• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of CO Addition on the Lean Premixed CH4/Air Flame

    2012-11-06 07:01:07CHENWenTingJIANGYongQIURong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:氮氧化合物層流一氧化碳

    CHEN Wen-Ting JIANG Yong QIU Rong

    (State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,P.R.China)

    Effects of CO Addition on the Lean Premixed CH4/Air Flame

    CHEN Wen-Ting JIANG Yong*QIU Rong

    (State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,P.R.China)

    A numerical study was carried out to determine the effects of CO addition on the laminar burning velocity,NOxemission,and extinction strain rate in a premixed CH4/CO/air flame under the lean condition(equivalence ratio of fuel to air φ=0.60-0.80).When more CO was added to the fuel,the laminar burning velocity decreased,which is different from that observed for H2addition.To explain this,we studied the strong correlation between laminar burning velocity and H+OH peak concentrations.Results showed that the H+OH peak concentrations decreased linearly with an increase in CO content.This tendency is in good agreement with that of the laminar burning velocity.For NOx,we observed that increments in CO addition led to a remarkable reduction in the NOxemission.In addition,we investigated the NO formation mechanism and determined the relevant reactions for NO production using a sensitive analysis.The NO concentrations decreased significantly with enrichment by CO and the NO production rate also clearly decreased.We calculated the radial strain rate Sradand discussed the influence of strain rate on lean flame stability with regards to the addition of different CO mole fractions to the fuel.The extinction strain rates indicated that the lean flammability limits were extended by CO addition in some way.

    CO addition;Laminar burning velocity;NOxemission;Extinction strain rate

    At present,due to energy crisis as well as global environmental threats,lean combustion technology has received great attention in the combustion and other related fields,so lean combustion has become a popular method to meet increasingly stringent emissionsrequirements.Someresearchers[1]havepointedthatlean combustion can greatly reduce the fuel consumption and emis-sions of greenhouse gases and pollutants,including NOx,soot[2], and other particle matter,which was mainly the result of the low flame temperatures encountered in the lean conditions[3-5].

    The lean combustion has its special prospects,but has some disadvantages.The most serious one is that at low equivalence ratio,the combustion stability will be affected and the processes of stretching and heat loss may cause extinction[6].To solve this problem,the traditional approach is to adopt fuel enrichment and increase the concentration of the fuel.Though this strategy can enhance the overall burning intensity and the flame stability,but the flame temperatures and the NOxemissions will be increased. Another method is to add a small amount of other fuels,which can solve the stability problem,while,the NOxemissions can receive substantial reduction.Hereto,some researchers suggest adding reformate gas to ensure the flame stability,which can diminish the quenching distance and extend the flame limits,as well as reduce NOxformation.It is well known that H2is an important component of reformate gas,so hydrogen addition has attracted many scholars′research.And the previous studies have proved that hydrogen addition can widen the lean burn operation and reduce unburned hydrocarbon and carbon dioxide emissions[7-8].This method was discussed more by Yu et al.[1],and they measured the fundamental laminar flame speed of CH4/air flame with H2addition by using the counter flow configuration. R?rtveit et al.[9]studied the lean premixed flame utilizing four kinds of burner experimentally and their results revealed that the flame stability with H2addition and the NOx,CO emissions depended largely on the type of burner and the excess air ratio.

    Even though this is an attractive proposition,some specialists, such as Ren et al.[5]pointed that we must realize that it is a challenge to make a large number of H2into use because it is expensive to produce.In comparison,the production and storage technology of CO has been quite mature.However,the effect of the addition of various additives on the CH4/air flame has been investigated,such as H2,reformate gas[10-13],astonishingly there is very few information available in the related literature about the influence of CO addition,especially considering the condition of lean burning.As a kind of important component of reformate gas,it is necessary to study the combustion characteristics of CO.Hence,in this case,we investigate the characteristics of the CH4/air flame with different CO additions under the condition of lean burning(equivalence ratio,φ=0.60-0.80).It has been thought that the laminar burning velocity is an important parameter of a combustible mixture as it contains fundamental information regarding reactivity,diffusivity,and exothermicity[14],on which the changes of flame structure and dynamics are found to depend when fuel composition is varying.The control of NOxemissions has become an essential factor in the design of modern combustion systems[15]and the extinction strain rate is the main basis of the flame stability judgment.Therefore,we focus on these three most concerning problems to analyze specific changes with different CO mole fractions in the fuel.

