• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋅摻雜提高LiNi1/3Co1/3Mn1/3O2正極材料的電化學穩(wěn)定性

    2012-12-11 09:06:52李節(jié)賓徐友龍杜顯鋒孫孝飛熊禮龍
    物理化學學報 2012年8期
    關鍵詞:物理化學充放電電化學

    李節(jié)賓 徐友龍 杜顯鋒 孫孝飛 熊禮龍

    (1西安交通大學,電子陶瓷與器件教育部重點實驗室,國際電介質研究中心,西安710049; 2陜西應用物理化學研究所,西安710061)

    鋅摻雜提高LiNi1/3Co1/3Mn1/3O2正極材料的電化學穩(wěn)定性

    李節(jié)賓1,2徐友龍1,*杜顯鋒1孫孝飛1熊禮龍1

    (1西安交通大學,電子陶瓷與器件教育部重點實驗室,國際電介質研究中心,西安710049;2陜西應用物理化學研究所,西安710061)

    通過共沉淀法與固相法相結合制備了摻鋅的高穩(wěn)定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正極材料.循環(huán)伏安(CV)曲線表明Zn摻雜使氧化峰與還原峰的電勢差減小到0.09 V,電化學阻抗譜(EIS)曲線表明Zn摻雜使電極的阻抗從266 Ω減小到102 Ω.Li+嵌入擴散系數(shù)從1.20×10-11cm2·s-1增大到2.54×10-11cm2· s-1.Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正極材料以0.3C充放電在較高的截止電壓(4.6 V)下比其他兩種材料的電化學循環(huán)性能更穩(wěn)定,其第二周的放電比容量為176.2 mAh·g-1,室溫下循環(huán)100周后容量幾乎沒衰減;高溫(55°C)下充放電循環(huán)100周,其放電比容量平均每周僅衰減0.20%,遠小于其他兩種正極材料(LiNi1/3Co1/3Mn1/3O2平均每周衰減0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰減0.38%).Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正極材料以3C充放電時其放電比容量可達142 mAh·g-1,高于其他兩種正極材料.電化學穩(wěn)定性的提高歸因于Zn摻雜后減小了電極的極化和阻抗,增大了鋰離子擴散系數(shù).

    LiNi1/3Co1/3Mn1/3O2; 高截止電壓;Zn摻雜; 正極材料; 鋰離子電池

    1 Introduction

    Since the layered transition metal oxide LiNi1/3Co1/3Mn1/3O2was initially proposed by Ohzuku and Makimura1in 2001,it has been extensively studied2-7due to its higher reversible capacity,lower cost,less toxicity,and enhanced safety features compared to conventional LiCoO2.The LiNi1/3Co1/3Mn1/3O2powder has a typical hexagonal α-NaFeO2structure with a space group of R3m.Its reversible capacity comes from the redox reactions associated with the Ni2+/3+,Ni3+/4+,and Co3+/4+couples.8-11 The LiNi1/3Co1/3Mn1/3O2cathode material can deliver a high capacity of ca 200 mAh·g-1when it is charged to 4.6 V(vs Li/ Li+).12-16It is considered to be one of the best candidate cathode materials for high-power applications,such as electric vehicles (EVs)and hybrid electric vehicles(HEVs).8

    However,there are still two important problems limiting the applications of LiNi1/3Co1/3Mn1/3O2cathode material in highpower lithium ion batteries.One is the serious capacity fading, especially if cycled at 4.6 V(vs Li/Li+);10-13the other is its poor rate capacity due to its low Li ion diffusion as well as the electronic conductivity.14-16It is thought that doping of LiCoO2by a transition metal ion results in a capacity increase while non-transition metal ion doping results in a voltage increase at the expense of capacity.17,18To overcome both problems of LiNi1/3Co1/3Mn1/3O2cathode material,one significant approach is doping by other transition metals such as Ti,Cr or non-transition metals such asAl,Mg.13,19-21

    Since Zn is chemically similar to magnesium in some aspects,22it has been used to improve the electrochemical properties of LiNi0.8-xCo0.2ZnxO223and LiNixCo1/3Mn1/3ZnxO2.18However,the electrochemical stabilities of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2cathode materials are few studied at high cut-off voltages(eg. 4.6 V,vs Li/Li+).

    In this work,the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05) cathode materials have been synthesized by solid-state approaches with co-precipitated precursors.The effects on structures,morphologies,and electrochemical properties at high cut-off voltage were investigated in detail.

    2 Experimental

    2.1 Synthesis of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials

    The M3O4(M=Ni1/3Co1/3Mn1/3)powder was prepared by sintering co-precipitated M(OH)2at 500°C,which was reported in the previous paper.24Stoichiometric amounts of LiOH·H2O (99.5%)and different amounts of nanoscale ZnO(Shanghai Shanghui Nano Co.,molar ratios of M:0%,2%,5%)were added to M3O4and ball-milled for 24 h.The mixtures were then sintered at 850°C for 24 h in an air furnace to synthesize Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)materials,which were marked by Zn0,Zn2,and Zn5,respectively.

    2.2 Cathode material characterization

    The powder X-ray diffraction(XRD)measurement was carried out on a PANalytical,X?Pert PRO X diffractometer equipped with a Cu Kαradiation(λ=0.154056 nm).The 2θ Bragg angles were scanned over a range of 10°-80°.Lattice parameters were investigated by XRD with the X?Pert Highscore Pluse software.Scanning electron microscope(SEM) was performed using a JSM-6700F.Atomic absorption spectroscopy analysis(analytikjenaAG AAS,NoV AA 300)was performed to investigate the real chemical composition of Zn element.

