• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋅摻雜提高LiNi1/3Co1/3Mn1/3O2正極材料的電化學穩(wěn)定性

    2012-12-11 09:06:52李節(jié)賓徐友龍杜顯鋒孫孝飛熊禮龍
    物理化學學報 2012年8期
    關鍵詞:物理化學充放電電化學

    李節(jié)賓 徐友龍 杜顯鋒 孫孝飛 熊禮龍

    (1西安交通大學,電子陶瓷與器件教育部重點實驗室,國際電介質研究中心,西安710049; 2陜西應用物理化學研究所,西安710061)

    鋅摻雜提高LiNi1/3Co1/3Mn1/3O2正極材料的電化學穩(wěn)定性

    李節(jié)賓1,2徐友龍1,*杜顯鋒1孫孝飛1熊禮龍1

    (1西安交通大學,電子陶瓷與器件教育部重點實驗室,國際電介質研究中心,西安710049;2陜西應用物理化學研究所,西安710061)

    通過共沉淀法與固相法相結合制備了摻鋅的高穩(wěn)定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正極材料.循環(huán)伏安(CV)曲線表明Zn摻雜使氧化峰與還原峰的電勢差減小到0.09 V,電化學阻抗譜(EIS)曲線表明Zn摻雜使電極的阻抗從266 Ω減小到102 Ω.Li+嵌入擴散系數(shù)從1.20×10-11cm2·s-1增大到2.54×10-11cm2· s-1.Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正極材料以0.3C充放電在較高的截止電壓(4.6 V)下比其他兩種材料的電化學循環(huán)性能更穩(wěn)定,其第二周的放電比容量為176.2 mAh·g-1,室溫下循環(huán)100周后容量幾乎沒衰減;高溫(55°C)下充放電循環(huán)100周,其放電比容量平均每周僅衰減0.20%,遠小于其他兩種正極材料(LiNi1/3Co1/3Mn1/3O2平均每周衰減0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰減0.38%).Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正極材料以3C充放電時其放電比容量可達142 mAh·g-1,高于其他兩種正極材料.電化學穩(wěn)定性的提高歸因于Zn摻雜后減小了電極的極化和阻抗,增大了鋰離子擴散系數(shù).

    LiNi1/3Co1/3Mn1/3O2; 高截止電壓;Zn摻雜; 正極材料; 鋰離子電池

    1 Introduction

    Since the layered transition metal oxide LiNi1/3Co1/3Mn1/3O2was initially proposed by Ohzuku and Makimura1in 2001,it has been extensively studied2-7due to its higher reversible capacity,lower cost,less toxicity,and enhanced safety features compared to conventional LiCoO2.The LiNi1/3Co1/3Mn1/3O2powder has a typical hexagonal α-NaFeO2structure with a space group of R3m.Its reversible capacity comes from the redox reactions associated with the Ni2+/3+,Ni3+/4+,and Co3+/4+couples.8-11 The LiNi1/3Co1/3Mn1/3O2cathode material can deliver a high capacity of ca 200 mAh·g-1when it is charged to 4.6 V(vs Li/ Li+).12-16It is considered to be one of the best candidate cathode materials for high-power applications,such as electric vehicles (EVs)and hybrid electric vehicles(HEVs).8

    However,there are still two important problems limiting the applications of LiNi1/3Co1/3Mn1/3O2cathode material in highpower lithium ion batteries.One is the serious capacity fading, especially if cycled at 4.6 V(vs Li/Li+);10-13the other is its poor rate capacity due to its low Li ion diffusion as well as the electronic conductivity.14-16It is thought that doping of LiCoO2by a transition metal ion results in a capacity increase while non-transition metal ion doping results in a voltage increase at the expense of capacity.17,18To overcome both problems of LiNi1/3Co1/3Mn1/3O2cathode material,one significant approach is doping by other transition metals such as Ti,Cr or non-transition metals such asAl,Mg.13,19-21

    Since Zn is chemically similar to magnesium in some aspects,22it has been used to improve the electrochemical properties of LiNi0.8-xCo0.2ZnxO223and LiNixCo1/3Mn1/3ZnxO2.18However,the electrochemical stabilities of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2cathode materials are few studied at high cut-off voltages(eg. 4.6 V,vs Li/Li+).

    In this work,the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05) cathode materials have been synthesized by solid-state approaches with co-precipitated precursors.The effects on structures,morphologies,and electrochemical properties at high cut-off voltage were investigated in detail.

    2 Experimental

    2.1 Synthesis of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials

    The M3O4(M=Ni1/3Co1/3Mn1/3)powder was prepared by sintering co-precipitated M(OH)2at 500°C,which was reported in the previous paper.24Stoichiometric amounts of LiOH·H2O (99.5%)and different amounts of nanoscale ZnO(Shanghai Shanghui Nano Co.,molar ratios of M:0%,2%,5%)were added to M3O4and ball-milled for 24 h.The mixtures were then sintered at 850°C for 24 h in an air furnace to synthesize Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)materials,which were marked by Zn0,Zn2,and Zn5,respectively.

    2.2 Cathode material characterization

    The powder X-ray diffraction(XRD)measurement was carried out on a PANalytical,X?Pert PRO X diffractometer equipped with a Cu Kαradiation(λ=0.154056 nm).The 2θ Bragg angles were scanned over a range of 10°-80°.Lattice parameters were investigated by XRD with the X?Pert Highscore Pluse software.Scanning electron microscope(SEM) was performed using a JSM-6700F.Atomic absorption spectroscopy analysis(analytikjenaAG AAS,NoV AA 300)was performed to investigate the real chemical composition of Zn element.

