張梅秀,王錫昌,劉 源
上海海洋大學食品學院,上海201306
海參生物活性研究進展
張梅秀,王錫昌,劉 源*
上海海洋大學食品學院,上海201306
海參是重要的海洋食物和藥物資源,含有多種生物活性成分,如多糖、皂苷、多肽及蛋白質和脂類等其他活性成分,具有增強免疫力、抗凝血、鎮(zhèn)痛、抗腫瘤、抗真菌、抗病毒、抗衰老和抗疲勞等生理功能。本文簡要介紹了我國海參資源的分布情況,綜述了國內外對海參生物活性物質組成及其藥理作用研究的新進展。旨在為科學工作者對海參展開細胞和分子水平上的研究、尋找新型的海洋高效藥物和功能性食品的開發(fā)提供參考,同時為我國豐富的海參資源的開發(fā)利用提供新思路。
海參;資源分布;生物活性;藥理作用;研究進展
海參(Sea cucumber)隸屬無脊椎動物中最高等的棘皮動物門(Echinodermata)、海參綱(Holothuroidea),是海洋重要的食物和藥物資源。海參種類比較豐富,目前已知全世界上約有1100多種,我國約有500多種,全世界可食用海參有40多種,我國有20多種[1]。
近十年來,國內外關于海參的生物活性成分及其藥理作用等方面的研究非?;钴S,已經相繼從幾十種海參中分離獲得了多種功能性化學物質,包括多糖[2]、三萜皂苷[3]、多肽及蛋白質[4]、脂類(包括脂肪酸[5]、神經節(jié)苷酯[6-8]、腦苷脂[9]等)、凝集素、神經肽和糖肽等。海參中多種生物活性成分及其藥理作用的發(fā)現(xiàn)表明海參是世界上少有的高蛋白、低脂肪、低糖、無膽固醇的營養(yǎng)保健食品,而且其藥理活性十分廣泛,有可能成為治療當前威脅人類健康主要疾病如癌癥、循環(huán)系統(tǒng)疾病和艾滋病等的新型藥物。為科學工作者對海參展開細胞和分子水平上的研究、尋找新型的海洋高效藥物和功能性食品的開發(fā)提供參考,同時為我國豐富海參資源的開發(fā)利用提供新的思路。
目前已知我國海參主要分布在溫帶區(qū)和熱帶區(qū),溫帶區(qū)主要在黃海、渤海海域,主要經濟品種是刺參,也是我國最為知名的海參種類;熱帶區(qū)主要在兩廣和海南沿海,主要經濟品種有梅花參等,其中西沙群島、南沙群島和海南島是我國熱帶海參的主要產地。我國可食用海參有20多種,隸屬于3個目、4個科[10],主要有仿刺參、梅花參、綠刺參和花刺參,下表為我國可食用海參的類群:
表1 我國可食用海參的類群Table 1 The types of edible sea cucumber in China
2.1 多糖
2.1.1 多糖的組成
海參主要的食用和藥用部位是體壁,而多糖是海參體壁的重要成分。國內外有關研究表明,海參體壁多糖主要分為兩類,一類為海參糖胺聚糖(Glycosaminoglycan,GAG)即酸性粘多糖(Holothurian acid glycosaminoglycan,HG),另一種為海參巖藻多糖(Holothurian fucan,HF)。研究表明刺參[11]、梅花參[12]、黑乳海參[13]和玉足海參[14]多糖的結構特異,且各不相同,均為海參所特有的多糖,生物活性非常相似,酸性粘多糖和巖藻多糖的硫酸酯基的含量也非常高。經進一步研究發(fā)現(xiàn),這兩類多糖屬于硫酸軟骨素類多糖,硫酸軟骨素的巖藻糖支鏈由2個巖藻糖由1→3糖苷鍵連接,巖藻糖支鏈和葡萄糖醛酸的比例為1∶1,也就是說大約20%支鏈在多聚物主鏈的糖醛酸上,余下的支鏈O→4或O→6糖苷鍵連在N-乙酰氨基半乳糖上[15]。下表列舉了5種海參多糖的化學成分含量[16]:
表2 5種海參多糖的化學成分含量(g·100g-1)Table 2 Chemical component of polysaccharides from five kinds of sea cucumber(g·100g-1)
從表2可以看出,各種海參多糖的總糖含量在40.37% ~62.11%之間變動,硫酸根含量在19.54%~29.95%之間波動,糖醛酸含量在9.85%~12.67%之間變化,差異并不明顯,而各種海參多糖的氨基糖含量差別卻較大。
2.1.2 多糖生物活性
2.1.2.1 增強免疫力
周湘盈等[17]研究表明刺參凍干粉劑量組0.4、0.8和1.6 g/(kg*d)對小鼠肉瘤S180的抑瘤率分別為15.5%,21.1%和34.8%,且隨著劑量的增加抑瘤率增加。隨著刺參凍干粉劑量逐漸增高,白細胞介素-2(IL-2)含量增多,T細胞增殖,激活了多種免疫細胞,促進了細胞因子的產生,從而提高了機體的兔疫功能。這是因為刺參凍干粉中的刺參酸性粘多糖對IL-2具有一定的誘生作用,也有可能是刺參酸性粘多糖能使白細胞懸浮物中的E花環(huán)數(shù)量增加,作用于無活性細胞亞群,致使活性的T細胞增加,紅細胞-抗體-補體復合物與B淋巴細胞混合形成的EAC玫瑰花環(huán)和膜免疫球蛋白(SmIg)的表達減少,從而提高了機體的免疫功能。海參酸性粘多糖是一種作用較強的免疫促進劑,可用于腫瘤病人的輔助治療。
2.1.2.2 抑制腫瘤