    The electrochemical properties of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials were examined in CR2016 coin type cells.The cathode electrodes were prepared by pasting the mixture of 70%(mass fraction)cathode materials,20% acetylene black,and 10%PVDF(ARKEMA,Kynar)on an aluminum foil current collector.The electrolyte was 1 mol·L-1LiPF6/ethylene carbonate(EC)+diethyl carbonate(DEC)+ethyl methyl carbonate(EMC)(Shenzhen Capchem Technology Co., LTD,1:1:1 in volume ratio).Lithium metal foil was used as negative electrode.The cells were assembled in a Mikrouna Super(1225/750)glove box under a dry argon atmosphere and then aged for 10 h before initial charge to ensure full absorption of the electrolyte into the electrode.Both cyclic voltammetry(CV)tests and electrochemical impedance measurements (EIS)were performed using Versatile Multichannel Potentiostat 2/Z with the ability for impedance measurements(Bio-logic).The CV measurements were tested in the potential range of 2.8-4.7 V using the galvanostatic mode at a scan rate of 0.1 mV·s-1.The EIS measurements frequency range was from 100 kHz to 10 mHz at 3.6 V.Charge/discharge characteristics were tested galvanostatically in the voltage of 2.8-4.6 V(vs Li/Li+) by LAND Battery Test System.

    3 Results and discussion

    3.1 Physical and chemical performances

    Zn contents were determined by atomic absorption spectroscopy analysis and the x values have been determined to be 0, 1.26%,and 3.21%,which are closed to the calculated theoretic values.

    The structures of Zn doped LiNi1/3Co1/3Mn1/3O2materials were measured by XRD,as shown in Fig.1.The materials can be indexed based on hexagonal α-NaFeO2structure.There is no obvious diffraction peak for new phases,suggesting that their crystal structures are hardly changed by Zn-doping.The absence of diffraction patterns corresponding to Zn compounds is due to the low doped Zn-content.23The diffraction patterns show clear splitting of the hexagonal characteristic doublets (006)/(102)and(108)/(110),indicating that the products possess typical layered characteristics.25,26The lattice parameters of a,c,c/a and the unit cell volumes(V)for all the cathode materials are summarized in Table 1.The V,c,and c/a of the samples slightly increase with the Zn-doped content.The expansions of V and c indicate that Zn2+ions have doped in ZnO during the heat-treatment process because the radius of Zn2+(0.074 nn)is less than that of Li+(0.076 nm)while larger than that of Ni2+(0.069 nm),Co3+(0.0545 nm),and Mn4+(0.054 nm).It means that the distance DLi-Oand the interslab thickness I(LiO2)increase and lead to the increase of the electrostatic repulsions between the slabs when lithium ions are deintercalated from the interslab,which is corresponding to the effect of magnesium doping on lithium nickel cobalt oxide by Pouillerie et al.27

    Fig.1 XRD patterns of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)powders

    In Fig.2,the SEM images of Zn0,Zn2,and Zn5 show similar morphologies.The powders mainly consist of agglomerated particles with primary particles of 200-300 nm.Hence,Zn doping does not change their morphologies.

    Table 1 Lattice parameters of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)powders

    3.2 Electrochemical performances

    CV and EIS were carried out to investigate the electrochemical performances of the Zn-doped Li(Ni1/3Co1/3Mn1/3)1-xZnxO2cathode materials.Fig.3 shows the cyclic voltammograms of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials between 2.8 and 4.7 V at a scan rate of 0.1 mV·s-1for the second cycle.The anodic and cathodic peaks center at around 3.80 and 3.64 V for Zn0,3.79 and 3.70 V for Zn2,3.81 and 3.70 V for Zn5,respectively,corresponding to the Ni2+/Ni4+redox couple.These results suggest that there is no structural transitions from hexagonal to monoclinic during the charge/discharge between 2.8 and 4.6 V.28As shown in Fig.3,the voltage differences between the oxidation and reduction are 0.09 V for Zn2 and 0.11 V for Zn5,which are less than that(0.16 V)for Zn0. Thus,a little Zn doping reduces the polarization possibly due to improved structure order of the materials.

    Fig.3 Cyclic voltammograms of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials between 2.8 and 4.7 V at a scan rate of 0.1 mV·s-1The voltage differences between the oxidation and reduction are 0.09 V for Zn2,0.11 V for Zn5,and 0.16 V for Zn0.

    Fig.2 SEM images of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)powdersThe powders mainly consisted of agglomerated particles with primary particles of 200-300 nm.

    In order to test the effect of Zn doping on lithium ion transport through LiNi1/3Co1/3Mn1/3O2electrode,CV technique was carried out.Generally,CV measurement is a typical method to evaluate the apparent diffusion coefficient of Li ions in electrode materials.29,30Fig.4a shows a group of CV curves of Zn2 sample at various scan rates from 0.3 to 1.5 mV·s-1.There are two clear oxidation/reduction peaks,corresponding to the ma-jor oxidation/reduction reactions during Li deintercalation/intercalation in Zn2.The peak current(Ip)increases with the increasing scan rate,the cathodic peaks shift to lower potential, and the anodic peaks shift to higher potential.The peak current (Ip)versus v1/2are plotted in Fig.4b,showing that the peak current Ipexhibits a linear relationship with v1/2due to semi-infinite diffusion controlled process.At relatively higher scan rates,the chemical diffusion coefficient of Li ions can be calculated from the Randles-Sevcik equation,which can be expressed as follows:31

    Fig.4 (a)CV curves of Zn2 between 2.8 and 4.7 V at different scan rates(v)and(b)square root of scan rate dependence of the peak current Ipfor Zn2

    where A is the active electrode area(0.785 cm2),C*Liis the bulk concentration of Li in electrode(0.0487 mol·cm-3),v is the potential scan rate(V·s-1),DLiis the chemical diffusion coefficient of Li ions in the film(cm2·s-1),and n is the charge-transfer number.Based on Eq.(1),the chemical diffusion coefficients of Li ion are estimated to be 2.54×10-11cm2·s-1for Li ion intercalation process and 13.34×10-11cm2·s-1for Li ion deintercalation process.Using the same method,the Li ion diffusion coefficients of Zn0 and Zn5 are calculated and listed in Table 2.It can be seen that Zn2 has the highest diffusion coefficients of Li ions,meaning that partial transition metal ion substituted by Zn ions leads to higher Li ion diffusion coefficients and promotes lithium transportation.The increased Li ion diffusion coefficient can be attributed to the larger cell size and parameter c caused by Zn doping,which is favorable for lithium ion migration.