    1 Modeling details

    1.1 Chemical kinetic model

    In this paper,we employ the kinetic model of GRI Mech 3.0[16], which consists of 325 elementary chemical reactions and 53 species,including NOxkinetics.This kinetic model has been tested and validated extensively for CH4and other natural gases combustion over a wide range of pressure and temperature conditions.Guo et al.[17]has investigated the extinction strain rate and the NOxemissions of the premixed CH4/H2/air flame by employing GRI Mech 3.0,whose object has much consistency with ours.

    1.2 Computational specification

    According to the object of this study,two different flame models are employed.One is freely propagation flame to get the laminar burning velocities and some parameters to analyze the characteristics of NOxemissions which is calculated using the PREMIX software[18]and the other is opposed-jet,symmetric, twin-flame to investigate the extinction strain rate by adopting the OPPDIF software[19].In the previous work,these two models were used mostly to compare experimentally observed trends with those predicted by the calculations.Moreover,the two softwares,which were applied mostly by scientific researches and validated in practical engineering fields[20-21],were both developed by Sandia National Laboratories.In the NOxsection,the NO related important reactions was obtained by utilizing the SENKIN package[22]of CHEMKIN II[23]to analyze the influence of CO addition thoroughly.

    In addition,in this study,there are some parameters as follows:CH4/CO/air flames with global equivalent ratios φ=0.60-0.80,and CO mole fraction in CO/CH4mixture α=0.0-0.9,where φ,α are defined as,

    where Xiis the mole fraction of species i in the fuel.

    2 Results and discussion

    As mentioned above,we investigate the effect of CO fraction on the CH4/air flames in terms of the laminar burning speed,the extinction strain rate,and the NOxformation under the circumstance of the lean burning(φ=0.60-0.80).

    2.1 Laminar burning velocity

    The calculations of the unstretched laminar burning velocities are performed with an unburned mixture under the normal atmospheric pressure.The temperature and the mass flow rate are set as 400 K,0.04 g·cm-2·s-1,respectively.The adaptive mesh parameters are GRAD=0.2 and GURV=0.6.The absolute and the relative error criteria are ATOL=1×10-9and RTOL=1×10-4. Fig.1 shows the laminar burning velocity under various CO addition,and equivalence ratios.We can note that(1)the laminar burning velocities reach the maximum at the rich side of stoichiometry;(2)when equivalence ratios are higher than 1,the velocity increases obviously with the increase of CO mole fraction in the fuel mixture.These results are in accord with the researches by Wu et al.[21].However,their studies have been restricted to the velocity changing trends at the overall equivalence ratios and the main positions of the maximum velocity, without aiming at the lean burning condition.

    So we calculate the laminar velocities at φ=0.65,0.70,0.75 with the changes of CO concentration in the fuel.Fig.2 shows that both the decreases of the equivalence ratio and the increases of the CO mole fraction lead to the reduction of the velocities. The result of Fig.1 is similar to the case of hydrogen addition to the fuel[8],while in Fig.2,we can observe that the result is obviously different from the hydrogen case.Halter et al.[24]studied the influence of hydrogen fraction on the laminar burning velocity of CH4/H2flame and the results showed that the laminar burning velocity increased as the increase of hydrogen fraction in the fuel mixture.Hu et al.[25]investigated the effects of the radical mole fractions of OH,H on the burning velocity and they proposed that there was a strong correlation between burning velocity and maximum radial mole fractions of OH+H radicals in the reaction zone of the premixed CH4/air flames.They pointed that with the increase of maximum concentration of OH+H,the burning velocity increased and also gave the detailed formulation,the burning velocity μ=0.07929+(XH+XOH)max,i.e.,μ changed linearly with(XH+XOH)max.Fig.3 shows the laminar burning velocity and the maximum mole fraction of OH+H at three different lean equivalence ratios.We can conclude that(1)at three ratios, the change trends of velocity are consistent with the peak mole fraction,that is,linear relationship exists between them,which is verified by the contrast between the simulation results and the fitting results in Fig.4.And the linear relationships can be expressed by the following formulas,respectively,