海參多糖的抗腫瘤活性與其提高免疫功能的作用是息息相關的。一般認為抗腫瘤免疫主要是細胞免疫,單核-巨噬細胞系統(tǒng)的吞噬活性是機體免疫功能的重要指標之一,巨噬細胞是抗腫瘤的主要效應細胞。高翔等[18]抗腫瘤實驗表明,海參硫酸粘多糖對黑色素瘤B16作用72 h時IC30為0.13 mg/mL,具有顯著的抗腫瘤活性。
2.1.2.3 抗凝血、促進纖溶作用和抗血栓
海參糖胺聚糖(GAG)和巖藻糖硫酸軟骨素(Fucosylated chondroitinsulfate,F(xiàn)CS)都有類似于肝素但又不同于肝素的抗凝血、抗血栓的作用[19]。研究表明GAG不僅有抗凝血酶作用,還有促進纖維蛋白溶酶原活化[20],從而具有促進纖溶的作用。但GAG有明顯的抑制血小板解聚作用,由于它使血小板聚集性增高,產生血小板自發(fā)性聚集,在血循環(huán)中的血小板聚集體不能通過臟器和組織中的毛細血管而被扣下出現(xiàn)血小板減少[2]。GAG的聚集血小板作用跟其自身的分子量大小有關,Wu Mingyi等[21,22]研究表明通過酶解GAG,減小GAG的分子量,不僅可以保留其抗凝血活性,而且可以減弱血小板的聚集作用,同時減少出血的風險性。FCS在一定劑量下抗凝效果比肝素更強烈,可誘導血管內皮細胞膜GAG活性的改變[23],從而改變血漿抗凝活性。Fonseca RJ等[24]人研究表明巖藻糖硫酸軟骨素和巖藻聚糖硫酸酯結構中的2,4-二硫酸化巖藻糖單位抗凝血活性必需的結構單位,同時多糖鏈上的2,4-二硫酸化巖藻糖單位的位置決定了其是具有凝血還是出血作用。
Li Z等[2,25,26]研究表明 GAG通過調節(jié)活化血小板粘附分子GPⅠb,GPⅡb/IIIa復合物的表達,降低活化人臍靜脈內皮細胞(HUVECs)von Willebrand因子(vWF)和纖溶酶原激活劑抑制物-1(PAI-1)抗原表達及其mRNA轉錄,抑制血小板一內皮細胞粘附反應,從而減少血栓形成。GAG和FCS抗凝活性都呈自體血液回收(HC-I)依賴性,故GAG有可能用于治療德氮吡格中間體1-氨甲基-1,2,3,4-四氫異喹啉(ATIQ)減少而需抗凝治療的血栓性疾病,成為新型的抗凝藥物。
2.1.2.4 抗病毒和抗真菌
在組織培養(yǎng)和動物腦內接種32或320TC LD50的單純皰疹病毒(HSV)液,然后腹腔注射GAG,以小鼠死亡率和平均存活日期判斷藥物的抗病毒活性,同時也作了兔眼HSV角膜炎的治療。結果表明,當GAG與不同稀釋度的病毒液(10-4~10-6)混合培養(yǎng)時,GAG抑制HSV的最低有效濃度為10 μg/ml,效果大于阿糖腺甘(25 μg/mL),GAG有明顯的抗HSV作用,但對小鼠HSV腦炎和兔眼HSV角膜炎并無療效[27]。
2.1.2.5 對神經的作用
Zhang Y等[28,29]將刺參中提取的硫酸多糖和成纖維細胞生長因子混合一起作用于大鼠的神經胚胎肝細胞,發(fā)現(xiàn)神經胚胎肝細胞的增值分化要比單獨加成纖維細胞生長因子的增值分化效率要高很多。原因可能是刺參硫酸多糖可以減緩細胞的死亡,延長細胞壽命,促進神經元的形成。同時刺參多糖對谷氨酸所致的PC12細胞神經毒性損傷亦有保護作用[30]。故而刺參多糖可以作為促進神經肝細胞增值分化的輔助藥物,用于預防中樞神經元的退行性病變和治療神經性疾病。
2.2 皂苷
海參皂苷是一類三萜皂苷,三萜皂苷在動物體內非常少見,動物中主要存在于海參和少部分海綿體內。2000年以來,Silchenko AS[31,32]等人已至少從21種海參中分離并鑒定了59種新的海參烷型海參皂苷,且多數(shù)為羊毛甾烷型三萜皂苷。海參皂苷由苷元和寡糖基兩部分組成,寡糖鏈通過β-O-糖苷鍵和苷元的C-3相連。寡糖鏈是由4~6個單糖組成的直鏈[33]或支鏈。海參苷元均為羊毛甾烷的衍生物,通常含有5個角甲基,20位上連接有側鏈;絕大部分屬于海參烷型,即含有18(20)內酯結構[34],偶有18(16)內酯環(huán)或無內酯環(huán)結構者,稱為非海參烷型(Nonholostane)。海參皂苷結構的多樣性,導致其具有多種多樣的生物活性作用[3,35]。下表為新近發(fā)現(xiàn)的海參皂苷:
表3 近年以來新發(fā)現(xiàn)的海參皂苷及其藥理活性Table 3 The recently discovered sea cucumber triterpene glycosides and their pharmacological activity
