综合久久蜜桃| 国产精品九九99| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 少妇粗大呻吟视频| 老司机午夜福利在线观看视频| av欧美777| 免费av中文字幕在线| 欧美黑人精品巨大| 精品无人区乱码1区二区| 成人亚洲精品av一区二区 | 老司机靠b影院| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 18禁观看日本| 免费不卡黄色视频| 国产精品久久久av美女十八| 黄色视频不卡| 久久香蕉激情| 18禁观看日本| 免费不卡黄色视频| 国产真人三级小视频在线观看| av网站在线播放免费| 欧美黑人精品巨大| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| 日本三级黄在线观看| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 亚洲免费av在线视频| 日本五十路高清| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 三上悠亚av全集在线观看| 欧美日韩一级在线毛片| 久久婷婷成人综合色麻豆| 99香蕉大伊视频| 国产在线观看jvid| 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 999久久久精品免费观看国产| 精品久久久久久电影网| 少妇被粗大的猛进出69影院| 精品高清国产在线一区| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟妇熟女久久| 色老头精品视频在线观看| 欧美色视频一区免费| 美女大奶头视频| 黑人欧美特级aaaaaa片| 久久人妻福利社区极品人妻图片| 亚洲熟女毛片儿| 色婷婷av一区二区三区视频| 91麻豆精品激情在线观看国产 | 国产成人精品无人区| 黄色 视频免费看| 欧美一级毛片孕妇| 国产一区二区三区综合在线观看| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 激情在线观看视频在线高清| 日韩有码中文字幕| 精品人妻在线不人妻| 亚洲 欧美一区二区三区| 国产精品九九99| 在线观看舔阴道视频| 超碰97精品在线观看| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 美女国产高潮福利片在线看| 欧美成人性av电影在线观看| a级毛片黄视频| 最近最新免费中文字幕在线| a级毛片黄视频| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 久久久久久久午夜电影 | 久久亚洲精品不卡| 级片在线观看| 岛国视频午夜一区免费看| 欧美大码av| 免费高清视频大片| 看片在线看免费视频| 极品教师在线免费播放| 久热爱精品视频在线9| 亚洲人成伊人成综合网2020| a级片在线免费高清观看视频| 成人永久免费在线观看视频| 男人操女人黄网站| 男人舔女人下体高潮全视频| 亚洲精品av麻豆狂野| 日韩人妻精品一区2区三区| 国产精品影院久久| 久久热在线av| 狠狠狠狠99中文字幕| 久久婷婷成人综合色麻豆| 高清av免费在线| 久久精品人人爽人人爽视色| 亚洲专区国产一区二区| av片东京热男人的天堂| 国产精品二区激情视频| 一边摸一边抽搐一进一出视频| 日本一区二区免费在线视频| 免费av毛片视频| 久久精品亚洲精品国产色婷小说| 欧美色视频一区免费| avwww免费| 美女福利国产在线| 久久久久九九精品影院| 搡老岳熟女国产| 精品久久久久久成人av| 亚洲av美国av| 久久久国产一区二区| 精品卡一卡二卡四卡免费| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 在线天堂中文资源库| 午夜日韩欧美国产| 成人亚洲精品一区在线观看| 亚洲专区字幕在线| 麻豆av在线久日| 女同久久另类99精品国产91| 午夜免费激情av| 国产一区二区三区视频了| 久久这里只有精品19| 亚洲成人免费av在线播放| 亚洲第一欧美日韩一区二区三区| 男女下面进入的视频免费午夜 | 一区二区三区激情视频| 国产成人av教育| 亚洲第一青青草原| 欧美激情久久久久久爽电影 | 搡老熟女国产l中国老女人| 午夜精品在线福利| 精品人妻在线不人妻| av电影中文网址| 欧美日韩一级在线毛片| 国产91精品成人一区二区三区| 欧美精品啪啪一区二区三区| 国产成人av教育| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 国产麻豆69| 亚洲熟妇中文字幕五十中出 | 国产欧美日韩综合在线一区二区|