    μ0.65=0.00151+0.99779(XH+XOH)max

    μ0.70=0.00215+0.99777(XH+XOH)max

    μ0.75=0.00271+0.99628(XH+XOH)max

    (2)as more amount CO mole fraction in the fuel,the burning velocity and the maximum OH+H mole fraction decrease remarkably.Actually,the increases of CO addition cause the peak concentration of OH and H radicals to decrease at different lean equivalence ratios which are showed in the Fig.5.

    2.2 NOxemissions

    As one of the main sources of the air pollution,NOxemissions not only have a detrimental effect on human health,but also contribute significantly to the global environmental pollution, which has caused lots of concerning in the combustion and environment fields.Plenty of studies have focused on the effect of adding H2,CO2,H2O to natural gas on NOxproduction[26].And in this section,we study the effects on the NOxemissions index by adding CO,on the other hand,some questions related to the formation mechanisms are discussed.Fig.6 shows the distribution of the typical NOx(NO,NO2,N2O),and obvious differences are observed between NO and N2O formation.The NO formation mostly occurs in the high temperature region,while the N2O is mainly generated in the low temperature zone,while N2O is consumed in the high temperature region.These mainly depend on the formation mechanisms of NO and N2O.The mole fraction of NO,which accounts for 90%in the NOx,is much higher than N2O and NO2,so in the following studies we will take NO for the main research object.

    2.2.1Flame temperature

    It has been known that the formation of NOxhas been extremely influenced by the flame temperature.So many researchers,such as Tuzson[27]and Maughan et al.[28],have proposed to get low NOxemissions by bringing down the flame temperature.Because the thermal mechanism plays an important role in high temperature,the emissions are strongly depending on the high temperature,moreover in the Fig.7 we can observe that as the raise of the flame temperature,the NOxconcentration will increase.So in a large extent,we can conclude that high temperature indicates the high NOxconcentration.Fig.8 gives the profiles of temperature of CH4/air flame with different CO additions at φ=0.70.As CO addition increases,there is a small decrease in the temperature.According to the theory aforementioned,this change indicates that NOxemissions would achieve significantly reduc-tion.

    2.2.2 NO concentrations

    In order to get a better investigation about NOxemissions after adding CO,we calculate NO mole fraction at φ=0.70,0.75,0.80 with CO addition α=0.1,0.2,0.4,0.6,0.8,as seen in Fig.9.It can be seen that at three different ratios,CO addition has a positive effect on NO emission reduction,and more CO concentration leads to lower NO mole fraction.Especially at φ=0.70, 0.75,the mole fractions reduce almost 65%,while at φ=0.80,the mole fraction leaves over 40%of the original.In general,the NO emission situation gets a large scale of improvement.We do not calculate N2O,NO2,but due to the mole fraction of NO accounting for about 90%in NOx,so we can deduce that the total NOxemissions get a remarkable reduction.