    Table 2 Li ion diffusion coefficients of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials

    The impedances are evaluated at 3.6 V after 10 cycles by EIS.The EIS curves of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02, 0.05)electrodes are described in Fig.5.All curves include a semicircle in the high-frequency and intermediate frequency region,and an inclined line in the low-frequency region.The semicircle comes from the contact resistance at the composite cathode and the charge transfer reaction at the interface of the cathode/electrolyte,and the inclined line in the lower frequency range is attributed to Warburg impedance that is associated with Li ion diffusion through the cathode.The impedance of Zn2 is 102 Ω,which is less than other two materials,viz.266 Ω for Zn0 and 149 Ω for Zn5.The lower impedance for Zn2 indicates the better intercalation-deintercalation of Li ion in Zn2 matrix,which can be attributed to slightly increasing in unit cell volume and facilitating Li ion intercalation-deintercalation from the oxide structure.It was known that the electrochemical performance of cathode materials may be ascribed to electrode polarization,impedance,and Li ion diffusion coefficients,14,32,33which are improved by Zn doping.

    The galvanostatic charge/discharge tests were carried out to study the electrochemical performances.Fig.6 shows the second charge/discharge curves of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cells evaluated at 0.3C(LiNi1/3Co1/3Mn1/3O2: 1C≈150 mAh·g-1;Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2:1C≈160 mAh· g-1;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2:1C≈130 mAh·g-1)between 2.8 and 4.6 V at room temperature.It can be seen that the charge/discharge capacities are 226.2/189.0 mAh·g-1for Zn0, 181.4/176.2 mAh·g-1for Zn2,and 155.8/141.1 mAh·g-1for Zn5.Correspondingly,the irreversible capacities are 37.2,5.2, and 14.7 mAh·g-1,and the charge/discharge efficiencies are 83.5%,97.1%,and 90.6%,respectively.The decrease of charge/discharge capacity by Zn-doping may be ascribed to Zn2+with large radius blocking the Li+intercalation-deintercala-tion path or reducing a bulk concentration of Ni2+.34Although Zn-doping decreases the capacities of the initial several cycles, Zn2 and Zn5 exhibit greater charge/discharge efficiencies than Zn0 because of the sabilized structure by Zn doping.Therefore,the reversibility of LiNi1/3Co1/3Mn1/3O2cathode material at high cut-off voltage(4.6 V)is enhanced.

    Fig.5 Electrochemical impedance spectroscopies of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes at 3.6 VThe impedances are evaluated at 3.6 V after 10 cycles and are 266 Ω for Zn0,102 Ω for Zn2,and 149 Ω for Zn5.

    Fig.6 The second charge/discharge curves of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)at the rate of 0.3C over a voltage range of 2.8-4.6 VThe charge/discharge capacities are 226.2/189.0 mAh·g-1for Zn0,181.4/ 176.2 mAh·g-1for Zn2,and 155.8/141.1 mAh·g-1for Zn5.

    Fig.7 Cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials operating at 0.3C between 2.8 and 4.6 V at room temperature

    The cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials operating at the 0.3C rate between 2.8 and 4.6 V at room temperature are shown in Fig.7. From Fig.7a,the discharge capacity of Zn0 displays a severe capacity fading during cycling and the capacity retention is only 65.9%after 100 cycles.The capacity loss results from the Co dissolution into the electrolyte at high cut-off voltage.35However,the cycling performance of Zn2 is very stable,showing no appreciable drop after 100 cycles.It is clearly shown that the cycling performance of LiNi1/3Co1/3Mn1/3O2cathode materials is improved by Zn-doping.Since the binding energy of Zn(2p3/2)(1021.8 eV)36is much larger than that of Ni(2p3/2) (854.0 eV),Co(2p3/2)(779.5 eV),and Mn(2p3/2)(642.2 eV),3Zn-doping leads to stabilizing the structures of the cathode materials and reducing the Co dissolution into the electrolyte at high cut-off voltages.Furthermore,the stronger Zn-O bond means the weaker Li-O bond,which is favorable to lithium ion migration.30,37Fig.7b compares the variation of the 100th charge/discharge curves.Little irreversible capacities are observed in all samples.The separation between charge and discharge curves of Zn2 is small,indicating almost no polarzation along with cycling.Therefore,the electrochemical stabilities are improved by Zn-doping.

    The impedances of Zn0,Zn2,and Zn5 are measured at 3.6 V after 100 cycles by EIS,as shown in Fig.8.The impedance of Zn2 is 61 Ω,and that of Zn5 is 75 Ω.The impedances of Zn2 and Zn5 decrease largely with cycling;while that of Zn0 is more than 1000 Ω,which increases with cycling.It means that using 2%Zn2+doping can stabilize the structures of cathode materials,therefore,reduces the impedance and increases the Li ion migration.

    Fig.8 Electrochemical impedance spectroscopies of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes after 100 cycles at room temperatureThe impedances are measured at 3.6 V in 100 cycles and are 1031 Ω for Zn0,61 Ω for Zn2,and 75 Ω for Zn5,respectively.

