• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    2012-12-21 06:33:56趙高峰王銀亮孫建敏王淵旭
    物理化學(xué)學(xué)報 2012年6期
    關(guān)鍵詞:電荷原子軌道

    趙高峰 王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì)

    趙高峰*王銀亮 孫建敏 王淵旭

    (河南大學(xué)計算材料科學(xué)研究所,河南開封475004)

    采用基于密度泛函理論的第一性原理方法系統(tǒng)地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇的結(jié)構(gòu)、穩(wěn)定性和電子性質(zhì).對團(tuán)簇的平均結(jié)合能、鑲嵌能、垂直離化勢、最高占據(jù)分子軌道(HOMO)和最低未占據(jù)分子軌道(LUMO)的能級差、電荷布居分析、自然鍵軌道(NBO)進(jìn)行了計算和討論.對于Au12M(M=Na,Mg,Al)團(tuán)簇,它們形成了內(nèi)含M原子的最穩(wěn)定的籠狀結(jié)構(gòu).然而對于Au12M(M=Si,P,S,Cl)團(tuán)簇,它們卻形成了以M元素為頂點(diǎn)的穩(wěn)定錐形結(jié)構(gòu).在這些團(tuán)簇中發(fā)現(xiàn)Au12S團(tuán)簇相對是最穩(wěn)定的,這是由于Au12S團(tuán)簇形成了穩(wěn)定的滿殼層的電子結(jié)構(gòu).自然電荷布居分析表明:對于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)團(tuán)簇電荷總是從Au原子轉(zhuǎn)向M原子.自然鍵軌道和HOMO分析表明Au12M團(tuán)簇中發(fā)生了Au原子的s-d軌道和M原子的p軌道間的雜化現(xiàn)象.

    密度泛函理論;團(tuán)簇;自然電荷布居分析;穩(wěn)定性;自然鍵軌道分析

    1 Introduction

    During the past two decades,coinage metal clusters have been intensively studied by both experimental and theoretical methods.Clustering occurs due to the facile hybridization of core d-electrons with outer s-electrons.Gold clusters have been of particular interest.Recently,Bulusu et al.1reported evidence of hollow cages of pure metal atoms.A novel Au20tetrahedral structure identified by photoelectron spectroscopy correlates with relativistic density functional theory(DFT)calculations.2Fa and Dong3identified a stable tube-like Aun(n= 26-28)cluster with scalar,relativistic,all-electron DFT.Highly stable“golden fullerene”Au32andAu42clusters have been reported,4,5and core-shell structures have been verified by recent studies on Au34and Au58clusters.6-8The existence of these high-symmetry clusters is attributed to the manifestation of aurophilicity,which can further enhance strong gold-gold interactions.9In addition,relativistic-effect-enhanced s-d hybridization and s-electron delocalization may also reflect the preference for high-symmetry structures.10-12

    Doping of gold clusters with impurity atoms is expected to open up new channels in which one can tailor properties by varying the nature of the dopant atom.13-15Since Pykko16and Li17et al.first reported the existence of highly stable Au12Wvia photoelectron spectroscopy,a considerable amount of experimental and theoretical work has been carried out on Au clusters doped with other impurity atoms.11,18-34Most of these studies have focused on Au12doped with transition-metal(TM)atoms.The high Ihor Ohsymmetry of the lowest-energy Au12TM clusters is attributed to the strong relativistic effect,aurophilic attraction,and 18-electron bonding to the 4s,5s,and 6s shells of the central heteroatom.16,35Furthermore,Au12TM clusters are more stable relative to icosahedral Au12and Au13cages,as verified by previous experimental17and theoretical11results.

    It is thus clear that the ground-state geometries of Au12TM clusters are icosahedral or octahedral,the reason being that TM atoms possess outer s electron shells.Although a number of studies have focused on the geometric structures and electronic properties of Au12TM clusters,there have been relatively few studies on gold clusters doped with non-transition elements.24,25,36-42In this paper,we perform first-principles studies of single atom impurities with 3s and 3p electrons in Au12clusters.These impurity atoms come from the same row of the Periodic Table,thus their principle quantum numbers remain the same while having an increasing number of valence electrons.When these atoms are embedded in Au12clusters,however,there are clear differences in their lowest-energy Au12M structures.

    2 Computational details

    All computations were performed by DFT with the unrestricted B3LYP exchange-correlation potential43-48and the effective core potential standard LanL2DZ basis sets.49-51The standard LanL2DZ basis sets are effective in calculating noble metals because they reduce difficulties in two-electron integral calculations caused by the heavy atoms.

    Calculations were performed with the Gaussian 03 program package.52For each stationary point of a cluster,the stability was examined by calculating the harmonic vibrational frequencies.If an imaginary frequency was found,a relaxation along the coordinates of the imaginary vibrational mode was carried out until a true local minimum was obtained.Therefore,all isomers for each cluster are guaranteed to be the local minimum. In addition,for the geometry optimization of each isomer,the spin multiplicity(SM)was at least 1,3,and 5 for even-electron clusters(Mg,Si,S,)and 2,4,and 6 for odd-electron clusters (Al,P,Cl).If the total energy decreases with increasing SM, we would use a higher spin state until the energy minimum was found.