    2.2.3 Problems related to NOxreaction mechanism

    There are three major sources of the to NO formed in the combustion:(1)the thermal NO(Zeldovich)mechanism,(2)the prompt NO(Fenimore)mechanism,(3)the N2O→NO intermediate route.The thermal mechanism is that the NO is formed by a set of highly temperature-dependent chemical reactions known as the extended Zeldovich mechanism.The principal reactions governing the formation of thermal NO are as follows:O+N2= NO+N;N+O2=O+NO;N+OH=NO+H;N+NO=O+N2.In the previous researches[29],there were good evidences that prompt NO can be formed in a significant quantity in some combustion environments,such as in low-temperature,fuel-rich conditions.Although we study at the lean condition,to get precise analogue result,we also consider the prompt mechanism.This mechanism consists of the reactions[30];CH+N2=HCN+N;HCN+OH= CN+H2O;CN+O2=NO+CO.The final mechanism involved main reaction:N2O+O=2NO.The main reaction ways of NO production and consumption can be obtained from Fig.10,which also shows the primary materials and radicals involved in the reactions clearly.According to information provided in Fig.10,and considering the reactions contained in GRI Mech 3.0,the main 28 steps reactions related NO have been listed in Table 1.Among them,R178,R179,R180 belong to the thermal mechanism, R222 belongs to the prompt route and R182-R189 are the N2O→NO mechanism.We carry the NO concentration sensiti vity analysis on these 28 step reactions.Fig.11 shows(1)R178:N+ NO=N2+O,R179:N+O2=NO+O,R180:N+OH=NO+H,R189: NO2+H=NO+OH,these four reactions play positive roles in the NO production which tallys with the mechanism,(2)R186:HO2+ NO=NO2+OH;R249:CH2+NO=H+HNCO,are the main consumption routes.Fig.12 shows the profiles of the total production rates of NO.It can be observed that at φ=0.70,with the increase of CO addition,the rate changes fluctuate severely much. With the three different CO additions,all the peak values appear at the flame height from 0.15 to 0.20 where the temperature rises to the maximum and the valley values appear at the height from 0.05 to 0.10.Moreover,from the flame height 0.10 to 0.15,the fluctuation is fierce and these regions are precisely the place in which the temperature rises quickest.From α=0.2 to α=0.6,the peak values reduce by 60%,the valley values rise about 30%.

    Fig.13 indicated the profiles of NO production rate of the mainreactions(R178,R179,R180,R186,R189,R249)with different CO additions at φ=0.70.The results demonstrate that(1)as CO addition rises from 0.2 to 0.6,the peak values of the four positivereactionsreducealot,especiallyR179(N+O2=NO+O),whose peak value changes from 9.0×10-9to 1.5×10-9,about 80%;(2) with an increase in the CO mole fraction,the valley values vary greatly at the flame height and the changes of R249 and R186 are remarkable;(3)the positions of the R179,R180,R189 peak values are consistent with that of the total production rate peak value in Fig.12.But R178 is somewhat different,and the primary reason is that the temperature of R178 N+NO=N2+O reaction must be higher than 1500 K,which is in keeping with the temperature profiles in Fig.8.

    Table 1 Main reactions related to NO production and consumption

    2.3 Extinction strain rate

    From the above analysis,the lean combustion can cause a decrease in the flame temperature and make the NOxemissions under the effective control,but in the theory,the lean combustible gas has a weak stability,the flame stretch may possibly cause flameout.By CO addition,we hope that at low temperatures,it can maintain the high combustion intensity.Hence,it is important to investigate the changes of the strain rate and definite the extinction strain rate.Egolfopoulos et al.[31]studied the effects of the flame stretch experimentally and numerically.They focused on the flame structures and the extinction strain rates of the opposed jet and the single jet wall configuration.Ren et al.[5]mainly aimed at the lean condition and got the extinction strain rate of the CH4/air flame by using the opposed jet,symmetric,twinflame configuration.In this present study,we also adopt the opposed jet,symmetric,twin-flame configuration to get the effects of the strain rate on the CO enhanced lean CH4/air flame.The preheat temperatures of the two nozzles are set to 400 K and the pressure is 1.0×105Pa.And in this section,we study the radial strain rate Srad,which is definedwhere r is the flame radius and v is radial velocity.Fig.14 demonstrates that at three test cases,as the strain rates increase,the flame temperatures decline monotonously.And when the flame temperature is below 1580 K,the flame will become unstable,so the strain rate at 1580 K just is the extinction strain rate.From Fig.14,we can observe that,at the equivalence ratio φ=0.70,the extinction strain rate is 1387 s-1(α=0.2),1426 s-1(α=0.4),1465 s-1(α=0.6) respectively,i.e.,with CO content increases,the extinction strain rate rises,which indicates that adding CO is able to strengthen the stability of the lean combustion.