    The test temperature is a key factor for the performance of the Li-ion cells.The faster degradation of cathode material would occur at higher test temperature.38Fig.9 displays the cycling performance at 0.3C rate under 55°C at the voltage range of 2.8-4.6 V after 5 cycles at room temperature.The discharge capacities of all samples are greatly improved at 55°C, which can be attributed to the higher Li ion diffusion rate at high temperature.However,the capacity retentions decrease obviously.From Fig.9a,the discharge capacity of Zn0 declines fast,with an average capacity loss of 0.54%per cycle in 100 cycles.In contrast,the average discharge capacity losses are only 0.20%and 0.38%per cycle for Zn2 and Zn5 in 100 cycles,respectively.Fig.9b shows the Zn0 and Zn2 charge/discharge curves of the initial and 100th cycles at 55°C.The irreversible capacity for Zn2 is 46 mAh·g-1,which is less than the value of 137 mAh·g-1for Zn0.The 100th charge and discharge curves diverge greatly,which indicates that the electrode polarizations develop on cycling at high temperature.The increasing electrode polarizations can lead to degradation in capacities.Furthermore,the severe capacity fading can also result from the lithium dendrite from irreversible lithium-ion deposition on the anode and the decomposition of the electrolyte on the surface of cathode materials at high cut-off voltages and high temperatures.Chen?s research results suggest that Zn-doping can largely reduce the exothermic heat amount and improve the thermal decomposition temperature of cathode materials.19Therefore,Zn-doping can not only reduce electrode polarizations and the decomposition of the electrolyte on the surface of cathode materials but also stabilize the structure of cathode materials at high temperature(55°C).

    Fig.9 Cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials operating at 0.3C between 2.8 and 4.6 V at 55°C(a)the cycle curves;(b)the 100th charge/discharge curves of Zn0 and Zn2

    Fig.10 Electrochemical impedance spectroscopies of theLi(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes after 100 cycles at 55°CThe impedances are 1279 Ω for Zn0,314 Ω for Zn2,and 358 Ω for Zn5,respectively.

    After 100 cycles at high temperature,the impedances of Zn0,Zn2,and Zn5 are evaluated at 3.6 V(seen in Fig.10)under room temperature.Although the ex-situ EIS can not provide the real impedance of these cathodes after high temperature cycling,it still shows that Zn2 has the lowest impedance even side reactions and lithium detritions are possibly happened at high temperatures.Moreover,the impedance increase compared to Fig.5 is smaller in Zn doped materials.Our further work is undergoing to study the detailed impedance increase in Fig.10,but the present results also illuminate the more stable cyclability of Zn2 at 55°C.

    High rate performance is one of the significant electrochemicalcharacteristicsoflithium ion batteriesrequired for high-power applications.Fig.11 displays the cycling behavior and rate capability of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02, 0.05)cathode materials at various discharge rates of 0.1C, 0.3C,0.6C,1.5C,and 3C between 2.8 and 4.6 V at room temperature(charged and discharged at the same rate for each test).For Zn2 and Zn5,the initial discharge capacities are 185 and 158 mAh·g-1at 0.1C respectively,while that of Zn0 is 198 mAh·g-1.When the discharge rate reaches to 3C,the discharge capacity of Zn2 is 142 mAh·g-1,which is higher than those of Zn0(129 mAh·g-1)and Zn5(108 mAh·g-1).The higher discharge capacity at higher rate can be related to the much stable layer structure of cathode materials by Zn-doping.After discharging at 3C rate,all the cells are cycled at 0.1C again.Zn2 and Zn5 show better recoverability in discharge capacity, which is consistent with the result in Fig.7a.

    Fig.11 Cycling behaviors and rate capability test of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials at various discharge rates between 2.8 and 4.6 V

    4 Conclusions

    In this work,the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05) cathode materials have been synthesized by the solid-state approaches with co-precipitated precursors.It is found that Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2has the most stable cycling capability during constant charge/discharge at high cut-off voltage (4.6 V).There is almost no capacity decay after 100 cycles at room temperature and the average capacity loss is only 0.20% per cycle in 100 cycles at high temperature(55°C).It can still deliver a discharge capacity of 142 mAh·g-1at 3C.Reduced electrode polarization,decreased impedance,increased lithium ion diffusion,and excellent cycling performance are attributed to the stable structure of Zn doped LiNi1/3Co1/3Mn1/3O2.

    (1)Ohzuku,T.;Makimura,Y.Chem.Lett.2001,7,642.

    (2) Hwang,B.J.;Tsai,Y.W.;Carlier,D.;Ceder,G.Chem.Mater. 2003,15,3676.doi:10.1021/cm030299v

    (3) Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.Electrochim. Acta 2002,48,145.doi:10.1016/S0013-4686(02)00593-5

    (4)Wu,F.;Wang,M.;Su,Y.F.;Chen,S.Acta Phys.-Chim.Sin. 2009,25,629.[吳 峰,王 萌,蘇岳峰,陳 實.物理化學學報,2009,25,629.]doi:10.3866/PKU.WHXB20090411

    (5)Tu,J.P.;Wu,H.M.;Chen,X.T.;Yuan,Y.F.;Li,Y.;Zhao,X. B.;Cao,G.S.J.Power Sources 2006,159,291.doi:10.1016/j. jpowsour.2006.04.032

    (6) Chen,J.;Wang,S.;Whittingham,M.S.J.Power Sources 2007, 174,442.doi:10.1016/j.jpowsour.2007.06.189

    (7)Reddy,M.V.;Rao,G.V.S.;Chowdari,B.V.R.J.Power Sources 2006,159,263.doi:10.1016/j.jpowsour.2006.04.134

    (8)Koyama,Y.;Tanaka,I.;Adachi,H.;Makimura,Y.;Ohzuku,T. J.Power Sources 2003,119,644.doi:10.1016/S0378-7753(03) 00194-0

    (9)Yoon,W.S.;Grey,C.P.;Balasubramanian,M.;Yang,X.Q.; Fischer,D.A.;McBreen,J.Electrochem.Solid State Lett.2004, 7,A53.