    The electrochemical properties of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials were examined in CR2016 coin type cells.The cathode electrodes were prepared by pasting the mixture of 70%(mass fraction)cathode materials,20% acetylene black,and 10%PVDF(ARKEMA,Kynar)on an aluminum foil current collector.The electrolyte was 1 mol·L-1LiPF6/ethylene carbonate(EC)+diethyl carbonate(DEC)+ethyl methyl carbonate(EMC)(Shenzhen Capchem Technology Co., LTD,1:1:1 in volume ratio).Lithium metal foil was used as negative electrode.The cells were assembled in a Mikrouna Super(1225/750)glove box under a dry argon atmosphere and then aged for 10 h before initial charge to ensure full absorption of the electrolyte into the electrode.Both cyclic voltammetry(CV)tests and electrochemical impedance measurements (EIS)were performed using Versatile Multichannel Potentiostat 2/Z with the ability for impedance measurements(Bio-logic).The CV measurements were tested in the potential range of 2.8-4.7 V using the galvanostatic mode at a scan rate of 0.1 mV·s-1.The EIS measurements frequency range was from 100 kHz to 10 mHz at 3.6 V.Charge/discharge characteristics were tested galvanostatically in the voltage of 2.8-4.6 V(vs Li/Li+) by LAND Battery Test System.

    3 Results and discussion

    3.1 Physical and chemical performances

    Zn contents were determined by atomic absorption spectroscopy analysis and the x values have been determined to be 0, 1.26%,and 3.21%,which are closed to the calculated theoretic values.

    The structures of Zn doped LiNi1/3Co1/3Mn1/3O2materials were measured by XRD,as shown in Fig.1.The materials can be indexed based on hexagonal α-NaFeO2structure.There is no obvious diffraction peak for new phases,suggesting that their crystal structures are hardly changed by Zn-doping.The absence of diffraction patterns corresponding to Zn compounds is due to the low doped Zn-content.23The diffraction patterns show clear splitting of the hexagonal characteristic doublets (006)/(102)and(108)/(110),indicating that the products possess typical layered characteristics.25,26The lattice parameters of a,c,c/a and the unit cell volumes(V)for all the cathode materials are summarized in Table 1.The V,c,and c/a of the samples slightly increase with the Zn-doped content.The expansions of V and c indicate that Zn2+ions have doped in ZnO during the heat-treatment process because the radius of Zn2+(0.074 nn)is less than that of Li+(0.076 nm)while larger than that of Ni2+(0.069 nm),Co3+(0.0545 nm),and Mn4+(0.054 nm).It means that the distance DLi-Oand the interslab thickness I(LiO2)increase and lead to the increase of the electrostatic repulsions between the slabs when lithium ions are deintercalated from the interslab,which is corresponding to the effect of magnesium doping on lithium nickel cobalt oxide by Pouillerie et al.27

    Fig.1 XRD patterns of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)powders

    In Fig.2,the SEM images of Zn0,Zn2,and Zn5 show similar morphologies.The powders mainly consist of agglomerated particles with primary particles of 200-300 nm.Hence,Zn doping does not change their morphologies.

    Table 1 Lattice parameters of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)powders

    3.2 Electrochemical performances

    CV and EIS were carried out to investigate the electrochemical performances of the Zn-doped Li(Ni1/3Co1/3Mn1/3)1-xZnxO2cathode materials.Fig.3 shows the cyclic voltammograms of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials between 2.8 and 4.7 V at a scan rate of 0.1 mV·s-1for the second cycle.The anodic and cathodic peaks center at around 3.80 and 3.64 V for Zn0,3.79 and 3.70 V for Zn2,3.81 and 3.70 V for Zn5,respectively,corresponding to the Ni2+/Ni4+redox couple.These results suggest that there is no structural transitions from hexagonal to monoclinic during the charge/discharge between 2.8 and 4.6 V.28As shown in Fig.3,the voltage differences between the oxidation and reduction are 0.09 V for Zn2 and 0.11 V for Zn5,which are less than that(0.16 V)for Zn0. Thus,a little Zn doping reduces the polarization possibly due to improved structure order of the materials.

    Fig.3 Cyclic voltammograms of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials between 2.8 and 4.7 V at a scan rate of 0.1 mV·s-1The voltage differences between the oxidation and reduction are 0.09 V for Zn2,0.11 V for Zn5,and 0.16 V for Zn0.

    Fig.2 SEM images of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)powdersThe powders mainly consisted of agglomerated particles with primary particles of 200-300 nm.

    In order to test the effect of Zn doping on lithium ion transport through LiNi1/3Co1/3Mn1/3O2electrode,CV technique was carried out.Generally,CV measurement is a typical method to evaluate the apparent diffusion coefficient of Li ions in electrode materials.29,30Fig.4a shows a group of CV curves of Zn2 sample at various scan rates from 0.3 to 1.5 mV·s-1.There are two clear oxidation/reduction peaks,corresponding to the ma-jor oxidation/reduction reactions during Li deintercalation/intercalation in Zn2.The peak current(Ip)increases with the increasing scan rate,the cathodic peaks shift to lower potential, and the anodic peaks shift to higher potential.The peak current (Ip)versus v1/2are plotted in Fig.4b,showing that the peak current Ipexhibits a linear relationship with v1/2due to semi-infinite diffusion controlled process.At relatively higher scan rates,the chemical diffusion coefficient of Li ions can be calculated from the Randles-Sevcik equation,which can be expressed as follows:31

    Fig.4 (a)CV curves of Zn2 between 2.8 and 4.7 V at different scan rates(v)and(b)square root of scan rate dependence of the peak current Ipfor Zn2

    where A is the active electrode area(0.785 cm2),C*Liis the bulk concentration of Li in electrode(0.0487 mol·cm-3),v is the potential scan rate(V·s-1),DLiis the chemical diffusion coefficient of Li ions in the film(cm2·s-1),and n is the charge-transfer number.Based on Eq.(1),the chemical diffusion coefficients of Li ion are estimated to be 2.54×10-11cm2·s-1for Li ion intercalation process and 13.34×10-11cm2·s-1for Li ion deintercalation process.Using the same method,the Li ion diffusion coefficients of Zn0 and Zn5 are calculated and listed in Table 2.It can be seen that Zn2 has the highest diffusion coefficients of Li ions,meaning that partial transition metal ion substituted by Zn ions leads to higher Li ion diffusion coefficients and promotes lithium transportation.The increased Li ion diffusion coefficient can be attributed to the larger cell size and parameter c caused by Zn doping,which is favorable for lithium ion migration.