    3 Conclusions

    Numerical computations of the effects of CO addition on thefundamental characteristics,such as the laminar burning velocity,the NOxemissions,the extinction strain rate,are carried out with detailed chemistry and transport properties.

    (1)The laminar burning velocity decreases with CO mole fraction from 0.2 to 0.7 in the lean conditions of φ=0.65,0.70, 0.75.And the velocity depends on the peak value of H+OH mole fraction,moreover more CO mole fraction in the fuel can cause the decrease of the maximum OH+H mole fraction.

    (2)Under lean condition,the flame temperature declined and the formation of NO is restrained much with CO addition,which can infer from the NO mole fraction profiles macroscopically and the production rate of the important reactions microscopicly. Besides,the important reactions about NO production got from sensitivity analysis can help obtain the effective methods to reduce NOxemissions.

    (3)With CO enrichment,the extinction strain rate is increased in a certain extent,that is,the CO addition can enhance the stability of the CH4/air flame under the equivalence ratio φ= 0.70.

    1 Law,C.K.;Wu,C.K.;Zhu,D.L.;Yu,G.Combustion and Flame, 1986,63:339

    2 Frenklach,M.;Wang,H.Soot formation in combustion: mechanisms and models.Bockhorn,H.Ed.Berlin:Springer-Verlag,1994,59:162-196

    3 MacGregor,S.A.;Syred,N.;Claypole,T.C.Chemical Engineering Communications,1987,4-6:163

    4 Correa,S.Combustion Science and Technology,1992,87:327

    5 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Combustion Science and Technology,2002,174:181

    6 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Combustion and Flame,2001,124:717

    7 Zhang,Y.Y.;Wu,J.H.International Journal of Hydrogen Energy, 2009,34:519

    8 Coppens,F.H.V.;De Ruyck,J.;Konnov,A.A.Combustion and Flame,2007,149:409

    9 R?rtveit,G.J.;Zepter,K.;Skreiberg?,B.;Fossum,M.;Hustad,J. E.Proc.Combust.Inst.,2002,29:1123

    10 Guo,H.S.;Neil,W.S.Combustion and Flame,2009,156:477

    11 Guo,H.S.;Smallwood,G.J.;Gülder,O.L.Proc.Combust.Inst., 2007,31:1197

    12 Shy,S.S.;Chen,Y.C.;Yang,C.H.;Liu,C.C.;Huang,C.M. Combustion and Flame,2008,153:510

    13 Lee,C.E.;Lee,S.R.;Han,J.W.;Park,J.International Journal of Energy Research,2001,25:343

    14 Natarajan,J.;Lieuwen,T.;Seitzman,J.Laminar flame speeds and strain sensitivities of mixtures of H2with CO,CO2and N2at elevated temperatures.Proceedings of GT2007 ASME Turbo Expo 2007:Power for Land,Sea and Air.Montreal,Canada,GT2007-27967

    15 Cho,E.S.;Chung,S.H.Journal of Mechanical Science and Technology,2009,23:659

    16 Frenklach,M.;Wang,H.;Goldenberg,M.;Smith,G.P.;Golden, D.M.;Bowman,C.T.;Hanson,R.K.;Gardiner,W.C.;Lissianski, V.GRI-Mech:an optimized detailed chemical reaction mechanism for methane combustion.Gras Research Institute,Tech.Rep.GRI-951OO58.Chicago:Gras Research Institute,1995