Thelenataananas Bivittoside D CCR5受體阻斷 [38]Pseudocolo chirus Violaceuside I and A 細胞毒性、抗真菌 [39,40]Hemioedema spectabilis Hemoiedemoside A 抗真菌 [41]Holothuria fuscocinerea Fuscocineroside C 細胞毒性、抗真菌 [42]Mensamaria intercedens Intercedenside A and C 細胞毒性、抗腫瘤 [43,44]Staurocucumis liouvillei Liouvillosides A1,A2,A3,B1,and B2 抗病毒 [45]Actinopyga lecanora Lecanorosides A and B 細胞毒性 [46]Actinopyga lecanora Holothurin B 抗真菌 [47]Pentacta quadrangularis Pentactasides B and C 細胞毒性 [48]Bohadschia marmorata Impatienside A,Bivittoside D 抗真菌 [49]Holothuria axiloga Axilogoside A 抗真菌活性 [50]Holothuria hilla Lesson Hillasides A and B 細胞毒性 [51]Pseudocolochirus violaceus Violaceusides A and B 細胞毒性 [40,52]Holothuria nobilis Nobilisides A,B and C 細胞毒性 [53]Holothuria leucospilota Leucospilotaside B, 細胞毒性 [54]Pentacta quadrangularis PentactasidesⅠ,Ⅱ,Ⅲ 細胞毒性 [55]Cucumaria japonica Cumaside 抗腫瘤 [56]Holothuria scabra Scabraside A and B,EchinosideA,Holothurin A1 抗真菌,細胞毒性 [57,58]Cucumaria frondosa Frondoside A 免疫調節(jié),抗胰腺癌 [59,60]
海參皂苷有具有一系列活性如溶血性、體外細胞毒性、抗腫瘤、抗真菌、降血脂[61]和殺蟲[62]作用等。在38個新皂昔中,進行過活性研究的化合物大多具有這些活性(見表3)。大多數(shù)海參皂苷都具有較強的溶血活性,其溶血活性與皂苷糖鏈上硫酸基的位置,末端單糖結構中是否存在3-O-CH3基團以及苷元結構的特性有非常重要的關系。如海參三萜皂苷成分中NobA會立即轉移到紅細胞膜上,與紅細胞膜中的膽固醇結合,引起紅細胞穿孔而溶血[63]。
Muniain C等[64]從海參(Psolus patagonicus)中提取得到的一種主要三萜皂苷Patagonicoside A能夠抑制葉霉病菌,尖孢鐮刀菌和念珠菌的生長,顯示出較強的抗真菌活性,同時實驗結果表明Patagonicoside A對鹽水蝦鹵蟲有較高的致死率。Yuan W H等[50]也從黑乳海參中提取出來的一種新型三萜皂苷Axilogoside A,經試驗表明其具有相當強的抗真菌活性(4 μg/mL-1≤MIC80≤16 μg/mL-1)。這跟大多數(shù)海參皂苷都具有較強的溶血活性有關即海參皂苷能與生物膜上甾醇分子結合形成復合物,在膜上形成單一離子通道和大的水孔,導致生物膜溶解[34]。王靜鳳等[65]研究表明對于氧化型低密度脂蛋白(Ox-LDL)氧化損傷的血管內皮細胞,日本刺參皂苷有能顯著提高細胞增殖活性(P<0.01),抑制胞內丙二醛(MDA)含量(P<0.01),有效保護氧化損傷的血管內皮細胞,但對細胞一氧化氮合成限速酶(NOS)的活性和NO釋放量無顯著影響,這對動脈粥樣硬化(Atherosclerosis,AS)的防治具有重要意義。
海參皂甙中有一些是具有腫瘤細胞毒性的化合物,存在于海參的體壁、內臟和腺體中,能抑制腫瘤細胞的生長與轉移,能起到有效防癌、抗癌作用[66,67]。Silchenko A S等[68]從海參(Cucumaria okhotensis)提取出的三種新的三萜皂苷Okhotosides B1 (1),B2(2)和B3(3)和一種已知皂苷Frondoside A (4)(如圖1)對HeLa宮頸癌細胞都顯示出不同程度細胞毒性(2.1 mg/mL≤IC50≤4.5 mg/mL)作用,其中Frondoside A(4)的細胞毒性最強。某些海參皂苷還具有鎮(zhèn)痛解痙作用,原因是海參皂苷可能特異性作用于神經受體或離子通道,從而影響與受體有關的一系列細胞調控活動,阻斷神經傳導起到鎮(zhèn)痛解痙作用。
圖1 化合物okhotosides B1(1)、B2(2)、B3(3)和frondoside A(4)Fig.1 Okhotosides B1(1),B2(2),B3(3)and frondoside A(4)
2.3 海參肽
海參干燥體壁的有機成分中蛋白質含量接近90%,含有18種氨基酸,不僅氨基酸的構成比例較好,其中必需氨基酸的比例很高,包括人體必需的7種氨基酸,而且海參中甘氨酸、精氨酸和谷氨酸的含量遠遠高于海參中其他氨基酸的含量。海參肽指的海參經蛋白酶水解并分離提純后得到的小分子肽,主要是膠原肽類[69,70],此外,海參體內還含有神經肽[71]、糖肽以及抗菌肽等多種活性肽。小分子多肽具有多種功效成分,如降血壓、降血脂[72]、抗動脈粥樣硬化、抗疲勞、抗菌[73,74]、提高免疫力、延緩衰老和抗氧化[75,76]等諸多生理功能,對人體生理機能有著其它營養(yǎng)物質不可替代的作用。由于海參多肽具有良好的溶解性、穩(wěn)定性、低粘度性、易消化吸收、無抗原性,食用安全等特殊的理化性質,因此其比普通海參制品有更高的生物效價,符合食品和保健品的要求[77]。