    In order to test the validity of the computational method,we performed calculations on Au2and AuAl dimers.As illustrated in Table 1,our results are in good agreement with previous experimental and theoretical data.25,53-59

    3 Results and discussion

    3.1 Structures of clusters

    We examined a considerable number of low-lying isomers and determined the lowest-energy structures for Au12M(M= Na,Mg,Al,Si,P,Cl)clusters that are illustrated in Fig.1.For comparison,the icosahedral and octahedra cages for pure Au13clusters are also in Fig.1.In order to explain the structural features of these lowest-energy structures,we list the point group symmetry,the smallest bond length for Au-Au and Au-M, and the spin multiplicity in Table 2.

    Previous studies indicate that the ground-state structures of Au12TM clusters have TM encapsulated in the center of Au12icosahedral or octahedral cages with high Ihor Ohsymmetry.11,16,17,26,27In our work,the lowest-energy structures of Au12M (M=Na,Mg)clusters are similar to the octahedral structures of Au12TM clusters.However,the other Au12M(M=Al,Si,P,S, Cl)structures differ from theAu12TM structures.

    The ground state of the Au12Na cluster is an octahedral structure with the Na atom at its center,with D3dsymmetry,and a spin multiplicity of 2.The icosahedral structure also has the Na atom in the Au12cage center;however,its energy is 1.36 eVhigher than the ground state.In the octahedral structure,the shortest bond lengths of Au-Au and Au-Na are 0.284 and 0.291 nm,respectively,while the shortest bond lengths of Au-Au and Au-Na are 0.297 and 0.283 nm,respectively,for the icosahedral structure.When an Mg atom imbeds in the Au12cluster,it also forms an octahedral structure with the Mg in the center.However,the symmetry(Oh)of Au12Mg is higher than that(D3d)of Au12Na because all the Au—Au and Au—Mg bond lengths are the same(0.288 nm).The next higher energy isomer Au12Mg(b)in Fig.1 has S4point group symmetry with an energy very close to the ground-state structure(ΔE=0.59 eV). Recently,the geometric and electronic structures of clusters with a central 3d,4d,and 5d transition-metal atom encapsulated in an Au12cage have been investigated.11,26For encapsulated 3d and 4d transition-metals,the icosahedral clusters tend to be more stable than their octahedral isomers.But for 5d transitionmetals,the octahedral clusters tend to be more stable than their icosahedral isomers(except for Au12W).The octahedral structures of Au12Na and Au12Mg are more stable than their icosahedral isomers.Thus their ground state structures are similar to the clusters with a central 5d transition-metal(except for Au12W),but they differ from those with 3d,4d transition-metal impurities.In the case of Au12Al,the ground-state structure can be seen as a deformed octahedron with D2hsymmetry.Although the Al atom remains at the center,the outer Au12octahedral cage undergoes severe deformation.

    Table 1 Bond lengths(R),lowest harmonic vibrational frequencies(Freq),average binding energies(Eb),and vertical ionization potentials(VIPs)for the ground states ofAu2and AuAl dimers

    Table 2 Geometries of the lowest-energy isomers ofAu12M(M= Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    The first important change occurs in the lowest-energy structure of Au12Si,where the Si atom is now located at the top of a pyramid formed by the Au atoms.The pyramidal structure possesses Cssymmetry and a spin multiplicity of 1.The fact that the Si atom is not encapsulated in the Au12cage as for Au12Na and Au12Mg may be due to the bonding properties and the orbital hybridization between M and Au atoms.The octahedral Au12Si cluster has an energy that is 1.45 eV higher than the pyramidal isomer.The ground-state structure of Au12P is also a pyramid,however it has higher symmetry(C4v)compared to Au12Si.The shortest bond lengths of Au-P and Au-Au are 0.257 and 0.279 nm.As shown in Fig.1,the Au12P cluster is more compact than Au12Si,which may be attributed to different Au-Si andAu-P bondings.

    The lowest-energy structure for Au12S is an irregular flat pyramid with low symmetry(C1),with the S atom at the bottom (Fig.1).It is thus more flat and extended than Au12P and Au12Si. It can be argued that the structure of Au12S results from electron delocalization over all the atoms.Surprisingly,a planar rhombic structure of Au12S is also observed,where the S atom occupies the center of the plane.However,its energy is 1.38 eV higher than the ground-state structure.Finally,we note that the Au12Cl cluster has a lowest-energy structure that is basketlike with the Cl atom at the apex.

    Fig.2 Average binding energies(Eb)of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    3.2 Stabilities of clusters

    The average binding energy(Eb)of a given cluster is a measure of its thermodynamic stability,which is defined as the difference between the energy sum of all the free atoms constituting the cluster and the total energy of the cluster,as given by: where ET(M),ET(Au),and ET(Au12M)represent the total energies of the lowest-energy M,Au,and Au12M,respectively.As seen from Fig.2,the Ebfor the ground states of Au12M(M=Na, Mg,Al,Si,P,S,Cl)clusters are higher than that of the pure Au13cluster.The Au12S cluster,possessing the largest Eb,is also found to be the most stable under study.This is attributed to the closed-shell(18-electron shell-filling)rule,with one electron from eachAu atom and six electrons from the S atom.

    Fig.3 Embedding energies of ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    Fig.4 HOMO-LUMO energy gaps in ground-stateAu12M (M=Na,Mg,Al,Si,P,S,Cl)andAu13clusters

    To further understand the stabilities of Au12M clusters,we will discuss the embedding energy(Ed)of the ground-state structure,which is defined as: where ET(M),ET(Au12),and ET(Au12M)represent the total energies of the lowest-energy M,Au12,and Au12M clusters,respectively.As shown in Fig.3,Au12S possesses the highest embedding energy among Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.Hence,Au12S should be the most stable.