    17 Guo,H.;Smallwood,G.J.;Liu,F.;Ju,Y.;Gülder,O.L.Proc. Combust.Inst.,2005,30:303

    18 Kee,A.E.;Smoke,M.D.;Miler,J.A.PREMIX:a FORTRAN program for modeling steady laminar one-dimensional premixed flames.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1985

    19 Lutz,A.E.;Kee,R.J.;Grcar,J.F.;Rupley,F.M.OPPDIF:a FORTRAN program for computing opposed-flow diffusion flames. Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1997

    20 Jiang,Y.;Qiu,R.Chinese Science Bulletin,2005,50(3):276

    21 Wu,C.Y.;Chao,Y.C.;Cheng,T.S.;Chen,C.P.;Ho,C.T. Combustion and Flame,2009,156:362

    22 Lutz,A.E.;Kee,R.J.;Miller,J.A.SENKIN:a FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1987.

    23 Kee,R.J.;Rupley,F.M.;Miller,J.A.Chemkin-II:a FORTRAN chemical kinetics.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1989

    24 Halter,F.;Chauveau,C.;Djeba?li-Chaumeix,N.;G?kalp,I.Proc. Combust.Inst.,2005,30:201

    25 Hu,E.J.;Huang,Z.H.;He,J.J.;Miao,H.Y.International Journal of Hydrogen Energy,2009,34:6951

    26 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Industrial& Engineering Chemistry Research,2001,40:5155

    27 Tuzson,J.Journal of Engineering for Gas Turbines and Power, 1992,114:682

    28 Maughan,J.R.;Bowen,J.H.;Cooke,D.H.;Tuzson,J.Journal of Engineering for Gas Turbines and Power,1996,116:78

    29 Konnov,A.A.Combustion and Flame,2009,156:2093

    30 Vasudeevan,V.;Hanson,R.K.;Bowman,C.T.;Golden,D.M.; Davidson,D.F.J.Phys.Chem.A,2007,111:11818

    31 Egolfopoulos,F.N.;Zhang,H.;Zhang,Z.Combustion and Flame, 1997,109:237

    一氧化碳添加對(duì)甲烷/空氣貧燃預(yù)混火焰的影響

    陳文婷 蔣 勇*邱 榕

    (中國(guó)科學(xué)技術(shù)大學(xué)火災(zāi)科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,合肥 230026)

    通過(guò)對(duì)貧燃條件下(燃料與空氣化學(xué)計(jì)量比φ=0.60-0.80)的甲烷/一氧化碳/空氣火焰結(jié)構(gòu)進(jìn)行數(shù)值模擬,研究燃料中一氧化碳添加量對(duì)層流燃燒速度、氮氧化合物的排放以及熄火拉伸率的影響.隨著燃料中一氧化碳添加量的不斷增加,層流燃燒速度有所下降,這與燃料中加入氫氣產(chǎn)生的現(xiàn)象有所不同.為了解釋這一現(xiàn)象,本文深入探討了層流燃燒速度與H+OH濃度峰值之間的關(guān)系,結(jié)果表明,一氧化碳的增加導(dǎo)致H+OH濃度峰值呈線性下降,與層流燃燒速度下降趨勢(shì)完全一致.隨著一氧化碳的增加,氮氧化合物排放量有所下降.探討了NO的生成機(jī)理,且由敏感性分析得到生成NO的重要反應(yīng),分析當(dāng)一氧化碳量增大時(shí),NO的濃度以及重要反應(yīng)的NO生成率均下降.此外,利用數(shù)值模擬求解徑向拉伸率,深入分析燃料中添加一氧化碳時(shí)拉伸率對(duì)貧燃火焰穩(wěn)定性的影響.由計(jì)算結(jié)果得到熄火拉伸率,發(fā)現(xiàn)燃料中一氧化碳的添加在一定程度上能夠增強(qiáng)火焰的穩(wěn)定性.