    Table 2 Li ion diffusion coefficients of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials

    The impedances are evaluated at 3.6 V after 10 cycles by EIS.The EIS curves of Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02, 0.05)electrodes are described in Fig.5.All curves include a semicircle in the high-frequency and intermediate frequency region,and an inclined line in the low-frequency region.The semicircle comes from the contact resistance at the composite cathode and the charge transfer reaction at the interface of the cathode/electrolyte,and the inclined line in the lower frequency range is attributed to Warburg impedance that is associated with Li ion diffusion through the cathode.The impedance of Zn2 is 102 Ω,which is less than other two materials,viz.266 Ω for Zn0 and 149 Ω for Zn5.The lower impedance for Zn2 indicates the better intercalation-deintercalation of Li ion in Zn2 matrix,which can be attributed to slightly increasing in unit cell volume and facilitating Li ion intercalation-deintercalation from the oxide structure.It was known that the electrochemical performance of cathode materials may be ascribed to electrode polarization,impedance,and Li ion diffusion coefficients,14,32,33which are improved by Zn doping.

    The galvanostatic charge/discharge tests were carried out to study the electrochemical performances.Fig.6 shows the second charge/discharge curves of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cells evaluated at 0.3C(LiNi1/3Co1/3Mn1/3O2: 1C≈150 mAh·g-1;Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2:1C≈160 mAh· g-1;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2:1C≈130 mAh·g-1)between 2.8 and 4.6 V at room temperature.It can be seen that the charge/discharge capacities are 226.2/189.0 mAh·g-1for Zn0, 181.4/176.2 mAh·g-1for Zn2,and 155.8/141.1 mAh·g-1for Zn5.Correspondingly,the irreversible capacities are 37.2,5.2, and 14.7 mAh·g-1,and the charge/discharge efficiencies are 83.5%,97.1%,and 90.6%,respectively.The decrease of charge/discharge capacity by Zn-doping may be ascribed to Zn2+with large radius blocking the Li+intercalation-deintercala-tion path or reducing a bulk concentration of Ni2+.34Although Zn-doping decreases the capacities of the initial several cycles, Zn2 and Zn5 exhibit greater charge/discharge efficiencies than Zn0 because of the sabilized structure by Zn doping.Therefore,the reversibility of LiNi1/3Co1/3Mn1/3O2cathode material at high cut-off voltage(4.6 V)is enhanced.

    Fig.5 Electrochemical impedance spectroscopies of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes at 3.6 VThe impedances are evaluated at 3.6 V after 10 cycles and are 266 Ω for Zn0,102 Ω for Zn2,and 149 Ω for Zn5.

    Fig.6 The second charge/discharge curves of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)at the rate of 0.3C over a voltage range of 2.8-4.6 VThe charge/discharge capacities are 226.2/189.0 mAh·g-1for Zn0,181.4/ 176.2 mAh·g-1for Zn2,and 155.8/141.1 mAh·g-1for Zn5.

    Fig.7 Cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials operating at 0.3C between 2.8 and 4.6 V at room temperature

    The cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials operating at the 0.3C rate between 2.8 and 4.6 V at room temperature are shown in Fig.7. From Fig.7a,the discharge capacity of Zn0 displays a severe capacity fading during cycling and the capacity retention is only 65.9%after 100 cycles.The capacity loss results from the Co dissolution into the electrolyte at high cut-off voltage.35However,the cycling performance of Zn2 is very stable,showing no appreciable drop after 100 cycles.It is clearly shown that the cycling performance of LiNi1/3Co1/3Mn1/3O2cathode materials is improved by Zn-doping.Since the binding energy of Zn(2p3/2)(1021.8 eV)36is much larger than that of Ni(2p3/2) (854.0 eV),Co(2p3/2)(779.5 eV),and Mn(2p3/2)(642.2 eV),3Zn-doping leads to stabilizing the structures of the cathode materials and reducing the Co dissolution into the electrolyte at high cut-off voltages.Furthermore,the stronger Zn-O bond means the weaker Li-O bond,which is favorable to lithium ion migration.30,37Fig.7b compares the variation of the 100th charge/discharge curves.Little irreversible capacities are observed in all samples.The separation between charge and discharge curves of Zn2 is small,indicating almost no polarzation along with cycling.Therefore,the electrochemical stabilities are improved by Zn-doping.

    The impedances of Zn0,Zn2,and Zn5 are measured at 3.6 V after 100 cycles by EIS,as shown in Fig.8.The impedance of Zn2 is 61 Ω,and that of Zn5 is 75 Ω.The impedances of Zn2 and Zn5 decrease largely with cycling;while that of Zn0 is more than 1000 Ω,which increases with cycling.It means that using 2%Zn2+doping can stabilize the structures of cathode materials,therefore,reduces the impedance and increases the Li ion migration.

    Fig.8 Electrochemical impedance spectroscopies of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes after 100 cycles at room temperatureThe impedances are measured at 3.6 V in 100 cycles and are 1031 Ω for Zn0,61 Ω for Zn2,and 75 Ω for Zn5,respectively.

    The test temperature is a key factor for the performance of the Li-ion cells.The faster degradation of cathode material would occur at higher test temperature.38Fig.9 displays the cycling performance at 0.3C rate under 55°C at the voltage range of 2.8-4.6 V after 5 cycles at room temperature.The discharge capacities of all samples are greatly improved at 55°C, which can be attributed to the higher Li ion diffusion rate at high temperature.However,the capacity retentions decrease obviously.From Fig.9a,the discharge capacity of Zn0 declines fast,with an average capacity loss of 0.54%per cycle in 100 cycles.In contrast,the average discharge capacity losses are only 0.20%and 0.38%per cycle for Zn2 and Zn5 in 100 cycles,respectively.Fig.9b shows the Zn0 and Zn2 charge/discharge curves of the initial and 100th cycles at 55°C.The irreversible capacity for Zn2 is 46 mAh·g-1,which is less than the value of 137 mAh·g-1for Zn0.The 100th charge and discharge curves diverge greatly,which indicates that the electrode polarizations develop on cycling at high temperature.The increasing electrode polarizations can lead to degradation in capacities.Furthermore,the severe capacity fading can also result from the lithium dendrite from irreversible lithium-ion deposition on the anode and the decomposition of the electrolyte on the surface of cathode materials at high cut-off voltages and high temperatures.Chen?s research results suggest that Zn-doping can largely reduce the exothermic heat amount and improve the thermal decomposition temperature of cathode materials.19Therefore,Zn-doping can not only reduce electrode polarizations and the decomposition of the electrolyte on the surface of cathode materials but also stabilize the structure of cathode materials at high temperature(55°C).