    The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMOLUMO)is a useful quantity when examining the chemical stability of clusters.A large energy gap correlates with a high barrier required to perturb the electronic structure.HOMOLUMO energy gaps for ground-state Au12M(M=Na,Mg,Al, Si,P,S,Cl)and Au13clusters are displayed in Fig.4.The largest energy gap(1.73 eV)is for Au12Mg,which indicates that it is the most chemically stable of these clusters.Meanwhile, Au12S has the second highest energy gap,and since it has the largest average binding energy among these clusters,it is both chemically and thermodynamically stable.

    Fig.5 VIPof ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    The vertical ionization potential(VIP)is yet another parameter used to assess the chemical stability of small clusters,and is given by: where ET(Au12M+)is the total energy of the ionic clusters at the optimized neutral geometry.Large VIPs indicate high chemical stability.As shown in Fig.5,the VIPs of Au12Mg,Au12Si,and Au12S clusters are surprisingly higher than those for Au12Na, Au12Al,Au12P,and Au12Cl.This trend may be attributed to the number of electrons;recall that Au12Mg,Au12Si,and Au12S possess electrons in closed-shells,while the other four have electrons in open-shells.It indicates that Au12M(M=Mg,Si,S) clusters are chemically more stable than the other Au12M(M= Na,Al,P,Cl)clusters.Additionally,the VIP of Au12S is the largest in this series,which can be explained on the basis of its full closed-shells(18-electron rule).60

    3.3 Electronic properties

    Charge-transfer phenomena in the Au12M clusters can be obtained by natural population analysis.The atomic charges of the M atoms in the ground-state Au12M(M=Na,Mg,Al,Si,P, S,Cl)clusters are listed in Table 3,where we see that charges always transfer from the Au atoms to the electron-accepting M atoms.This clearly differs from that observed for Au5M and Au6M(M=Na,Mg,Al,Si,P,S,Cl)clusters.24,25Thus an important finding is that the direction of charge-transfer in M-doped gold clusters depends on cluster size.

    Table 3 Natural charge population and the electron configurations for M atoms inAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters through natural bond orbital(NBO)analysis

    Fig.6 Spatial orientation of the highest occupied molecular orbitals of the ground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl) clusters

    To examine hybridization between M(M=Na,Mg,Al,Si,P, S,Cl)atoms and Au in Au12M clusters,we present in Table 3 the natural electron configurations obtained from natural bond orbital(NBO)analysis.The valence electron configurations of the free atoms Na,Mg,Al,Si,P,S,and Cl are 3s1,3s2,3s23p1, 3s23p2,3s23p3,3s23p4,and 3s23p5,respectively.The NBO analysis in Table 3 reflects this s-p hybridization,where electrons transfer mainly from 3s to 3p orbitals in the M atoms.We also note that electrons transfer from 6s and 5d orbitals to 6p orbitals in the Au atoms,indicating sd-p hybridization.Since the 3p orbital gains more than the 3s orbital loses in the M atoms,it follows that the 6s and 5d orbitals in theAu atoms transfer electrons to the M 3p orbital.Thus hybridization does occur between the p orbital of the M atom and the s-d orbitals of the Au atoms.In order to further understand the chemical bonds in these systems,we plot in Fig.6 the spatial orientation of the HOMO energy levels for the Au12M clusters.The HOMOs show hybridization phenomena between p orbitals of the M atoms and the s-d orbitals of the Au atoms.These pictures are in good agreement with the NBO analysis.However,the hybridization of Au12M clusters differs from that in Au12TM,11which is attributed to the electronic properties of the dopant atoms.

    4 Summary

    We have carried out a first-principles investigation using DFT to systematically study the geometries and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.The Au12M(M=Na,Mg,Al)clusters form the lowest-energy cage structures with the M atom encapsulated in the center,while Au12M(M=Si,P,S,Cl)clusters form pyramids with the M atom at the apex.The lowest-energy geometries of Au12M(except Au12Na and Au12Mg clusters)are different from the high symmetry structure of 3d,4d,and 5d transition-metals in Au12TM clusters.This indicates that impurity atoms play a critical role in determining the structures and properties of Au12M clusters.The Au12S cluster,having full closed-shell orbitals,not only possesses a relatively high average binding energy and doping energy,but also a high VIP and HOMO-LUMO energy gap.Thus it is more stable than the other Au12M clusters.Finally,we note that an NBO analysis reveals that hybridization between the s-d orbitals in Au atoms and the p orbitals of the M impurities occurs inAu12M clusters.

    (1) Bulusu,S.;Li,X.;Wang,L.S.;Zeng,X.C.Proc.Natl.Acad. Sci.U.S.A.2006,103,8326.

    (2) Li,J.;Li,X.;Zhai,H.J.;Wang,L.S.Science 2003,299,864.

    (3)Fa,W.;Dong,J.M.J.Chem.Phys.2006,124,114310.

    (4)Johansson,M.P.;Sundholm,D.;Vaara,J.Angew.Chem.Int. Edit.2004,43,2678.

    (5)Gao,Y.;Zeng,X.C.J.Am.Chem.Soc.2005,127,3698.

    (6)Gu,X.;Bulusu,S.;Li,X.;Zeng,X.C.;Li,J.;Gong,X.G.; Wang,L.S.J.Phys.Chem.C 2007,111,8228.