    (10) Kim,J.M.;Chung,H.T.Electrochim.Acta 2004,49,937.doi: 10.1016/j.electacta.2003.10.005

    (11)Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.J.Electrochem. Soc.2004,151,A1324.

    (12) Yabuuchi,N.;Ohzuku,T.J.Power Sources 2003,119,171.doi: 10.1016/S0378-7753(03)00173-3

    (13)Chebiam,R.V.;Prado,F.;Manthiram,A.Chem.Mater.2001, 13,2951.doi:10.1021/cm0102537

    (14)Kim,H.S.;Kong,M.;Kim,K.;Kim,I.J.;Gu,H.B.J.Power Sources 2007,171,917.doi:10.1016/j.jpowsour.2007.06.028

    (15) Na,S.H.;Kim,H.S.;Moon,S.I.Solid State Ionics 2005,176, 313.doi:10.1016/j.ssi.2004.08.016

    (16)Sun,Y.K.;Lee,Y.S.;Yoshio,M.;Amine,K.Electrochem.Solid State Lett.2002,5,L1.

    (17) Ceder,G.;Chiang,Y.M.;Sadoway,D.R.;Aydinol,M.K.;Jang, Y.I.;Huang,B.Nature 1998,392,694.doi:10.1038/33647

    (18)Zou,M.J.;Yoshio,M.;Gopukumar,S.;Yamaki,J.Chem. Mater.2003,15,4699.doi:10.1021/cm0347032

    (19)Chen,Y.H.;Chen,R.Z.;Tang,Z.Y.;Wang,L.J.Alloy.Compd. 2009,476,539.doi:10.1016/j.jallcom.2008.09.055

    (20) Ren,H.B.;Li,X.;Peng,Z.H.Electrochim.Acta 2011,56, 7088.doi:10.1016/j.electacta.2011.05.104

    (21) Milewska,A.;Molenda,M.;Mokenda,J.Solid State Ionics 2011,192,313.doi:10.1016/j.ssi.2010.11.026

    (22) Holleman,A.F.;Wiberg,E.;Wiberg,N.Lehrbuch der Anorganischen Chemie;Gruyter:Berlin,1995.

    (23) Fey,G.T.K.;Chen,J.G.;Subramanian,V.;Osaka,T.J.Power Sources 2002,112,384.doi:10.1016/S0378-7753(02)00400-7

    (24) Li,J.B.;Xu,Y.L.;Xiong,L.L.;Wang,J.P.Acta Phys.-Chim. Sin.2011,27,2593.[李節(jié)賓,徐友龍,熊禮龍,王景平.物理化學學報,2011,27,2593.]doi:10.3866/PKU.WHXB20111104

    (25) Jouanneau,S.;Eberman,K.W.;Krause,L.J.;Dahn,J.R. J.Electrochem.Soc.2003,150,A1637.

    (26) Kim,J.H.;Yoon,C.S.;Sun,Y.K.J.Electrochem.Soc.2003, 150,A538.

    (27) Pouillerie,C.;Perton,F.;Biensan,P.;Peres,J.P.;Broussely,M.; Delmas,C.J.Power Sources 2001,96,293.doi:10.1016/ S0378-7753(00)00653-4

    (28) Liu,L.;Sun,K.N.;Zhang,N.Q.;Yang,T.Y.J.Solid State Electrochem.2009,13,1381.doi:10.1007/s10008-008-0695-z

    (29) Xia,H.;Lu,L.;Lai,M.O.Electrochim.Acta 2009,54,5986. doi:10.1016/j.electacta.2009.02.071

    (30) Xiong,L.L.;Xu,Y.L.;Zhang,C.;Zhang,Z.W.;Li,J.B. J.Solid State Electrochem.2011,15,1263.doi:10.1007/ s10008-010-1195-5

    (31) Bard,A.J.;Faulkner,L.R.Electrochemical Methods,2nd ed.; Wiley:New York,2001.

    (32)Jiao,L.F.;Zhang,M.;Yuan,H.T.;Zhao,M.;Guo,H.;Wang, W.;Zhou,X.D.;Wang,Y.M.J.Power Sources 2007,167,178. doi:10.1016/j.jpowsour.2007.01.070

    (33) Ghosh,P.;Mahanty,S.;Basu,R.N.Electrochim.Acta 2009,54, 1654.doi:10.1016/j.electacta.2008.09.050

    (34) Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010, 10,4123.doi:10.1021/nl1023595

    (35) Hwang,B.J.;Santhanam,R.;Chen,C.H.J.Power Sources 2003,114,244.doi:10.1016/S0378-7753(02)00584-0

    (36) Kyu-Hang,L.;Nam-In,C.;Eui-Jung,Y.;Nam,H.G.Appl.Surf. Sci.2011,256,4241.

    (37) Katsumata,T.;Matsui,Y.;Inaguma,Y.;Itoh,M.Solid State Ionics 1996,86(8),165.

    (38)Wu,F.;Wang,M.;Su,Y.F.;Bao,L.Y.;Chen,S.Electrochim. Acta 2009,54,6803.doi:10.1016/j.electacta.2009.06.075

    March 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2Cathode Materials

    LI Jie-Bin1,2XU You-Long1,*DU Xian-Feng1SUN Xiao-Fei1XIONG Li-Long1
    (1International Center for Dielectric Research,Electronic Materials Research Laboratory of the Ministry of Education,Xi?an Jiaotong University,Xi?an 710049,P.R.China;2Shaanxi Applied Physics and Chemistry Research Institute; Xi?an 710061,P.R.China)

    Highly stable Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials doped with Zn are synthesized by solid-state reactions with co-precipitated precursors.Cyclic voltammetry(CV)curves reveal thatthe potentialdifference between oxidation and reduction decreasesto 0.09 V,and from electrochemical impedance spectra(EIS)curves,the impedance of LiNi1/3Co1/3Mn1/3O2cathode materials is reduced from 266 to 102 Ω.The diffusion coefficients of Li+ions in intercalation processes increase from 1.20×10-11to 2.54×10-11cm2·s-1.Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2is stable at 0.3C(constant charge/discharge)at a high cut-off potential of 4.6 V vs Li/Li+.It has a second discharge capacity of 176.2 mAh·g-1at 0.3C and 142 mAh·g-1at 3C,and keep almost no decay after 100 cycles at room temperature.Furthermore,its average capacity loss per cycle at 55°C is 0.20%,which is lower compared with 0.54%for LiNi1/3Co1/3Mn1/3O2and 0.38%for Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2after 100 cycles.The improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2is attributed to the reduced electrode polarization and impedance values,and an increased Li+ion diffusion coefficient.