    Fig.9 Cycling performances of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0,0.02,0.05)cathode materials operating at 0.3C between 2.8 and 4.6 V at 55°C(a)the cycle curves;(b)the 100th charge/discharge curves of Zn0 and Zn2

    Fig.10 Electrochemical impedance spectroscopies of theLi(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)electrodes after 100 cycles at 55°CThe impedances are 1279 Ω for Zn0,314 Ω for Zn2,and 358 Ω for Zn5,respectively.

    After 100 cycles at high temperature,the impedances of Zn0,Zn2,and Zn5 are evaluated at 3.6 V(seen in Fig.10)under room temperature.Although the ex-situ EIS can not provide the real impedance of these cathodes after high temperature cycling,it still shows that Zn2 has the lowest impedance even side reactions and lithium detritions are possibly happened at high temperatures.Moreover,the impedance increase compared to Fig.5 is smaller in Zn doped materials.Our further work is undergoing to study the detailed impedance increase in Fig.10,but the present results also illuminate the more stable cyclability of Zn2 at 55°C.

    High rate performance is one of the significant electrochemicalcharacteristicsoflithium ion batteriesrequired for high-power applications.Fig.11 displays the cycling behavior and rate capability of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02, 0.05)cathode materials at various discharge rates of 0.1C, 0.3C,0.6C,1.5C,and 3C between 2.8 and 4.6 V at room temperature(charged and discharged at the same rate for each test).For Zn2 and Zn5,the initial discharge capacities are 185 and 158 mAh·g-1at 0.1C respectively,while that of Zn0 is 198 mAh·g-1.When the discharge rate reaches to 3C,the discharge capacity of Zn2 is 142 mAh·g-1,which is higher than those of Zn0(129 mAh·g-1)and Zn5(108 mAh·g-1).The higher discharge capacity at higher rate can be related to the much stable layer structure of cathode materials by Zn-doping.After discharging at 3C rate,all the cells are cycled at 0.1C again.Zn2 and Zn5 show better recoverability in discharge capacity, which is consistent with the result in Fig.7a.

    Fig.11 Cycling behaviors and rate capability test of the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials at various discharge rates between 2.8 and 4.6 V

    4 Conclusions

    In this work,the Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05) cathode materials have been synthesized by the solid-state approaches with co-precipitated precursors.It is found that Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2has the most stable cycling capability during constant charge/discharge at high cut-off voltage (4.6 V).There is almost no capacity decay after 100 cycles at room temperature and the average capacity loss is only 0.20% per cycle in 100 cycles at high temperature(55°C).It can still deliver a discharge capacity of 142 mAh·g-1at 3C.Reduced electrode polarization,decreased impedance,increased lithium ion diffusion,and excellent cycling performance are attributed to the stable structure of Zn doped LiNi1/3Co1/3Mn1/3O2.

    (1)Ohzuku,T.;Makimura,Y.Chem.Lett.2001,7,642.

    (2) Hwang,B.J.;Tsai,Y.W.;Carlier,D.;Ceder,G.Chem.Mater. 2003,15,3676.doi:10.1021/cm030299v

    (3) Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.Electrochim. Acta 2002,48,145.doi:10.1016/S0013-4686(02)00593-5

    (4)Wu,F.;Wang,M.;Su,Y.F.;Chen,S.Acta Phys.-Chim.Sin. 2009,25,629.[吳 峰,王 萌,蘇岳峰,陳 實.物理化學學報,2009,25,629.]doi:10.3866/PKU.WHXB20090411

    (5)Tu,J.P.;Wu,H.M.;Chen,X.T.;Yuan,Y.F.;Li,Y.;Zhao,X. B.;Cao,G.S.J.Power Sources 2006,159,291.doi:10.1016/j. jpowsour.2006.04.032

    (6) Chen,J.;Wang,S.;Whittingham,M.S.J.Power Sources 2007, 174,442.doi:10.1016/j.jpowsour.2007.06.189

    (7)Reddy,M.V.;Rao,G.V.S.;Chowdari,B.V.R.J.Power Sources 2006,159,263.doi:10.1016/j.jpowsour.2006.04.134

    (8)Koyama,Y.;Tanaka,I.;Adachi,H.;Makimura,Y.;Ohzuku,T. J.Power Sources 2003,119,644.doi:10.1016/S0378-7753(03) 00194-0

    (9)Yoon,W.S.;Grey,C.P.;Balasubramanian,M.;Yang,X.Q.; Fischer,D.A.;McBreen,J.Electrochem.Solid State Lett.2004, 7,A53.

    (10) Kim,J.M.;Chung,H.T.Electrochim.Acta 2004,49,937.doi: 10.1016/j.electacta.2003.10.005

    (11)Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.J.Electrochem. Soc.2004,151,A1324.

    (12) Yabuuchi,N.;Ohzuku,T.J.Power Sources 2003,119,171.doi: 10.1016/S0378-7753(03)00173-3

    (13)Chebiam,R.V.;Prado,F.;Manthiram,A.Chem.Mater.2001, 13,2951.doi:10.1021/cm0102537

    (14)Kim,H.S.;Kong,M.;Kim,K.;Kim,I.J.;Gu,H.B.J.Power Sources 2007,171,917.doi:10.1016/j.jpowsour.2007.06.028

    (15) Na,S.H.;Kim,H.S.;Moon,S.I.Solid State Ionics 2005,176, 313.doi:10.1016/j.ssi.2004.08.016

    (16)Sun,Y.K.;Lee,Y.S.;Yoshio,M.;Amine,K.Electrochem.Solid State Lett.2002,5,L1.