    (7)Huang,W.;Ji,M.;Dong,C.D.;Gu,X.;Wang,L.M.;Gong,X. G.;Wang,L.S.ACS Nano 2008,2,897.

    (8)Dong,C.D.;Gong,X.G.J.Chem.Phys.2010,132,104301.

    (9)Scherbaum,F.;Grohmann,A.;Huber,B.;Krueger,C.; Schmidbaur,H.Angew.Chem.1988,100,1602.

    (10) Pyykko,P.Chem.Rev.1988,88,563.

    (11) Wang,S.Y.;Yu,J.Z.;Mizuseki,H.;Sun,Q.;Wang,C.Y.; Kawazoe,Y.Phys.Rev.B 2004,70,165413.

    (12)Hakkinen,H.;Moseler,M.;Kostko,O.;Morgner,N.; Hoffmann,M.A.;Issendorff,B.V.Phys.Rev.Lett 2004,93, 093401.

    (13)Yu,Y.J.;Wang,H.Y.;Yang,C.L.;Chen,J.N.ActaPhys.-Chim. Sin.2011,27,808.[于永江,王華陽,楊傳路,陳建農(nóng).物理化學(xué)學(xué)報,2011,27,808.]

    (14) Qian,H.F.;Barry,E.;Zhu,Y.;Jin,R.C.Acta Phys.-Chim.Sin. 2011,27,513.

    (15)Liang,W.H.;Wang,X.L.;Ding,X.C.;Chu,L.Z.;Deng,Z.C.; Fu,G.S.;Wang,Y.L.Acta Phys.-Chim.Sin.2011,27,1615. [梁偉華,王秀麗,丁學(xué)成,禇立志,鄧澤超,傅廣生,王英龍.物理化學(xué)學(xué)報,2011,27,1615.]

    (16)Pykko,P.;Runeberg,N.Angew.Chem.2002,41,2174.

    (17)Li,X.;Kiran,B.;Li,H.;Zhai,H.J.;Wang,L.S.Angew.Chem. Int.Edit.2002,41,4786.

    (18)Chen,M.X.;Yan,X.H.J.Chem.Phys.2008,128,174305.

    (19) Heinebrodt,M.;Malinowski,N.;Tast,F.;Branz,W.;Billas,I. M.L.;Martin,T.P.J.Chem.Phys.1996,110,9915.

    (20)Huang,W.;Wang,L.S.Phys.Rev.Lett.2009,102,153401.

    (21)Wang,L.M.;Pal,R.;Huang,W.;Zeng,X.C.;Wang,L.S. J.Chem.Phys.2010,132,114306.

    (22)Ferrighi,L.;Hammer,B.;Madsen,G.K.H.J.Am.Chem.Soc. 2009,131,10605.

    (23)Zhang,M.;He,L.M.;Zhao,L.X.;Feng,X.J.;Luo,Y.H. J.Phys.Chem.C 2009,113,6491.

    (24)Majumder,C.K.;Kandalam,A.K.;Jena,P.Phys.Rev.B 2006, 74,205437.

    (25)Zhang,M.;Chen,S.;Deng,Q.M.;He,L.M.;Zhao,L.N.;Luo, Y.H.Eur.Phys.J.D 2010,58,117.

    (26)Long,J.;Qiu,Y.X.;Chen,X.Y.;Wang,S.G.J.Phys.Chem.C 2008,112,12646.

    (27) Zhai,H.J.;Li,J.;Wang,L.S.J.Chem.Phys.2004,121,8369.

    (28)Gao,Y.;Bulusu,S.;Zeng,X.C.ChemPhysChem 2006,7,2275. (29) Li,X.;Kiran,B.;Cui,L.F.;Wang,L.S.Phys.Rev.Lett.2005, 95,253401.

    (30)Yang,A.P.;Fa,W.;Dong,J.M.J.Phys.Chem.A 2010,114, 4031.

    (31)Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.ACS Nano 2008,2, 341.

    (32)Wang,L.M.;Bai,J.;Lechtken,A.;Huang,W.;Schooss,D.; Kappes,M.M.;Zeng,X.C.;Wang,L.S.Phys.Rev.B 2009,79, 033413.

    (33) Neukermans,S.;Janssens,E.;Tanaka,H.;Silverans,R.E.; Lievens,P.Phys.Rev.Lett.2003,90,033401.

    (34)Walter,M.;Hakkinen,H.Phys.Chem.Chem.Phys.2006,8, 5407.

    (35) Autschbach,J.;Hess,B.A.;Johansson,M.P.;Neugebauer,J.; Patzschke,M.;Pyykko,P.;Reiher,M.;Sundholm,D.Phys. Chem.Chem.Phys.2004,6,11.

    (36)Zhao,L.X.;Cao,T.T.;Feng,X.J.;Liang,X.;Lei,Y.M.;Luo, Y.H.J.Mol.Struct.-Theochem 2009,895,92.

    (37) Graciela,B.P.;Ignacio,L.G.J.Mol.Struct.-Theochem 2002, 619,79.

    (38) Banerjee,A.;Ghanty,T.K.;Chakrabarti,A.;Kamal,C.J.Phys. Chem.C 2012,116,193.

    (39)Chen,D.D.;Kuang,X.Y.;Zhao,Y.R.;Shao,P.;Li,Y.F.Chin. Phys.B 2011,20,063601.