    Lithium nickel cobalt manganese oxide;High cut-off voltage;Zn-doping;Cathode material; Lithium ion battery

    10.3866/PKU.WHXB201205152

    ?Corresponding author.Email:ylxuxjtu@mail.xjtu.edu.cn;Tel:+86-29-82665161.

    The project was supported by the National Natural Science Foundation of China(50902109).

    國家自然科學基金(50902109)資助項目

    O646

    猜你喜歡
    物理化學充放電電化學
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    V2G模式下電動汽車充放電效率的研究
    電化學中的防護墻——離子交換膜
    關于量子電化學
    基于SG3525的電池充放電管理的雙向DC-DC轉換器設計
    電子制作(2019年23期)2019-02-23 13:21:36
    Chemical Concepts from Density Functional Theory
    電化學在廢水處理中的應用
    Na摻雜Li3V2(PO4)3/C的合成及電化學性能
    鋰離子電池充放電保護電路的研究
    電源技術(2015年5期)2015-08-22 11:18:02
    国产高清videossex| 国产99白浆流出| 国产野战对白在线观看| 欧美黄色片欧美黄色片| 亚洲黑人精品在线| 亚洲成a人片在线一区二区| 精品第一国产精品| 国产亚洲精品一区二区www| 国产高清视频在线播放一区| 日韩欧美三级三区| 国产精品久久视频播放| 久久草成人影院| 久久国产亚洲av麻豆专区| 在线十欧美十亚洲十日本专区| 亚洲自偷自拍图片 自拍| 国产亚洲精品一区二区www| 亚洲色图av天堂| 日韩中文字幕欧美一区二区| 久久久久久人人人人人| 一a级毛片在线观看| 久久中文字幕一级| 精品一区二区三区四区五区乱码| 一级毛片精品| 中文亚洲av片在线观看爽| 日本免费一区二区三区高清不卡 | 我的亚洲天堂| 丰满人妻熟妇乱又伦精品不卡| 久久午夜综合久久蜜桃| 男男h啪啪无遮挡| 免费日韩欧美在线观看| 一边摸一边做爽爽视频免费| 国产高清视频在线播放一区| 亚洲国产精品sss在线观看 | 亚洲欧美一区二区三区黑人| 国产精品av久久久久免费| 久久99一区二区三区| a在线观看视频网站| av福利片在线| 精品午夜福利视频在线观看一区| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 搡老熟女国产l中国老女人| 亚洲专区国产一区二区| 免费在线观看影片大全网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人国产一区在线观看| 亚洲熟妇熟女久久| 中文字幕另类日韩欧美亚洲嫩草| 夜夜爽天天搞| 欧美人与性动交α欧美精品济南到| 国产成人av教育| 国产精品久久电影中文字幕| 看免费av毛片| 日韩免费高清中文字幕av| 九色亚洲精品在线播放| 老司机靠b影院| 亚洲美女黄片视频| 亚洲激情在线av| 久久久国产精品麻豆| 欧美成人性av电影在线观看| 亚洲精华国产精华精| 久久香蕉激情| 欧美中文日本在线观看视频| 国产人伦9x9x在线观看| 看黄色毛片网站| a级毛片黄视频| 欧美日韩亚洲高清精品| 一级a爱片免费观看的视频| 亚洲第一青青草原| 欧美日韩乱码在线| 亚洲av电影在线进入| 国产一区二区三区在线臀色熟女 | 亚洲男人的天堂狠狠| av国产精品久久久久影院| 国产免费男女视频| 亚洲 欧美 日韩 在线 免费| 亚洲少妇的诱惑av| 美女高潮喷水抽搐中文字幕| 天天添夜夜摸| 又大又爽又粗| 性少妇av在线| 9色porny在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品永久免费网站| 热re99久久国产66热| 午夜激情av网站| 久久久久亚洲av毛片大全| 午夜福利一区二区在线看| www.999成人在线观看| 亚洲九九香蕉| 99在线视频只有这里精品首页| 校园春色视频在线观看| 亚洲国产欧美网| 在线观看免费视频日本深夜| 国产男靠女视频免费网站| 国产91精品成人一区二区三区| 亚洲九九香蕉| 99香蕉大伊视频| 法律面前人人平等表现在哪些方面| 日韩大尺度精品在线看网址 | 水蜜桃什么品种好| 亚洲精品国产区一区二| 男女午夜视频在线观看| 宅男免费午夜| 一本大道久久a久久精品| 丝袜在线中文字幕| 国产一区在线观看成人免费| 国产欧美日韩精品亚洲av| 亚洲av第一区精品v没综合| 波多野结衣一区麻豆| 人妻久久中文字幕网| 日日夜夜操网爽| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| 黄色女人牲交| 欧美日韩乱码在线| 中文字幕人妻熟女乱码| 法律面前人人平等表现在哪些方面| 午夜日韩欧美国产| 午夜两性在线视频| 亚洲国产精品999在线| 亚洲精品美女久久av网站| 亚洲黑人精品在线| 久久这里只有精品19| 国产片内射在线| 国产亚洲精品一区二区www| 老汉色∧v一级毛片| 久久精品国产亚洲av香蕉五月| 久久久精品欧美日韩精品| 在线观看午夜福利视频| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| www日本在线高清视频| 三上悠亚av全集在线观看| av视频免费观看在线观看| 黄色视频,在线免费观看| 久久九九热精品免费| 午夜成年电影在线免费观看| 看片在线看免费视频| 女同久久另类99精品国产91| 村上凉子中文字幕在线| 亚洲熟妇熟女久久| 大香蕉久久成人网| 老司机福利观看| 亚洲av片天天在线观看| 麻豆久久精品国产亚洲av | 狂野欧美激情性xxxx| 一级毛片精品| 免费在线观看影片大全网站| 国产精品免费一区二区三区在线| av福利片在线| 久久精品亚洲熟妇少妇任你| 亚洲激情在线av| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 搡老岳熟女国产| 黄色视频,在线免费观看| 高清毛片免费观看视频网站 | 黄色毛片三级朝国网站| 夜夜看夜夜爽夜夜摸 | 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 久久精品人人爽人人爽视色| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 国产99白浆流出| 极品教师在线免费播放| 正在播放国产对白刺激| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 