    (17) Ceder,G.;Chiang,Y.M.;Sadoway,D.R.;Aydinol,M.K.;Jang, Y.I.;Huang,B.Nature 1998,392,694.doi:10.1038/33647

    (18)Zou,M.J.;Yoshio,M.;Gopukumar,S.;Yamaki,J.Chem. Mater.2003,15,4699.doi:10.1021/cm0347032

    (19)Chen,Y.H.;Chen,R.Z.;Tang,Z.Y.;Wang,L.J.Alloy.Compd. 2009,476,539.doi:10.1016/j.jallcom.2008.09.055

    (20) Ren,H.B.;Li,X.;Peng,Z.H.Electrochim.Acta 2011,56, 7088.doi:10.1016/j.electacta.2011.05.104

    (21) Milewska,A.;Molenda,M.;Mokenda,J.Solid State Ionics 2011,192,313.doi:10.1016/j.ssi.2010.11.026

    (22) Holleman,A.F.;Wiberg,E.;Wiberg,N.Lehrbuch der Anorganischen Chemie;Gruyter:Berlin,1995.

    (23) Fey,G.T.K.;Chen,J.G.;Subramanian,V.;Osaka,T.J.Power Sources 2002,112,384.doi:10.1016/S0378-7753(02)00400-7

    (24) Li,J.B.;Xu,Y.L.;Xiong,L.L.;Wang,J.P.Acta Phys.-Chim. Sin.2011,27,2593.[李節(jié)賓,徐友龍,熊禮龍,王景平.物理化學學報,2011,27,2593.]doi:10.3866/PKU.WHXB20111104

    (25) Jouanneau,S.;Eberman,K.W.;Krause,L.J.;Dahn,J.R. J.Electrochem.Soc.2003,150,A1637.

    (26) Kim,J.H.;Yoon,C.S.;Sun,Y.K.J.Electrochem.Soc.2003, 150,A538.

    (27) Pouillerie,C.;Perton,F.;Biensan,P.;Peres,J.P.;Broussely,M.; Delmas,C.J.Power Sources 2001,96,293.doi:10.1016/ S0378-7753(00)00653-4

    (28) Liu,L.;Sun,K.N.;Zhang,N.Q.;Yang,T.Y.J.Solid State Electrochem.2009,13,1381.doi:10.1007/s10008-008-0695-z

    (29) Xia,H.;Lu,L.;Lai,M.O.Electrochim.Acta 2009,54,5986. doi:10.1016/j.electacta.2009.02.071

    (30) Xiong,L.L.;Xu,Y.L.;Zhang,C.;Zhang,Z.W.;Li,J.B. J.Solid State Electrochem.2011,15,1263.doi:10.1007/ s10008-010-1195-5

    (31) Bard,A.J.;Faulkner,L.R.Electrochemical Methods,2nd ed.; Wiley:New York,2001.

    (32)Jiao,L.F.;Zhang,M.;Yuan,H.T.;Zhao,M.;Guo,H.;Wang, W.;Zhou,X.D.;Wang,Y.M.J.Power Sources 2007,167,178. doi:10.1016/j.jpowsour.2007.01.070

    (33) Ghosh,P.;Mahanty,S.;Basu,R.N.Electrochim.Acta 2009,54, 1654.doi:10.1016/j.electacta.2008.09.050

    (34) Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010, 10,4123.doi:10.1021/nl1023595

    (35) Hwang,B.J.;Santhanam,R.;Chen,C.H.J.Power Sources 2003,114,244.doi:10.1016/S0378-7753(02)00584-0

    (36) Kyu-Hang,L.;Nam-In,C.;Eui-Jung,Y.;Nam,H.G.Appl.Surf. Sci.2011,256,4241.

    (37) Katsumata,T.;Matsui,Y.;Inaguma,Y.;Itoh,M.Solid State Ionics 1996,86(8),165.

    (38)Wu,F.;Wang,M.;Su,Y.F.;Bao,L.Y.;Chen,S.Electrochim. Acta 2009,54,6803.doi:10.1016/j.electacta.2009.06.075

    March 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2Cathode Materials

    LI Jie-Bin1,2XU You-Long1,*DU Xian-Feng1SUN Xiao-Fei1XIONG Li-Long1
    (1International Center for Dielectric Research,Electronic Materials Research Laboratory of the Ministry of Education,Xi?an Jiaotong University,Xi?an 710049,P.R.China;2Shaanxi Applied Physics and Chemistry Research Institute; Xi?an 710061,P.R.China)

    Highly stable Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)cathode materials doped with Zn are synthesized by solid-state reactions with co-precipitated precursors.Cyclic voltammetry(CV)curves reveal thatthe potentialdifference between oxidation and reduction decreasesto 0.09 V,and from electrochemical impedance spectra(EIS)curves,the impedance of LiNi1/3Co1/3Mn1/3O2cathode materials is reduced from 266 to 102 Ω.The diffusion coefficients of Li+ions in intercalation processes increase from 1.20×10-11to 2.54×10-11cm2·s-1.Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2is stable at 0.3C(constant charge/discharge)at a high cut-off potential of 4.6 V vs Li/Li+.It has a second discharge capacity of 176.2 mAh·g-1at 0.3C and 142 mAh·g-1at 3C,and keep almost no decay after 100 cycles at room temperature.Furthermore,its average capacity loss per cycle at 55°C is 0.20%,which is lower compared with 0.54%for LiNi1/3Co1/3Mn1/3O2and 0.38%for Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2after 100 cycles.The improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2is attributed to the reduced electrode polarization and impedance values,and an increased Li+ion diffusion coefficient.

    Lithium nickel cobalt manganese oxide;High cut-off voltage;Zn-doping;Cathode material; Lithium ion battery

    10.3866/PKU.WHXB201205152

    ?Corresponding author.Email:ylxuxjtu@mail.xjtu.edu.cn;Tel:+86-29-82665161.

    The project was supported by the National Natural Science Foundation of China(50902109).