    (40)Li,Y.F.;Kuang,X.Y.;Wang,S.J.J.Phys.Chem.A 2010,114, 11691.

    (41) Jayasekharan,T.;Ghanty,T.K.J.Phys.Chem.C 2010,114, 8787.

    (42) Zhao,L.X.;Feng,X.J.;Cao,T.T.;Liang,X.;Luo,Y.H.Chin. Phys.B 2009,18,2709.

    (43) Becke,A.D.J.Chem.Phys.1986,84,4524.

    (44) Becke,A.D.J.Chem.Phys.1988,88,2547.

    (45) Becke,A.D.J.Chem.Phys.1988,88,1053.

    (46)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (47)Becke,A.D.J.Chem.Phys.1993,98,5468.

    (48)Kohn,W.;Sham,L.J.Phys.Rev.A 1965,140,1133.

    (49)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,270.

    (50)Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,299.

    (51)Wadt,W.R.;Hay,P.J.J.Chem.Phys.1985,82,284.

    (52) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.03;Gaussian Inc.:Pittsburgh,PA,2003.

    (53) Zhao,G.F.;Zeng,Z.J.Chem.Phys.2006,125,014303.

    (54)Morse,M.D.Chem.Rev.1986,86,1049.

    (55)Negishi,Y.;Nakamura,Y.;Nakajima,A.;Kaya,K.J.Chem. Phys.2001,115,3657.

    (56) Simard,B.;Hackett,P.A.J.Mol.Spectrosc.1990,142,310.

    (57)Gingerich,K.A.;Blue,G.D.J.Chem.Phys.1973,59,185.

    (58) Ho,J.;Ervin,K.;Lineberger,W.J.Chem.Phys.1990,93,6987.

    (59) Taylor,K.;Pettitte-Hall,C.;Cheshnovsky,O.;Smalley,R. J.Chem.Phys.1992,96,3319.

    (60)Tomlman,C.A.Chem.Soc.Rev.1972,1,337.

    February 14,2012;Revised:April 5,2012;Published on Web:April 6,2012.

    Geometries,Stabilities and Electronic Properties of Au12M (M=Na,Mg,Al,Si,P,S,Cl)Clusters

    ZHAO Gao-Feng*WANG Yin-Liang SUN Jian-Min WANG Yuan-Xu
    (Institute of Computational Materials Science,Henan University,Kaifeng 475004,Henan Province,P.R.China)

    The geometries,stabilities,and electronic properties of Au12M(M=Na,Mg,Al,Si,P,S,Cl) clusters were systematically investigated by using first-principlescalculationsbased on density functional theory(DFT).For each cluster,the average binding energy,the embedding energy,the vertical ionization potential,the energy gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),the natural charge population analysis,and the natural bond orbital analysis(NBO)were calculated.The lowest-energy structures of Au12M(M=Na,Mg,Al) clusters are cages with M encapsulated in the center,while structures of Au12M(M=Si,P,S,Cl)clusters are pyramidal with M at the apex.The Au12S cluster,having the full closed-shells,is the most stable. Furthermore,from the natural population analysis,it follows that charges transfer from Au to M in all the clusters.The NBO and HOMO analyses reveal that hybridization occurs between the Au s-d orbitals and the M p orbitals.

    Density functional theory;Cluster;Natural charge population analysis;Stability; Natural bond orbital analysis

    10.3866/PKU.WHXB201204063

    ?Corresponding author.Email:zgf@henu.edu.cn;Tel:+86-378-3881602.

    The project was supported by the National Natural Science Foundation of China(10804027,11011140321)and Natural Science Foundation of Education Department of Henan Province,China(2011A140003).