    一氧化碳添加;層流燃燒速度;氮氧化合物排放;熄火拉伸率

    O643

    Received:January 7,2010;Revised:March 17,2010;Published on Web:April 27,2010.

    *Corresponding author.Email:yjjiang@ustc.edu.cn;Fax:+86-551-3601669.

    The project was supported by the National Natural Science Foundation of China(50876097)and Program for New Century Excellent Talents in University of China(NCET-06-0546).

    國(guó)家自然科學(xué)基金(50876097)和教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-06-0546)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    氮氧化合物層流一氧化碳
    煤炭取暖的意外——一氧化碳
    一氧化碳中毒事故的統(tǒng)計(jì)分析及防范措施
    層流輥道電機(jī)IP56防護(hù)等級(jí)結(jié)構(gòu)設(shè)計(jì)
    摻氫對(duì)二甲醚層流燃燒特性的影響
    淺析低氮燃燒技術(shù)在火電廠的應(yīng)用
    層流切應(yīng)力誘導(dǎo)microRNA-101下調(diào)EZH2抑制血管新生
    澳斯麥特爐氮氧化合物產(chǎn)生的原因分析
    The Generalization on Inequalities of Hermite-Hadamard’s Integration
    氮氧化物廢氣的生化處理技術(shù)應(yīng)用研究
    化工管理(2017年5期)2017-03-05 08:28:57
    X80鋼層流冷卻溫度場(chǎng)的有限元模擬
    又大又黄又爽视频免费| 99久久精品国产国产毛片| 国产一区亚洲一区在线观看| 又大又黄又爽视频免费| 亚洲av男天堂| 亚洲精品乱久久久久久| xxx大片免费视频| 亚洲精品久久午夜乱码| 久久97久久精品| 狂野欧美激情性bbbbbb| 丝袜脚勾引网站| 久久99热6这里只有精品| av线在线观看网站| 高清视频免费观看一区二区| 色网站视频免费| av.在线天堂| 国产探花极品一区二区| 天堂中文最新版在线下载| 高清视频免费观看一区二区| 久久久欧美国产精品| 美女国产高潮福利片在线看| 成在线人永久免费视频| 国产免费福利视频在线观看| 欧美激情高清一区二区三区| cao死你这个sao货| 午夜福利在线观看吧| 久久人妻福利社区极品人妻图片| 日韩欧美三级三区| 国产不卡av网站在线观看| 少妇被粗大的猛进出69影院| 国产在线观看jvid| 热99久久久久精品小说推荐| 老司机影院毛片| 亚洲精品中文字幕一二三四区 | 日日爽夜夜爽网站| 在线观看免费高清a一片| 天堂8中文在线网| 国产精品成人在线| 热99re8久久精品国产| 777米奇影视久久| 国产精品一区二区免费欧美| 777久久人妻少妇嫩草av网站| 十八禁高潮呻吟视频| 人人妻人人爽人人添夜夜欢视频| 精品福利永久在线观看| 人人妻人人澡人人看| av片东京热男人的天堂| 亚洲 欧美一区二区三区| 又黄又粗又硬又大视频| 国产日韩欧美视频二区| 老汉色∧v一级毛片| 午夜免费成人在线视频| 国产av一区二区精品久久| 天天添夜夜摸| 午夜福利在线观看吧| 国产麻豆69| 欧美中文综合在线视频| 日本av手机在线免费观看| 黄色毛片三级朝国网站| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| a级片在线免费高清观看视频| 国产成人精品在线电影| 两个人免费观看高清视频| 亚洲成av片中文字幕在线观看| 久久99一区二区三区| 高清黄色对白视频在线免费看| 国产精品二区激情视频| 国产精品免费一区二区三区在线 | 中文字幕最新亚洲高清| 国产国语露脸激情在线看| 