一级毛片女人18水好多| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片 | 黄网站色视频无遮挡免费观看| 国产xxxxx性猛交| 成在线人永久免费视频| 在线观看日韩欧美| 国产av一区在线观看免费| av电影中文网址| 午夜精品国产一区二区电影| 亚洲熟妇中文字幕五十中出 | 777久久人妻少妇嫩草av网站| 国产不卡一卡二| 高清黄色对白视频在线免费看| 国产在线精品亚洲第一网站| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 亚洲av成人一区二区三| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 18禁美女被吸乳视频| av福利片在线| 免费观看精品视频网站| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 欧美成人免费av一区二区三区| 国产精品亚洲一级av第二区| 免费高清在线观看日韩| 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 丁香六月欧美| 在线观看一区二区三区| 精品熟女少妇八av免费久了| av免费在线观看网站| 亚洲精品美女久久久久99蜜臀| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 欧美激情高清一区二区三区| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 中文欧美无线码| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 精品午夜福利视频在线观看一区| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 黄色怎么调成土黄色| 成人三级黄色视频| 99香蕉大伊视频| 欧美日韩精品网址| 琪琪午夜伦伦电影理论片6080| 多毛熟女@视频| 亚洲专区中文字幕在线| 国产三级在线视频| 国产精品偷伦视频观看了| 亚洲国产欧美网| 免费av毛片视频| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 精品国产乱码久久久久久男人| 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| av天堂在线播放| 一夜夜www| 很黄的视频免费| 99国产精品99久久久久| 色哟哟哟哟哟哟| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 精品久久久精品久久久| 国产在线观看jvid| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 岛国在线观看网站| 在线观看免费视频网站a站| av网站免费在线观看视频| 校园春色视频在线观看| 美女国产高潮福利片在线看| 成人三级黄色视频| 精品福利永久在线观看| 黄色丝袜av网址大全| 一边摸一边做爽爽视频免费| 88av欧美| 久久久国产成人免费| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产精品日韩av在线免费观看 | 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 久久影院123| 亚洲成人久久性| av有码第一页| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 久9热在线精品视频| 19禁男女啪啪无遮挡网站| 视频区图区小说| av电影中文网址| 亚洲片人在线观看| www.www免费av| 国产99久久九九免费精品| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 亚洲三区欧美一区| 宅男免费午夜| 69精品国产乱码久久久| 亚洲国产欧美网| 欧美在线黄色| 久久久久国内视频| 淫妇啪啪啪对白视频| 老熟妇仑乱视频hdxx| av在线天堂中文字幕 | 热re99久久国产66热| 天天影视国产精品| 麻豆av在线久日| 黄色怎么调成土黄色| 免费看a级黄色片| 狠狠狠狠99中文字幕| 久久伊人香网站| 在线观看www视频免费| av有码第一页| 首页视频小说图片口味搜索| 曰老女人黄片| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 国产主播在线观看一区二区| 制服诱惑二区| 色播在线永久视频| 欧美在线黄色| 成人手机av| 国产亚洲精品综合一区在线观看 | 亚洲七黄色美女视频| 成人影院久久| 久久久久久人人人人人| 天堂中文最新版在线下载| 中文字幕最新亚洲高清| 亚洲全国av大片| 18禁美女被吸乳视频| 精品第一国产精品| 乱人伦中国视频| 亚洲一码二码三码区别大吗| 欧美大码av| 自线自在国产av| 亚洲精品中文字幕一二三四区| 国产高清videossex| 91字幕亚洲| 久久久久久久精品吃奶| 夜夜躁狠狠躁天天躁| 色在线成人网| 桃红色精品国产亚洲av| 亚洲国产欧美网| 精品人妻在线不人妻| 在线观看免费午夜福利视频| 91在线观看av| 国产精品久久久人人做人人爽| 操出白浆在线播放| 国产成+人综合+亚洲专区| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 在线天堂中文资源库| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 91精品三级在线观看| 国产亚洲欧美98| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片| 视频区欧美日本亚洲| 国产片内射在线| 亚洲全国av大片| 啪啪无遮挡十八禁网站| 黄色怎么调成土黄色| 波多野结衣高清无吗| 国产精品 国内视频| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 日本一区二区免费在线视频| 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| 色综合欧美亚洲国产小说| 丝袜在线中文字幕| 日韩av在线大香蕉| 9191精品国产免费久久| 一级a爱片免费观看的视频| 成年人黄色毛片网站| 成人永久免费在线观看视频| 在线免费观看的www视频| 首页视频小说图片口味搜索| 国产99白浆流出| 狠狠狠狠99中文字幕| 亚洲精品av麻豆狂野| 黄色女人牲交| 午夜老司机福利片| 精品少妇一区二区三区视频日本电影| 亚洲av电影在线进入| 搡老乐熟女国产| 亚洲成人精品中文字幕电影 | 免费在线观看完整版高清| 性少妇av在线| 亚洲人成网站在线播放欧美日韩| 