    國家自然科學(xué)基金(10804027,11011140321)和河南省教育廳自然科學(xué)基金(2011A140003)資助項目

    O641

    猜你喜歡
    電荷原子軌道
    連續(xù)分布電荷體系電荷元的自能問題*
    物理通報(2024年4期)2024-04-09 12:41:28
    原子究竟有多???
    原子可以結(jié)合嗎?
    帶你認(rèn)識原子
    電荷知識知多少
    電荷守恒在化學(xué)解題中的應(yīng)用
    基于單純形法的TLE軌道確定
    CryoSat提升軌道高度與ICESat-2同步運(yùn)行
    朝美重回“相互羞辱軌道”?
    靜電現(xiàn)象有什么用?
    svipshipincom国产片| 岛国毛片在线播放| 国产一区二区三区av在线| 亚洲av日韩精品久久久久久密 | 国产成人一区二区在线| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜爱| 日本一区二区免费在线视频| 国产福利在线免费观看视频| 国产乱人偷精品视频| 精品国产国语对白av| 成人黄色视频免费在线看| 免费高清在线观看日韩| 久久天堂一区二区三区四区| 狠狠精品人妻久久久久久综合| 男男h啪啪无遮挡| 国产精品人妻久久久影院| 老鸭窝网址在线观看| 久久精品国产亚洲av涩爱| 国产欧美日韩一区二区三区在线| 老司机亚洲免费影院| 啦啦啦中文免费视频观看日本| 精品午夜福利在线看| 视频在线观看一区二区三区| 91精品三级在线观看| 乱人伦中国视频| 丝袜脚勾引网站| 久久久久久久精品精品| 国产欧美日韩综合在线一区二区| 精品免费久久久久久久清纯 | 欧美另类一区| 最新在线观看一区二区三区 | 亚洲精品在线美女| av卡一久久| 国产精品免费大片| 最新的欧美精品一区二区| 看免费成人av毛片| 国产精品蜜桃在线观看| 2021少妇久久久久久久久久久| 性少妇av在线| 在线观看免费日韩欧美大片| 亚洲欧美成人精品一区二区| 亚洲国产毛片av蜜桃av| 美女视频免费永久观看网站| 午夜日韩欧美国产| 大码成人一级视频| av在线观看视频网站免费| 另类亚洲欧美激情| 亚洲图色成人| 97精品久久久久久久久久精品| 色视频在线一区二区三区| 久久人人97超碰香蕉20202| 亚洲精品国产色婷婷电影| 亚洲熟女精品中文字幕| 亚洲人成77777在线视频| 亚洲精华国产精华液的使用体验| 国产日韩欧美亚洲二区| 麻豆乱淫一区二区| 欧美 亚洲 国产 日韩一| 日韩成人av中文字幕在线观看| 女人精品久久久久毛片| 欧美最新免费一区二区三区| 国产一卡二卡三卡精品 | 久久 成人 亚洲| 久久天躁狠狠躁夜夜2o2o | 97人妻天天添夜夜摸| 中文字幕av电影在线播放| 啦啦啦在线观看免费高清www| 亚洲精品,欧美精品| 亚洲男人天堂网一区| 高清在线视频一区二区三区| 国产精品久久久久久精品古装| av女优亚洲男人天堂| 极品人妻少妇av视频| av免费观看日本| 最近中文字幕2019免费版| 捣出白浆h1v1| 日本欧美视频一区| 亚洲av综合色区一区| 嫩草影院入口| 国产亚洲最大av| 七月丁香在线播放| 十八禁人妻一区二区| kizo精华| av视频免费观看在线观看| 色婷婷久久久亚洲欧美| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 777久久人妻少妇嫩草av网站| 久久99一区二区三区| 午夜福利乱码中文字幕| 亚洲国产成人一精品久久久| 国产成人欧美在线观看 | 久久狼人影院| 亚洲图色成人| 在线观看www视频免费| 无限看片的www在线观看| 久久久久国产一级毛片高清牌| 亚洲伊人久久精品综合| 青草久久国产| 叶爱在线成人免费视频播放| 欧美色欧美亚洲另类二区 | 啦啦啦 在线观看视频| 欧美成人午夜精品| 搞女人的毛片| 久久青草综合色| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费日韩欧美大片| 最近最新中文字幕大全免费视频| 婷婷六月久久综合丁香| 又紧又爽又黄一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩高清在线视频| 最新在线观看一区二区三区| 制服诱惑二区| 51午夜福利影视在线观看| 91麻豆精品激情在线观看国产| 久久婷婷人人爽人人干人人爱 | 好看av亚洲va欧美ⅴa在| 熟女少妇亚洲综合色aaa.| 国产精品亚洲av一区麻豆| 一本久久中文字幕| 露出奶头的视频| 男女床上黄色一级片免费看| 国产欧美日韩一区二区三区在线| 国产高清videossex| 在线观看日韩欧美| 一区二区三区精品91| cao死你这个sao货| 精品国产美女av久久久久小说| 中文字幕人成人乱码亚洲影| 身体一侧抽搐| 欧美 亚洲 国产 日韩一| 真人做人爱边吃奶动态| 在线播放国产精品三级| 波多野结衣一区麻豆| 这个男人来自地球电影免费观看| 久久人妻熟女aⅴ| 国产三级黄色录像| 亚洲av成人av| 亚洲av成人av| 宅男免费午夜| 亚洲视频免费观看视频| 亚洲专区中文字幕在线| 少妇 在线观看| 国产在线精品亚洲第一网站| 欧美中文综合在线视频| 午夜久久久在线观看| 精品日产1卡2卡| 69av精品久久久久久| а√天堂www在线а√下载| 大陆偷拍与自拍| 亚洲人成77777在线视频| 亚洲,欧美精品.| 一级a爱片免费观看的视频| 搞女人的毛片| 欧美日韩瑟瑟在线播放| 亚洲国产欧美网| 精品一区二区三区四区五区乱码| av网站免费在线观看视频| 国产免费av片在线观看野外av| 黑人巨大精品欧美一区二区蜜桃| 韩国精品一区二区三区| 少妇粗大呻吟视频| ponron亚洲| 999精品在线视频| 老熟妇仑乱视频hdxx| 久久精品91蜜桃| 色哟哟哟哟哟哟| 老熟妇仑乱视频hdxx| 午夜福利18| 精品久久久久久,| 啦啦啦免费观看视频1| 亚洲国产精品sss在线观看| 亚洲国产欧美日韩在线播放| 国产高清视频在线播放一区| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美日韩在线播放| 久久婷婷成人综合色麻豆| 老司机靠b影院| 亚洲中文字幕一区二区三区有码在线看 | 美女扒开内裤让男人捅视频| 欧美久久黑人一区二区| 麻豆av在线久日| 国产高清有码在线观看视频 | 成年女人毛片免费观看观看9| 亚洲伊人色综图| 日本免费一区二区三区高清不卡 | 日本免费一区二区三区高清不卡 | 国产蜜桃级精品一区二区三区| 波多野结衣av一区二区av| 欧美在线黄色| 