Rodriguez E[78,79]等用從海參(Holothuria forskali)中酶解提取出來了的多肽喂養(yǎng)大鼠,測定海參多肽對大鼠血脂的影響,實驗結果顯示海參多肽能夠明顯升高血清高密度脂蛋白的含量,降低血清甘油三酯的的水平,從而達到降血脂的作用。王奕[80]實驗結果表明日本刺參膠原蛋白多肽(AJCP)具有抗腫瘤作用和調節(jié)免疫功能的作用,不同劑量組的AJCP均能顯著抑制小鼠S180肉瘤的生長,提高小鼠脾指數(shù)及胸腺指數(shù)(P<0.05),AJCP能顯著提高荷瘤小鼠血清溶血素含量(P<0.01)和抗體形成細胞數(shù)(P<0.05),對紫外線誘導的皮膚光老化模型小鼠皮膚具有保護作用。海參多肽不僅可以加工成營養(yǎng)補充劑,而且也可以作為制備抗氧化,延緩衰老的保健品或化妝品的原料,具備良好的開發(fā)利用潛能。
2.4 海參脂類
海參中含有脂肪酸(Fatty acid)、神經節(jié)苷酯(Ganglioside)、腦苷脂[81,82](Cerebroside)等脂類物質。對采自熱帶和溫帶海域的12種海參分析發(fā)現(xiàn),鮮海參體內總脂含量為0.24%~0.83%。磷脂(Phospholipids)約占總脂含量的12.5% ~29.0%,磷脂中鞘脂主要為神經酰胺,包括神經節(jié)苷酯和腦苷脂[83]。
海參體內主要含有20∶4(n-6)、20∶1、20∶5(n-3)、16∶0和18∶0等結構類型的脂肪酸。分布于溫帶水域的海參20∶5(n-3)脂肪酸含量較高,20∶4(n-6)脂肪酸含量較少。分布于熱帶水域的海參支鏈脂肪酸約占總脂肪酸的1%,而溫帶海參支鏈脂肪酸在總脂肪酸中的比例可高達15.5%[38]。
從葉瓜參(Cucumaria frondosa)中獲得的一種支鏈脂肪酸12-MTA(12-Methytetradecanoic acid)具有抗前列腺癌細胞增殖的效果[84],因前列腺癌細胞的增殖與5-HETE(5-Hydroxyeicosatetraenoic acid)的形成有關。
Yamada K等從海參中提取出四種神經節(jié)苷脂分子,并對其生物活性研究表明海參神經節(jié)苷脂能協(xié)同神經長年因子(NGF)的作用誘發(fā)神經軸突生長(Neuritogenic activity)[85,86],同時在神經節(jié)苷脂分子中連接1~3個唾液酸(神經氨酸)基對誘發(fā)神經軸突生長也是必不可少的條件[6-8]。
腦苷脂類化合物作為細胞膜結構成分,在細胞間的識別、跨膜信息傳導、細胞分化與生長以及細胞形態(tài)結構與功能的維持等方面,起到重要的生物學作用;此外腦苷脂類化合物還具有良好的藥理學活性:如抗腫瘤、細胞毒活性、抗HIV病毒作用、抗肝毒素與肝保護作用等[87]。Tatsuya S[9]用腦苷脂處理結腸癌細胞,發(fā)現(xiàn)腦苷脂能過誘導癌細胞染色質片段形態(tài)變化,增加了半胱氨酸蛋白酶-3的活性,致使癌細胞凋亡,可輔助性的治療結腸癌。
2.5 海參中的其它活性成分
Kuwahara H[88,89]等研究表明凝集素是一類具有抗原專一性,可促使細胞凝集的糖蛋白,在體液免疫及細胞免疫中起著重要的作用。不同種類的海參中的凝集素具有不同生物活性,如棘刺瓜參體內分離出的凝集素還具有溶血性,促使人類和老鼠的紅細胞穿孔而溶血[90],而糙海參中獲得的凝集素具有抗菌活性[91]。Janakiram N B等[92,93]證明從葉瓜參中提取出的糖脂類物質 Frondanol A5,F(xiàn)rondanol (R)-A5p分別具有抗結腸癌和抗胰腺癌的作用,且對人體正常的細胞無毒害作用。海參中還含有色素以及蛋氨酸、牛磺酸、釩、硒、鍺、維生素PP等微量物質[94]。這些物質是人生長發(fā)育所必需的,具有不可替代的生理功能。
海參的各種生物活性成分具有多種藥理活性,作為海洋藥物領域一個熱點方向,其熱度經久不衰,對其深入的研究將是一項非常有意義的工作,有助于探索生物間相互作用的機制。目前海參的各種生物活性作用的機制還不清楚,尤其是有關細胞分子生物學作用調控機制還有待進一步研究,國內有關該方面的研究近于空白,這是未來海參抗腫瘤研究的重點。同時,功能性食品已經成為海參深度開發(fā)利用的重要方向,但存在加工方法科技含量不高、海參行業(yè)標準亟待建立等問題,海參深加工技術依然需要創(chuàng)新。我們可以通過強化海參從原料到生產工藝的深入研發(fā),采用現(xiàn)代高新技術如膜分離、微膠囊、超臨界流體萃取及生物技術等明確海參產品的功能因子和確切的健康價值。
1 Han H,et al.Triterpene glycosides from sea cucumber Holothuria leucospilota.Chin J Nat Med,2009,7:346-350.