    國家自然科學基金(50902109)資助項目

    O646

    猜你喜歡
    物理化學充放電電化學
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    V2G模式下電動汽車充放電效率的研究
    電化學中的防護墻——離子交換膜
    關于量子電化學
    基于SG3525的電池充放電管理的雙向DC-DC轉換器設計
    電子制作(2019年23期)2019-02-23 13:21:36
    Chemical Concepts from Density Functional Theory
    電化學在廢水處理中的應用
    Na摻雜Li3V2(PO4)3/C的合成及電化學性能
    鋰離子電池充放電保護電路的研究
    電源技術(2015年5期)2015-08-22 11:18:02
    怎么达到女性高潮| 国产淫片久久久久久久久 | 宅男免费午夜| 亚洲av二区三区四区| 首页视频小说图片口味搜索| 69av精品久久久久久| 好男人电影高清在线观看| 亚洲中文日韩欧美视频| 午夜免费激情av| 亚洲av美国av| 日韩人妻高清精品专区| 国产成人a区在线观看| 精品熟女少妇八av免费久了| a级毛片免费高清观看在线播放| 中文亚洲av片在线观看爽| 波多野结衣巨乳人妻| 男女那种视频在线观看| 在线观看午夜福利视频| 美女高潮喷水抽搐中文字幕| 成人国产一区最新在线观看| 欧美潮喷喷水| 欧美高清性xxxxhd video| 成人特级av手机在线观看| 丰满的人妻完整版| 美女大奶头视频| 亚洲 欧美 日韩 在线 免费| 久久久久久久久久成人| 国产综合懂色| 午夜激情欧美在线| 岛国在线免费视频观看| 一区二区三区高清视频在线| 成人亚洲精品av一区二区| 少妇裸体淫交视频免费看高清| 日本精品一区二区三区蜜桃| 国产白丝娇喘喷水9色精品| 亚洲精品456在线播放app | 在线免费观看的www视频| 亚洲精品在线美女| 国产在视频线在精品| 国产真实乱freesex| 欧美一级a爱片免费观看看| 老司机午夜十八禁免费视频| 一个人观看的视频www高清免费观看| 免费高清视频大片| 久久国产乱子免费精品| 国产av在哪里看| 亚洲专区中文字幕在线| 赤兔流量卡办理| 日本一二三区视频观看| 亚洲熟妇中文字幕五十中出| 精品人妻偷拍中文字幕| 亚洲av五月六月丁香网| 中文字幕久久专区| 亚洲国产精品久久男人天堂| 国产中年淑女户外野战色| 青草久久国产| 男女之事视频高清在线观看| 国产主播在线观看一区二区| 午夜福利高清视频| 全区人妻精品视频| 午夜日韩欧美国产| 亚洲精品乱码久久久v下载方式| 嫩草影院精品99| 少妇的逼好多水| 五月玫瑰六月丁香| 国产成年人精品一区二区| 亚洲中文字幕日韩| 成年女人毛片免费观看观看9| 亚洲国产精品成人综合色| 欧美一区二区国产精品久久精品| 亚洲三级黄色毛片| 黄片小视频在线播放| 精品一区二区免费观看| 国产一区二区在线观看日韩| 99久久久亚洲精品蜜臀av| 亚洲一区二区三区色噜噜| h日本视频在线播放| 欧美日韩综合久久久久久 | 日韩精品中文字幕看吧| 夜夜爽天天搞| 精品午夜福利在线看| 国内精品美女久久久久久| 欧美激情国产日韩精品一区| 精品国内亚洲2022精品成人| 亚洲人与动物交配视频| 69av精品久久久久久| 99国产综合亚洲精品| 日本与韩国留学比较| 国产乱人伦免费视频| 日韩大尺度精品在线看网址| 特大巨黑吊av在线直播| aaaaa片日本免费| 亚洲欧美激情综合另类| 狂野欧美白嫩少妇大欣赏| 啪啪无遮挡十八禁网站| 亚洲av电影在线进入| 国产精品一及| 波多野结衣高清无吗| 成人特级黄色片久久久久久久| 中出人妻视频一区二区| 欧美zozozo另类| 精品乱码久久久久久99久播| 久久这里只有精品中国| 亚洲美女黄片视频| 好男人电影高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜两性在线视频| 欧美日韩综合久久久久久 | 欧美xxxx黑人xx丫x性爽| 淫秽高清视频在线观看| 99在线人妻在线中文字幕| 久久精品久久久久久噜噜老黄 | 国产成人福利小说| 免费高清视频大片| 丰满人妻一区二区三区视频av| 看十八女毛片水多多多| 久久久久久久亚洲中文字幕 | 全区人妻精品视频| 中文资源天堂在线| 中文字幕av在线有码专区| 亚洲av成人精品一区久久| 欧美日韩亚洲国产一区二区在线观看| 国产真实伦视频高清在线观看 | 亚洲午夜理论影院| 怎么达到女性高潮| 淫妇啪啪啪对白视频| 中文字幕人妻熟人妻熟丝袜美| 久久天躁狠狠躁夜夜2o2o| а√天堂www在线а√下载| 国产精品久久久久久精品电影| 成人国产一区最新在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美最黄视频在线播放免费| 日韩欧美在线乱码| 亚洲精品乱码久久久v下载方式| 97热精品久久久久久| 日韩欧美免费精品| 色哟哟·www| 亚洲精品粉嫩美女一区| 在线免费观看的www视频| 欧美黄色片欧美黄色片| 国产成年人精品一区二区| 久久久久久久久大av| 亚洲综合色惰| 国内揄拍国产精品人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 国产免费av片在线观看野外av| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 精品一区二区三区视频在线观看免费| 色综合婷婷激情| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩无卡精品| 国产男靠女视频免费网站| 国产高清视频在线播放一区| 一区二区三区高清视频在线| 亚洲av成人不卡在线观看播放网| 午夜福利高清视频| 亚洲乱码一区二区免费版| 色吧在线观看| 欧美性感艳星| 欧美一区二区国产精品久久精品| 国内揄拍国产精品人妻在线| 3wmmmm亚洲av在线观看| 丁香欧美五月| 久久精品国产亚洲av香蕉五月| 一级a爱片免费观看的视频| 91午夜精品亚洲一区二区三区 | 欧美潮喷喷水| 99久久精品一区二区三区| 99久久精品一区二区三区| 特级一级黄色大片| 成人美女网站在线观看视频| 日韩欧美国产在线观看| 国产日本99.