国产主播在线观看一区二区| 中文字幕人妻丝袜一区二区| 岛国视频午夜一区免费看| 久久香蕉国产精品| 日韩视频一区二区在线观看| 99精品欧美一区二区三区四区| 91精品三级在线观看| 亚洲精品美女久久av网站| 亚洲成av片中文字幕在线观看| 亚洲精品美女久久av网站| 精品久久久久久久毛片微露脸| 少妇裸体淫交视频免费看高清 | 久久 成人 亚洲| 欧美性长视频在线观看| 美女国产高潮福利片在线看| 成人国产综合亚洲| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区黑人| www.999成人在线观看| 欧美日本中文国产一区发布| 黄频高清免费视频| 啪啪无遮挡十八禁网站| 午夜精品久久久久久毛片777| 国产成人av教育| 精品一区二区三区四区五区乱码| 自拍欧美九色日韩亚洲蝌蚪91| 高清在线国产一区| 欧美国产日韩亚洲一区| √禁漫天堂资源中文www| 久久这里只有精品19| 日本vs欧美在线观看视频| 国产单亲对白刺激| 欧美中文综合在线视频| 亚洲欧美日韩高清在线视频| 亚洲色图av天堂| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品一区在线观看| 如日韩欧美国产精品一区二区三区| 久久久久精品国产欧美久久久| 久久青草综合色| 亚洲色图av天堂| 无遮挡黄片免费观看| 国产精品日韩av在线免费观看 | 搞女人的毛片| 999久久久国产精品视频| 国产高清视频在线播放一区| 国产精品久久久久久亚洲av鲁大| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 国产一区二区三区综合在线观看| 亚洲久久久国产精品| or卡值多少钱| 久久国产乱子伦精品免费另类| 麻豆久久精品国产亚洲av| 国产一级毛片七仙女欲春2 | 99精品欧美一区二区三区四区| 亚洲av美国av| 日韩欧美一区二区三区在线观看| 岛国视频午夜一区免费看| 亚洲av电影在线进入| 欧美日韩亚洲综合一区二区三区_| 两个人视频免费观看高清| 十八禁人妻一区二区| 欧美成狂野欧美在线观看| 可以在线观看的亚洲视频| 桃色一区二区三区在线观看| 欧美国产日韩亚洲一区| 在线播放国产精品三级| 91精品国产国语对白视频| 久久精品国产综合久久久| 一级a爱视频在线免费观看| 久久久久久免费高清国产稀缺| 啦啦啦免费观看视频1| 91麻豆精品激情在线观看国产| 老汉色av国产亚洲站长工具| 亚洲精品美女久久av网站| 女性生殖器流出的白浆| 90打野战视频偷拍视频| 国产精品 国内视频| 国产精品秋霞免费鲁丝片| 亚洲avbb在线观看| 国产人伦9x9x在线观看| 热re99久久国产66热| 久久精品亚洲精品国产色婷小说| 亚洲国产高清在线一区二区三 | 欧美精品啪啪一区二区三区| 欧美国产精品va在线观看不卡| 亚洲欧美激情在线| 97碰自拍视频| 国产高清激情床上av| 国产午夜精品久久久久久| 久久久久久久精品吃奶| 欧美人与性动交α欧美精品济南到| 午夜免费激情av| 亚洲五月天丁香| 亚洲av电影在线进入| cao死你这个sao货| 久9热在线精品视频| 两人在一起打扑克的视频| 久久久久精品国产欧美久久久| 黄色毛片三级朝国网站| 国产精品99久久99久久久不卡| 在线观看www视频免费| 男人舔女人的私密视频| 久久精品国产亚洲av香蕉五月| 午夜福利18| 久久久水蜜桃国产精品网| 俄罗斯特黄特色一大片| 午夜免费激情av| 搡老妇女老女人老熟妇| 香蕉国产在线看| 99香蕉大伊视频| 欧美成人免费av一区二区三区| 成人国语在线视频| www.熟女人妻精品国产| 成人精品一区二区免费| 黄色成人免费大全| 97人妻精品一区二区三区麻豆 | 成人特级黄色片久久久久久久| 免费在线观看完整版高清| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| 国产精品综合久久久久久久免费 | 日韩欧美一区视频在线观看| 精品不卡国产一区二区三区| 少妇粗大呻吟视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲激情在线av| 国产伦人伦偷精品视频| 亚洲色图 男人天堂 中文字幕| 午夜福利成人在线免费观看| 丝袜美足系列| 黄色成人免费大全| 国产精品影院久久| 一进一出好大好爽视频| 国产一区二区在线av高清观看| 日韩大码丰满熟妇| 满18在线观看网站| 欧美成人一区二区免费高清观看 | x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 在线观看免费视频日本深夜| 亚洲专区中文字幕在线| 日韩成人在线观看一区二区三区| www.999成人在线观看| 亚洲av熟女| 老司机午夜十八禁免费视频| 国产片内射在线| 亚洲午夜理论影院| 动漫黄色视频在线观看| 日本 av在线| 天天添夜夜摸| 国产精品美女特级片免费视频播放器 | www国产在线视频色| 级片在线观看| 757午夜福利合集在线观看| 亚洲国产高清在线一区二区三 | 国产av一区二区精品久久| 视频区欧美日本亚洲| 高清黄色对白视频在线免费看| 可以在线观看的亚洲视频| 国产av一区在线观看免费| 成人永久免费在线观看视频| 欧美日韩精品网址| 美女大奶头视频| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 精品人妻在线不人妻| 日韩av在线大香蕉| 欧美老熟妇乱子伦牲交| 国产精品久久久av美女十八| 黄频高清免费视频| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 午夜福利免费观看在线| 91麻豆av在线| 欧美不卡视频在线免费观看 | 很黄的视频免费| 久久精品亚洲熟妇少妇任你| 亚洲国产看品久久| 国产成人精品无人区| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 亚洲第一青青草原| 热99re8久久精品国产| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 国产激情欧美一区二区| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 黄色丝袜av网址大全| 97碰自拍视频| 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 亚洲色图综合在线观看| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区三区四区久久 | 99国产综合亚洲精品| 