2 Li Z,et al.Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted from sea cucumber.Chin Med J-peking(Engl),2000,113:706-711.
3 Van Dyck S,Gerbaux P,F(xiàn)lammang P.Qualitative and quantitative saponin contents in five sea cucumbers from the Indian ocean.Mar Drugs,2010,8:173-189.
4 Cui FX,et al.Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus.Food Chem,2007,100:1120-1125.
5 Fredalina BD,et al.Fatty acid compositions in local sea cucumber,Stichopus chloronotus,for wound healing.Gen Pharmacol,1999,33:337-340.
6 Yamada K,et al.Constituents of Holothuroidea,13.Structure of neuritogenic active ganglioside molecular species from the sea cucumber Stichopus chloronotus.Chem Pharm Bull(Tokyo),2003,51:46-52.
7 Yamada K.Chemo-pharmaceutical studies on the glycosphingolipid constituents from echinoderm,sea cucumbers,as the medicinal materials.Yakugaku Zasshi,2002,122:1133-1143.
8 Yamada K,et al.Constituents of holothuroidea.9.Isolation and structure of a new ganglioside molecular species from the sea cucumber Holothuria pervicax.Chem Pharm Bull,2000,48:157-159.
9 Tatsuya S,et al.Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells.Biosci Biotech Bioch,2006,70:2906-2912.
10 Cui GY(崔桂友),Zhao L(趙廉).Names and species identifying of edible sea cucumber in china.Cuisine J Yangzhou Univ(揚州大學烹飪學報),2000,17:13-18.
11 Kariya Y,et al.Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis.Carbohydr Res,2004,339:1339-1346.
12 Wu M,et al.Preparation and characterization of molecular weight fractions of glycosaminoglycan from sea cucumber Thelenata ananas using free radical depolymerization.Carbohydr Res,2010,345:649-655.
13 Wu J(巫軍).Studies on the bioactive constituents from sea cucumber Holothuria nobilis and Holothuria hilla.Shanghai (China):Second Military Medical University(第二軍醫(yī)大學),PhD.2005.
14 Han H(韓華).Studies on the constituents from sea cucumber Holothuria leucospilota and Holothuria scabra.Shanghai (China):Second Military Medical University(第二軍醫(yī)大學),PhD.2007.
15 Kariya Y,et al.Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus.Carbohydr Res,1997,297:273-279.
16 Sheng WJ(盛文靜),et al.Chemical component analysis of polysaccharides from different sea cucumbers.Chin J Mar Drugs(中國海洋藥物雜志),2007,26:44-49.