免费观看| 桃色一区二区三区在线观看| 婷婷丁香在线五月| 欧美黄色淫秽网站| aaaaa片日本免费| 欧美丝袜亚洲另类 | 中国美女看黄片| 啪啪无遮挡十八禁网站| 欧美成人a在线观看| 中国美女看黄片| 男人的好看免费观看在线视频| 国产精品久久视频播放| 九九热线精品视视频播放| 天堂√8在线中文| 久久精品综合一区二区三区| 久久精品国产清高在天天线| 我要搜黄色片| 亚洲国产欧美人成| 俄罗斯特黄特色一大片| 欧美黑人欧美精品刺激| 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 俄罗斯特黄特色一大片| 成人午夜高清在线视频| 国产亚洲欧美在线一区二区| 欧美成人性av电影在线观看| 性色avwww在线观看| 熟女人妻精品中文字幕| 桃色一区二区三区在线观看| 欧美成人免费av一区二区三区| 黄色丝袜av网址大全| 日本一本二区三区精品| 99久久九九国产精品国产免费| av在线蜜桃| 一区二区三区高清视频在线| 国产精品久久久久久久电影| 亚洲精品在线美女| 麻豆成人av在线观看| 国产白丝娇喘喷水9色精品| 午夜两性在线视频| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 99国产精品一区二区蜜桃av| 免费观看的影片在线观看| 一级黄片播放器| 黄色丝袜av网址大全| 国产精品野战在线观看| 久久久久久久久久成人| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 午夜福利高清视频| 亚洲成人久久性| 亚洲精品日韩av片在线观看| 香蕉av资源在线| 五月玫瑰六月丁香| 天美传媒精品一区二区| 国产精品久久视频播放| 能在线免费观看的黄片| 国产美女午夜福利| 欧美日韩福利视频一区二区| 国产真实乱freesex| 性欧美人与动物交配| 最近最新中文字幕大全电影3| 国产精品永久免费网站| 免费人成在线观看视频色| netflix在线观看网站| 激情在线观看视频在线高清| 我的老师免费观看完整版| 在线观看一区二区三区| 99热只有精品国产| 搡老妇女老女人老熟妇| 久久久久九九精品影院| x7x7x7水蜜桃| 精品人妻一区二区三区麻豆 | 中出人妻视频一区二区| 99热精品在线国产| 99热精品在线国产| 99国产精品一区二区三区| 国产熟女xx| 欧美日韩瑟瑟在线播放| 亚洲中文字幕日韩| 国产白丝娇喘喷水9色精品| 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 天堂网av新在线| 搞女人的毛片| 国产乱人伦免费视频| 九九在线视频观看精品| 午夜福利在线在线| 99热只有精品国产| 国内毛片毛片毛片毛片毛片| a级毛片免费高清观看在线播放| 亚洲av一区综合| 一本一本综合久久| 日韩 亚洲 欧美在线| 久久久精品大字幕| 三级男女做爰猛烈吃奶摸视频| 嫩草影视91久久| 欧美日韩黄片免| 99国产极品粉嫩在线观看| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 我要看日韩黄色一级片| 18美女黄网站色大片免费观看| 国产人妻一区二区三区在| 一级黄片播放器| av在线老鸭窝| 成人国产综合亚洲| 亚洲精品一区av在线观看| 九色成人免费人妻av| 亚洲黑人精品在线| 嫁个100分男人电影在线观看| 99在线视频只有这里精品首页| x7x7x7水蜜桃| 看免费av毛片| 成人永久免费在线观看视频| 欧美三级亚洲精品| 亚洲精品一区av在线观看| 精品乱码久久久久久99久播| 18禁在线播放成人免费| 一本久久中文字幕| 欧美丝袜亚洲另类 | 欧美xxxx黑人xx丫x性爽| 一边摸一边抽搐一进一小说| 亚洲五月天丁香| 非洲黑人性xxxx精品又粗又长| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免 | 一本综合久久免费| 悠悠久久av| 美女黄网站色视频| 丝袜美腿在线中文| 两人在一起打扑克的视频| 国产av一区在线观看免费| 日本熟妇午夜| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 日韩欧美精品免费久久 | 久久精品91蜜桃| 国产精品影院久久| 久久婷婷人人爽人人干人人爱| 精品乱码久久久久久99久播| 国产黄色小视频在线观看| 日韩高清综合在线| 又爽又黄无遮挡网站| 欧美在线黄色| 国产精品,欧美在线| 久久久久久久精品吃奶| 亚洲人成电影免费在线| 老女人水多毛片| av天堂中文字幕网| 欧美在线黄色| 俄罗斯特黄特色一大片| 成人性生交大片免费视频hd| 亚洲男人的天堂狠狠| 久久精品国产亚洲av涩爱 | 精品一区二区三区视频在线观看免费| av天堂在线播放| 国产私拍福利视频在线观看| 久久午夜福利片| 成年人黄色毛片网站| 国内精品久久久久久久电影| 性欧美人与动物交配| 中文字幕久久专区| 亚洲国产高清在线一区二区三| av天堂在线播放| 国产成人福利小说| 1024手机看黄色片| 中文字幕久久专区| 免费在线观看影片大全网站| 长腿黑丝高跟| 久99久视频精品免费| 丁香六月欧美| 97碰自拍视频| 露出奶头的视频| 别揉我奶头~嗯~啊~动态视频| 久久伊人香网站| 国产精品国产高清国产av| 婷婷精品国产亚洲av在线| 色哟哟·www| 成年人黄色毛片网站| 精品99又大又爽又粗少妇毛片 | 极品教师在线视频| 小蜜桃在线观看免费完整版高清| 免费无遮挡裸体视频| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 中文字幕精品亚洲无线码一区| 国产成人影院久久av| 人妻久久中文字幕网| 久久久精品大字幕| 在线观看66精品国产| 久久精品夜夜夜夜夜久久蜜豆| 免费观看人在逋| 欧美色欧美亚洲另类二区| netflix在线观看网站| 午夜福利在线观看免费完整高清在 | 免费观看人在逋| 免费在线观看成人毛片| 色综合婷婷激情| 亚洲精品在线观看二区| 综合色av麻豆| 一进一出抽搐动态| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 老女人水多毛片| 97碰自拍视频| 天堂动漫精品| 在线观看午夜福利视频| av黄色大香蕉| 看十八女毛片水多多多| 99在线人妻在线中文字幕| 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 一级毛片久久久久久久久女| 少妇人妻精品综合一区二区 | 精品久久久久久久末码| 午夜福利成人在线免费观看| 国产老妇女一区| 香蕉av资源在线| 在现免费观看毛片| 国产成人a区在线观看| 一区二区三区高清视频在线| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 免费黄网站久久成人精品 | 露出奶头的视频| 国产人妻一区二区三区在| 一级作爱视频免费观看| 中亚洲国语对白在线视频| 又爽又黄无遮挡网站| 国产精品不卡视频一区二区 | 久久天躁狠狠躁夜夜2o2o| 丰满人妻熟妇乱又伦精品不卡| 婷婷精品国产亚洲av| АⅤ资源中文在线天堂| xxxwww97欧美| 国产白丝娇喘喷水9色精品| 