人妻久久中文字幕网| 亚洲三区欧美一区| 亚洲av成人av| 首页视频小说图片口味搜索| 在线观看66精品国产| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 深夜精品福利| 国产亚洲欧美98| 一边摸一边做爽爽视频免费| 久久久久久国产a免费观看| 国产激情久久老熟女| 一进一出抽搐gif免费好疼| cao死你这个sao货| 成人欧美大片| 免费av毛片视频| 性少妇av在线| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 999久久久国产精品视频| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| www日本在线高清视频| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 国产成人欧美| av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 欧美日本中文国产一区发布| 老司机午夜十八禁免费视频| 日韩欧美国产在线观看| 91字幕亚洲| 免费人成视频x8x8入口观看| www.精华液| 在线视频色国产色| 好男人在线观看高清免费视频 | 久久 成人 亚洲| 男女下面进入的视频免费午夜 | 天天躁夜夜躁狠狠躁躁| 成人亚洲精品一区在线观看| 大码成人一级视频| www.自偷自拍.com| 男女之事视频高清在线观看| 精品卡一卡二卡四卡免费| 宅男免费午夜| 久久伊人香网站| 亚洲国产毛片av蜜桃av| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 色播在线永久视频| 亚洲成av片中文字幕在线观看| www.精华液| 亚洲国产毛片av蜜桃av| 国产欧美日韩综合在线一区二区| 一二三四在线观看免费中文在| 黄色视频不卡| 久久伊人香网站| www.自偷自拍.com| 一区二区三区精品91| 欧美日韩精品网址| 亚洲七黄色美女视频| 午夜久久久久精精品| 男女下面进入的视频免费午夜 | www.www免费av| 无限看片的www在线观看| 久热这里只有精品99| 在线观看免费日韩欧美大片| 国产精品免费视频内射| 51午夜福利影视在线观看| 欧美日本视频| 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 成年女人毛片免费观看观看9| 午夜视频精品福利| 欧美乱妇无乱码| 亚洲人成网站在线播放欧美日韩| 欧美在线一区亚洲| 欧美 亚洲 国产 日韩一| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 日本精品一区二区三区蜜桃| 黄色丝袜av网址大全| 久久婷婷人人爽人人干人人爱 | 国产免费av片在线观看野外av| 多毛熟女@视频| 99re在线观看精品视频| 久久草成人影院| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 日韩国内少妇激情av| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区| 免费看a级黄色片| 热99re8久久精品国产| 男人舔女人的私密视频| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| 好男人在线观看高清免费视频 | 亚洲一区二区三区色噜噜| www.www免费av| 一区二区三区激情视频| 在线观看午夜福利视频| 国产精品99久久99久久久不卡| 亚洲五月天丁香| 一级黄色大片毛片| 久久久久国内视频| 一区二区三区激情视频| 视频在线观看一区二区三区| 精品福利观看| 国产成人精品无人区| 老熟妇乱子伦视频在线观看| 国产精品久久久久久人妻精品电影| 亚洲专区字幕在线| 国产伦人伦偷精品视频| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 在线十欧美十亚洲十日本专区| 精品免费久久久久久久清纯| 国产精品亚洲美女久久久| 一夜夜www| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 国产99久久九九免费精品| 国产黄a三级三级三级人| 日日爽夜夜爽网站| 黄色视频不卡| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 日韩欧美在线二视频| 亚洲片人在线观看| 精品欧美一区二区三区在线| 国产又色又爽无遮挡免费看| 精品日产1卡2卡| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 最好的美女福利视频网| 免费看十八禁软件| 国产精品野战在线观看| 99热只有精品国产| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 久9热在线精品视频| 亚洲熟女毛片儿| 久久久久国内视频| 亚洲精品在线美女| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 久9热在线精品视频| 18禁观看日本| 一区在线观看完整版| 嫩草影视91久久| 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区| 黄色 视频免费看| 无人区码免费观看不卡| 亚洲伊人色综图| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 久久久国产欧美日韩av| 精品午夜福利视频在线观看一区| 午夜a级毛片| 两个人看的免费小视频| 99在线人妻在线中文字幕| 黑人操中国人逼视频| 免费观看人在逋| 757午夜福利合集在线观看| 久久久久久久久久久久大奶| 免费无遮挡裸体视频| 午夜福利在线观看吧| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 精品人妻1区二区| 老司机午夜福利在线观看视频| 国产真人三级小视频在线观看| 午夜久久久在线观看| 欧美在线黄色| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 国产成人免费无遮挡视频| 少妇裸体淫交视频免费看高清 | 岛国在线观看网站| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 一级黄色大片毛片| 亚洲五月天丁香| 岛国在线观看网站| 国产精品日韩av在线免费观看 | 久久国产精品影院| 久久久久国内视频|