17 Zhou XY(周湘盈),Xu GF(徐貴發(fā)).Effect of freeze-dried sea cucumber powder of eastern sea on tumor and immune index of S180-bearing mouse.J Hyg Res(衛(wèi)生研究),2008,37:30-32.
18 Gao X(高翔),et al.Study on glycosaminoqlycan extracted from holothuriand and its anti-tumor activity.Sci Tech Food Ind(食品工業(yè)科技),2008,29:117-123.
19 Minamiguchi K,et al.Depolymerized holothurian glycosaminoglycan(DHG),a novel alternative anticoagulant for hemodialysis,is safe and effective in a dog renal failure model.Kidney Int,2003,63:1548-1555.
20 Kariya Y,et al.Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus.J Biochem,2002,132:335-343.
21 Wu M,et al.Free-radical depolymerization of glycosaminoglycan from sea cucumber Thelenata ananas by hydrogen peroxide and copper ions.Carbohydr Polym,2010,80:1116-1124.
22 Wu M,et al.Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas.Food Chem,2010,122:716-723.
23 Tapon-Bretaudiere J,et al.Modulation of vascular human endothelial and rat smooth muscle cell growth by a fucosylated chondroitin sulfate from echinoderm.J Thromb Haemost,2000,84:332-337.
24 Fonseca RJ,Santos GR,Mourao PA.Effects of polysaccharides enriched in 2,4-disulfated fucose units on coagulation,thrombosis and bleeding.Practical and conceptual implications.J Thromb Haemost,2009,102:829-836.
25 Shen WZ(沈衛(wèi)章).Study on molecular mechanisms of glanzmann thrombasthenia and antithrombotic mechanisms of holothurian glycosaminoglycan extracted from sea cucumber.Jilin(China):Jilin University(吉林大學),PhD.2008.
26 Wang ML(王曼玲).Study on the antiadhesive effect of holothurian glycosaminoglycan on platelet-endothelial cell adhesion and involved mechanisms.Shanghai(China):Fudan U-niversity(復旦大學),PhD.2006.
27 Yuan WH(袁衛(wèi)華).Studies on the bioactive constituents from Bohadschia mrarmorata Jaeger& Holothuria(Microthele)Axiloga H.L.CIark.Shanghai(China):Second Military Medical University(第二軍醫(yī)大學),PhD.2008.
28 Zhang YJ,et al.Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus.J Biosci Bioeng,2010,109:67-72.
29 Zhang YJ,et al.Enhancing effect of a sea cucumber Stichopus japonicus sulfated polysaccharide on neurosphere formation in vitro.J Biosci Bioeng,2010,In Press,Corrected Proof.
30 Diao HX,et al.Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC12 cells.Zhong Yao Cai,2009,32:398-400.
31 Silchenko AS,Stonik VA,Avilov SA.Holothurins B2,B3,and B4,new triterpene glycosides from mediterranean sea cucumbers of the genus Holothuria.J Nat Prod,2005,68:564-567.
32 Antonov AS,et al.Triterpene glycosides from Antarctic sea cucumbers.2.Structure of Achlioniceosides A(1),A(2),and A(3)from the sea cucumber Achlionice violaecuspidata (=Rhipidothuria racowitzai).J Nat Prod,2009,72:33-38.
33 Han H,et al.Leucospilotaside C,a new sulfated triterpene glycoside from sea cucumber Holothuria leucospilota.Chinese Chem Lett,2008,19:1462-1464.
34 Kalinin VI,et al.Triterpene glycosides from sea cucucmbers (Holothurioidea,Echinodermata).Biological activities and functions.in:Atta-ur-Rahman F.R.S.,(Ed.),Stud Nat Prod Chem,Elsevier,2008,pp.135-196.
35 Van Dyck S,Gerbaux P,F(xiàn)lammang P.Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali(Echinodermata)by mass spectrometry.Comp Biochem Phys B:Biochem Molec,2009,152: 124-134.
36 Ana PM,Claudia M,Alicia MS.Patagonicoside A:a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus.Tetrahedron,2001,57:9563-9568.
37 Maier MS,et al.Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei.J Nat Prod,2001,64:732-736.
38 Hegde VR,et al.Two selective novel triterpene glycosides from sea cucumber,Telenata Ananas:inhibitors of chemokine receptor-5.Bioorg Med Chem Lett,2002,12:3203-3205.
39 Zhang SY,Tang HF,Yi YH.Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.Fitoterapia,2007,78:283-287.
40 Zhang SY,et al.Two new bioactive triterpene glycosides from sea cucumber Pseudocolochirus violaceus.J Asian Nat Prod Res,2006,8:1-8.
41 Chludil HD,et al.Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis.J Nat Prod,2002,65:860-865.
42 Zhang SY,Yi YH,Tang HF.Bioective triterpene glycosides from the sea cucumber Holothuria fuscocinerea.J Nat Prod,2006,69:1492-1495.
43 Zou ZR,et al.Intercedensides A-C,three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert.J Nat Prod,2003,66:1055-1060.