天堂动漫精品| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| 国产不卡一卡二| 男女视频在线观看网站免费| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 日韩免费av在线播放| 男女做爰动态图高潮gif福利片| 嫩草影院新地址| 亚洲av不卡在线观看| 国产老妇女一区| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 又爽又黄a免费视频| 不卡一级毛片| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头 嗯啊视频| 国产精品亚洲一级av第二区| 香蕉av资源在线| 男人和女人高潮做爰伦理| 国产激情偷乱视频一区二区| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 国产精华一区二区三区| 欧美高清成人免费视频www| 欧美在线黄色| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久亚洲av鲁大| 俄罗斯特黄特色一大片| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 国产成人福利小说| 国产成人啪精品午夜网站| 亚洲精品在线美女| 色吧在线观看| 亚洲国产色片| 18+在线观看网站| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 91狼人影院| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 亚洲成人久久性| 毛片一级片免费看久久久久 | 欧美成人性av电影在线观看| 高潮久久久久久久久久久不卡| 亚洲精品亚洲一区二区| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 1000部很黄的大片| 岛国在线免费视频观看| 国产探花在线观看一区二区| 婷婷色综合大香蕉| 最近在线观看免费完整版| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 两个人的视频大全免费| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 国产三级黄色录像| 男女那种视频在线观看| 99久久精品热视频| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 久久精品综合一区二区三区| 高清在线国产一区| 国产男靠女视频免费网站| 国产精品嫩草影院av在线观看 | 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 色在线成人网| 麻豆成人午夜福利视频| 午夜两性在线视频| 最近最新免费中文字幕在线| 中文资源天堂在线| 88av欧美| 色尼玛亚洲综合影院| 亚洲 国产 在线| 给我免费播放毛片高清在线观看| 午夜免费男女啪啪视频观看 | 久久久国产成人精品二区| 免费在线观看影片大全网站| 男女视频在线观看网站免费| 国产午夜精品论理片| 国产黄a三级三级三级人| 夜夜躁狠狠躁天天躁| www日本黄色视频网| 高清毛片免费观看视频网站| 日本熟妇午夜| 国产黄a三级三级三级人| 直男gayav资源| 精品久久久久久,| 亚洲成人久久爱视频| 精品国产亚洲在线| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 十八禁网站免费在线| 色av中文字幕| 97碰自拍视频| 精品一区二区三区视频在线| 老熟妇乱子伦视频在线观看| 极品教师在线免费播放| 日日摸夜夜添夜夜添小说| 深夜精品福利| 欧美高清性xxxxhd video| 国产午夜精品久久久久久一区二区三区 | 日韩欧美三级三区| 久久精品国产亚洲av天美| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 国产精品一区二区三区四区免费观看 | 女人十人毛片免费观看3o分钟| 真实男女啪啪啪动态图| 国产欧美日韩一区二区三| 中出人妻视频一区二区| 成人毛片a级毛片在线播放| 十八禁人妻一区二区| 国产毛片a区久久久久| 综合色av麻豆| 欧美最黄视频在线播放免费| 亚洲av.av天堂| 91麻豆av在线| 97碰自拍视频| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 午夜免费激情av| 在线观看免费视频日本深夜| 99久久无色码亚洲精品果冻| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站| 国产综合懂色| 欧美日本亚洲视频在线播放| 精品无人区乱码1区二区| 日韩人妻高清精品专区| 欧美色视频一区免费| 一区二区三区激情视频| 最后的刺客免费高清国语| 免费av不卡在线播放| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 国产探花极品一区二区| 最近中文字幕高清免费大全6 | 中文字幕精品亚洲无线码一区| 亚洲黑人精品在线| 欧美高清成人免费视频www| 天堂动漫精品| 观看免费一级毛片| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| www.色视频.com| 日本三级黄在线观看| 久久亚洲精品不卡| 免费黄网站久久成人精品 | 最近在线观看免费完整版| 国产极品精品免费视频能看的| 国产精品久久久久久人妻精品电影| 91在线观看av| 国产一区二区三区在线臀色熟女| 99精品在免费线老司机午夜| 九色成人免费人妻av| 丁香六月欧美| 一个人免费在线观看的高清视频| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 久久精品影院6| 欧美潮喷喷水| 国产欧美日韩精品亚洲av| 亚洲在线观看片| 精品午夜福利在线看| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 丁香六月欧美| 欧美性猛交黑人性爽| 欧美日韩国产亚洲二区| 亚洲av一区综合| 99国产精品一区二区三区| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 精品久久久久久久末码| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 国产精品久久久久久亚洲av鲁大| 成人性生交大片免费视频hd| 久久精品人妻少妇| 久久99热6这里只有精品| 美女大奶头视频| 精品99又大又爽又粗少妇毛片 |