天天添夜夜摸| 我的亚洲天堂| 久久亚洲精品不卡| 极品人妻少妇av视频| 在线观看www视频免费| 在线看a的网站| 久久 成人 亚洲| 国产一卡二卡三卡精品| 91麻豆av在线| 国产精品影院久久| 香蕉国产在线看| 欧美日韩精品网址| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 日本欧美视频一区| 人人妻人人澡人人看| 黄色成人免费大全| 国产精品自产拍在线观看55亚洲| 高清在线国产一区| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| av视频免费观看在线观看| 午夜老司机福利片| 国产精品亚洲一级av第二区| 亚洲九九香蕉| 精品国产乱子伦一区二区三区| 欧美在线黄色| www.www免费av| 成人影院久久| 色在线成人网| 大型av网站在线播放| 欧美中文综合在线视频| 亚洲精品在线观看二区| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 两个人免费观看高清视频| 97超级碰碰碰精品色视频在线观看| 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载| 久久青草综合色| 在线永久观看黄色视频| 国产区一区二久久| 久久久久久免费高清国产稀缺| 日本a在线网址| 国产激情欧美一区二区| 少妇被粗大的猛进出69影院| 性欧美人与动物交配| 午夜精品国产一区二区电影| 日韩大码丰满熟妇| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 最新美女视频免费是黄的| 国产成人系列免费观看| 三级毛片av免费| 亚洲成人免费电影在线观看| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 深夜精品福利| 午夜久久久在线观看| 国产三级在线视频| 操出白浆在线播放| 亚洲三区欧美一区| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 久久影院123| 日本 av在线| 桃色一区二区三区在线观看| 久久久久久人人人人人| 嫁个100分男人电影在线观看| 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸| 免费av中文字幕在线| x7x7x7水蜜桃| 亚洲色图av天堂| 午夜亚洲福利在线播放| 亚洲国产欧美网| 一二三四社区在线视频社区8| 日本三级黄在线观看| 色在线成人网| 很黄的视频免费| 日韩免费av在线播放| 高清毛片免费观看视频网站 | 免费看a级黄色片| 99在线视频只有这里精品首页| 麻豆成人av在线观看| 亚洲精品中文字幕一二三四区| 久久 成人 亚洲| 日韩欧美三级三区| 成人三级做爰电影| 久久人人精品亚洲av| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 精品国内亚洲2022精品成人| 亚洲成人国产一区在线观看| 免费av中文字幕在线| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 国产精品美女特级片免费视频播放器 | 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 咕卡用的链子| 午夜福利在线免费观看网站| 久久 成人 亚洲| 久久久久久久午夜电影 | 长腿黑丝高跟| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 91老司机精品| 长腿黑丝高跟| 啦啦啦在线免费观看视频4| 久久香蕉国产精品| 一区二区三区国产精品乱码| 成年人免费黄色播放视频| 黄色丝袜av网址大全| 久久精品国产亚洲av香蕉五月| 午夜久久久在线观看| 搡老岳熟女国产| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 成人亚洲精品av一区二区 | 欧美成人免费av一区二区三区| 午夜福利欧美成人| 91麻豆av在线| 一级a爱片免费观看的视频| 熟女少妇亚洲综合色aaa.| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 久久亚洲精品不卡| 高清在线国产一区| 亚洲男人天堂网一区| 一级毛片女人18水好多| 国产一区二区激情短视频| 中文字幕av电影在线播放| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 国产成人精品无人区| 欧美日韩精品网址| 亚洲五月天丁香| www日本在线高清视频| 高清黄色对白视频在线免费看| 欧美不卡视频在线免费观看 | 中出人妻视频一区二区| 久久久国产欧美日韩av| 老司机福利观看| 午夜免费观看网址| 免费在线观看日本一区| 国产精品日韩av在线免费观看 | 97人妻天天添夜夜摸| 99riav亚洲国产免费| 欧美亚洲日本最大视频资源| av福利片在线| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 91字幕亚洲| 国产单亲对白刺激| 99re在线观看精品视频| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 国产精品电影一区二区三区| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区久久| 日韩视频一区二区在线观看| 好看av亚洲va欧美ⅴa在| 精品国产乱码久久久久久男人| 欧美日韩瑟瑟在线播放| 视频在线观看一区二区三区| 色哟哟哟哟哟哟| 三级毛片av免费| 日韩成人在线观看一区二区三区| 精品久久久久久成人av| 欧美老熟妇乱子伦牲交| 免费观看精品视频网站| 淫秽高清视频在线观看| 国产伦一二天堂av在线观看| 91国产中文字幕| 精品久久久久久,| 日日夜夜操网爽| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 亚洲aⅴ乱码一区二区在线播放 | 99久久综合精品五月天人人| 久久精品影院6| 9热在线视频观看99| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 老司机在亚洲福利影院| bbb黄色大片| 午夜免费观看网址| 美国免费a级毛片| 后天国语完整版免费观看| 日韩欧美一区视频在线观看| av电影中文网址| 中文字幕人妻熟女乱码| 久久精品国产清高在天天线| 欧美国产精品va在线观看不卡| 69精品国产乱码久久久| 国产欧美日韩一区二区三| 欧美 亚洲 国产 日韩一| 三级毛片av免费| 欧美激情 高清一区二区三区| 又黄又爽又免费观看的视频| 老司机午夜十八禁免费视频| a级片在线免费高清观看视频| 国产成+人综合+亚洲专区| 日韩有码中文字幕|