44 Zou ZR,et al.Intercedensides D-I,Cytotoxic triterpene glycosidesfrom the sea cucumber Mensamaria intercedens Lampert.J Nat Prod,2005,68:540-546.
45 Antonov AS,et al.Triterpene glycosides from Antarctic sea cucumbers.1.Structure of liouvillosides A1,A2,A3,B1,and B2 from the sea cucumber Staurocucumis liouvillei:new procedure for separation of highly polar glycoside fractions and taxonomic revision.J Nat Prod,2008,71:1677-1685.
46 Zhang SL,et al.Lecanorosides A and B,two new triterpene glycosides from the sea cucumber Actinopyga lecanora.J Asian Nat Prod Res,2008,10:1097-1103.
47 Kumar R,et al.Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora.Bioorg&Med Chem Lett,2007,17:4387-4391.
48 Han H,et al.Two new cytotoxic disulfated holostane glycosides from the sea cucumber Pentacta quadrangularis.Chem Biodivers,2010,7:158-167.
49 Yuan WH,et al.Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata.Planta Med,2009,75: 168-173.
50 Yuan WH,et al.Two antifungal active triterpene glycosides from sea cucumber Holothuria(Microthele)axiloga.Chin J Nat Med,2008,6:105-108.
51 Wu J,et al.Hillasides A and B,two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla Lesson.J Asian Nat Prod Res J,2007,9:609-615.
52 Zhang SY,Yi YH,Tang HF.Cytotoxic sulfated triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.Chem Biodivers,2006,3:807-817.
53 Wu J,et al.Nobilisides A-C,three new triterpene glycosides from the sea cucumber Holothuria nobilis.Planta Med,2006,72:932-935.
54 Han H,et al.A novel sulfated holostane glycoside from sea cucumber Holothuria leucospilota.Chem Biodivers,2010,7: 1764-1769.
55 Han H,et al.Cytotoxic holostane-type triterpene glycosides from the sea cucumber Pentacta quadrangularis.Planta Med,2010,76:1900-1904.
56 Aminin DL,et al.Antitumor activity of the immunomodulatory lead Cumaside.Int Immunopharmacol,2010,10:648-654.
57 Han H,et al.Antifungal active triterpene glycosides from sea cucumber Holothuria scabra.Yao Xue Xue Bao,2009,44: 620-624.
58 Han H,et al.Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria scabra.Planta Med,2009,75: 1608-1612.
59 Aminin DL,et al.Immunomodulatory properties of frondoside A,a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber Cucumaria frondosa.J Med Food,2008,11:443-453.
60 Li X,et al.Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound,F(xiàn)rondoside A.Ann N Y Acad Sci,2008,1138: 181-198.
61 Hu XQ,et al.Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARalpha and SREBP-1c signaling.Lipids Health Dis,2010,9:25.
62 Singh N,et al.Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora.Parasitol Res,2008,103:351-354.
63 Xiong Y(熊陽),et al.Preliminary study on sea cucumber saponin-nobiliside A liposome and its hemolytic activity.Acta Pharm Sin(藥學學報),2008,43:214-220.
64 Muniain C,et al.Chemical ecology and bioactivity of triterpene glycosides from the sea cucumber Psolus patagonicus (Dendrochirotida:Psolidae).J Mar Biol Assoc UK,2008,88: 817-823.
65 Wang JF(王靜鳳),et al..Comparative investigation on the effects of triterpene glycosides from three kinds of sea cucumber on vascular endothelial cells.Period Ocean Univ China(中國海洋大學學報),2008,38:221-224.
66 Avilov SA,et al.Synaptosides A and A1,triterpene glycosides from the sea cucumber Synapta maculata containing 3-O-methylglucuronic acid and their cytotoxic activity against tumor cells.J Nat Prod,2008,71:525-531.
67 Maier MS,Biological activities of sulfated glycosides from echinoderms.in:Atta-ur-Rahman F.R.S.,(Ed.),Stud Nat Prod Chem,Elsevier,2008,pp.311-354.
68 Silchenko AS,et al.Constituents of the sea cucumber Cucumaria okhotensis.Structures of okhotosides B1-B3 and cytotoxic activities of some glycosides from this species.J Nat Prod,2008,71:351-356.
69 Liu Z,Oliveira AC,Su YC.Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber(Parastichopus californicus).J Agric Food Chem,2010,58:1270-1274.
70 Dong X,et al.Extraction and properties of collagen from sea cucumber(Stichopus japonicus)body wall.J Biotechn,2008,136(Supplement 1):S596-S596.
71 Kato S,et al.Neuronal peptides induce oocyte maturation and gamete spawning of sea cucumber,Apostichopus japonicus.Dev Biol,2009,326:169-176.
72 Tanaka K,et al.Effects of dietary black sea cucumber on serum and liver lipid concentrations in rats.J Jpn Soc Food Sci, 2003,56:175-179.
73 Wang X,et al.Recombinant expression and antibacterial activity of i-type lysozyme from sea cucumber Stichopus japonicus.Sheng Wu Gong Cheng Xue Bao,2009,25:189-194.
74 Cong L,et al.Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus,and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein.J Biosci Bioeng,2009,107:583-588.
75 Zhong Y,Khan MA,Shahidi F.Compositional characteristics and antioxidant properties of fresh and processed sea cucumber(Cucumaria frondosa).J Agric Food Chem,2007,55: 1188-1192.
76 Jingfeng W,et al.Antioxidation activities of low-molecularweight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus.Period Ocean Univ China,2010,9:94-98.
77 Liu Z,Oliveira AC,Su YC.Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber(Parastichopus californicus).J Agric Food Chem,2010,58:1270-1274.
78 Rodriguez E,et al.Nutritional value of Holothuria forskali protein and effects on serum lipid profile in rats.J Physiol Biochem,2000,56:39-43.
79 Taboada MC,Gonzalez M,Rodriguez E.Value and effects on digestive enzymes and serum lipids of the marine invertebrate Holothuria forskali.Nutr Res,2003,23:1661-1670.
80 Wang Y(王奕).Study on skin protective property of AJCP and SSCP.Qindao(China):China Ocean University(中國海洋大學),PhD.2007.
81 Ikeda Y,et al.Isolation and structure of a galactocerebroside from the sea cucumber Bohadschia argus.Chem Pharm Bull (Tokyo),2009,57:315-317.
82 Ikeda Y,et al.Langmur monolayers of cerebroside with different head groups originated from sea cucumber:binary systems with dipalmitoylphosphatidylcholine(DPPC).Colloids Surf B Biointer,2009,72:272-283.
83 Muralidhar P,et al.Sphingolipids from marine organisms:A review.Nat Prodt Sci,2003,9:117-142.
84 Hirata T,et al.Recent advances in researches on physiologically active substances in holothurians.J Ocean Univ China,2005,4:193-197.
85 Kisa F,et al.Constituents of Holothuroidea,18.Isolation and structure of biologically active disialo-and trisialo-gangliosides from the sea cucumber Cucumaria echinata.Chem Pharm Bull,2006,54:1293-1298.
86 Kisa F,et al.Constituents of Holothuroidea,17.Isolation and structure of biologically active monosialo-gangliosides from the sea cucumber Cucumaria echinata.Chem Pharm Bull,2006,54:982-987.
87 Sugawara T,et al.Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells.Biosci Biotech Bioch,2006,70:2906-2912.
88 Kuwahara H,et al.Oligomerization process of the hemolytic lectin CEL-III purified from a sea cucumber,Cucumaria echinata.J Biochem,2002,131:751-756.
89 Gowda NM,Goswami U,Khan MI.Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate,sea cucumber(Holothuria scabra).Fish Shellfish Immunol,2008,24:450-458.
90 Yoshida S,et al.Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.PLoS Pathog,2007,3:e192.
91 Gowda NM,Goswami U,Khan MI.T-antigen binding lectin with antibacterial activity from marine invertebrate,sea cucumber(Holothuria scabra):possible involvement in differential recognition of bacteria.J Invertebr Pathol,2008,99 (2):141-145.
92 Janakiram NB,et al.Chemopreventive effects of Frondanol A5,a Cucumaria frondosa extract,against rat colon carcinogenesis and inhibition of human colon cancer cell growth.Cancer Prev Res(Phila Pa),2010,3:82-91.
93 Roginsky AB,et al.Anti-pancreatic cancer effects of a polar extract from the edible sea cucumber,Cucumaria frondosa.Pancreas,2010,39:646-652.
94 Wang Y,et al.Analysis study of trace elements in abalone and sea cucumber.Guang Pu Xue Yu Guang Pu Fen Xi,2009,29:511-514.
Advances on the Research of Sea Cucumber Biological Activities
ZHANG Mei-xiu,WANG Xi-chang,LIU Yuan*
College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China
Sea cucumber is important marine food and medicinal materials.It contains a variety of biologically active ingredients,such as polysaccharides,saponins,peptides,proteins,lipids and other active ingredients.They possess the activities of immunopotentiation,anti-coagulation,analgesic,and anti-tumor,anti-fungal,anti-virus,anti-aging and anti-fatigue and other physiological functions.The summary reviewed the distribution of sea cucumber resources in China and the component and biological activity of sea cucumbers,which may provide the theoretical basis for scientists researching the sea cucumber from the cellular and molecular level and searching for new marine effective drugs and developing functional food.It also provides new ideas for rich sea cucumber resources development and utilization of China.
Sea cucumber;resource distribution;biological activity;pharmacological effects;progress
1001-6880(2012)08-1151-09
2011-01-04 接受日期:2011-03-16
“十一五”國家科技支撐計劃課題(2008BAD94B09),歐盟項目(Sustaining Ethical Aquaculture Trade(Grant agreement 222889)),上海市教委重點學科建設項目(J50704)
*通訊作者 Tel:86-21-61900380;E-mail:yliu@shou.edu.cn
R284.2
A