超碰97精品在线观看| 欧美日韩av久久| 黄色 视频免费看| 亚洲国产毛片av蜜桃av| 亚洲第一青青草原| 久久人妻福利社区极品人妻图片| 一区在线观看完整版| 男女高潮啪啪啪动态图| av不卡在线播放| 老司机靠b影院| 日本欧美视频一区| 久久毛片免费看一区二区三区| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 狠狠精品人妻久久久久久综合| 国产一区有黄有色的免费视频| 美女视频免费永久观看网站| 成年人黄色毛片网站| 欧美成狂野欧美在线观看| 久久精品国产99精品国产亚洲性色 | 久久ye,这里只有精品| 精品国内亚洲2022精品成人 | 怎么达到女性高潮| 精品高清国产在线一区| 一二三四在线观看免费中文在| 黄网站色视频无遮挡免费观看| 日韩欧美国产一区二区入口| 91字幕亚洲| 嫩草影视91久久| 在线观看一区二区三区激情| 十八禁网站免费在线| 日韩人妻精品一区2区三区| 精品久久蜜臀av无| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 午夜福利,免费看| 亚洲黑人精品在线| 成人手机av| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 亚洲男人天堂网一区| 国产精品一区二区在线观看99| 免费观看av网站的网址| 高清毛片免费观看视频网站 | 亚洲av成人一区二区三| 精品久久久精品久久久| 亚洲成人免费电影在线观看| 丁香欧美五月| kizo精华| 免费女性裸体啪啪无遮挡网站| 黄色片一级片一级黄色片| 制服人妻中文乱码| 午夜日韩欧美国产| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 一区福利在线观看| 午夜福利在线免费观看网站| 久久精品91无色码中文字幕| 一级片'在线观看视频| 国产免费视频播放在线视频| 中文字幕精品免费在线观看视频| 国精品久久久久久国模美| 99国产极品粉嫩在线观看| 老熟女久久久| 久久久精品免费免费高清| 国产在线视频一区二区| 另类亚洲欧美激情| 91成年电影在线观看| 女性生殖器流出的白浆| 女性生殖器流出的白浆| 国产欧美日韩精品亚洲av| 日韩一区二区三区影片| 婷婷成人精品国产| 免费黄频网站在线观看国产| 一二三四社区在线视频社区8| 麻豆av在线久日| 成年人黄色毛片网站| av网站在线播放免费| 操出白浆在线播放| 十八禁网站网址无遮挡| 精品免费久久久久久久清纯 | 中文字幕人妻丝袜制服| 成人国产av品久久久| 国产一卡二卡三卡精品| 交换朋友夫妻互换小说| 国产区一区二久久| 黄色a级毛片大全视频| 日韩中文字幕欧美一区二区| 宅男免费午夜| 捣出白浆h1v1| 高清毛片免费观看视频网站 | 黄网站色视频无遮挡免费观看| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 亚洲国产av新网站| 91麻豆av在线| 精品久久久久久电影网| 日韩欧美一区二区三区在线观看 | 91精品国产国语对白视频| 久久久精品区二区三区| 亚洲成人国产一区在线观看| 国产亚洲精品久久久久5区| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女精品中文字幕| 黄色片一级片一级黄色片| 欧美一级毛片孕妇| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区三| 久久人妻熟女aⅴ| 老司机午夜十八禁免费视频| 99精品在免费线老司机午夜| 超碰97精品在线观看| 高清视频免费观看一区二区| 久久精品91无色码中文字幕| 久久久久视频综合| 日韩免费高清中文字幕av| 在线亚洲精品国产二区图片欧美| 在线永久观看黄色视频| 国产又色又爽无遮挡免费看| 在线观看66精品国产| 精品亚洲乱码少妇综合久久| 在线天堂中文资源库| 肉色欧美久久久久久久蜜桃| 多毛熟女@视频| 日本黄色视频三级网站网址 | 国产精品国产av在线观看| 亚洲av国产av综合av卡| 亚洲精品国产一区二区精华液| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 中文字幕色久视频| 咕卡用的链子| 好男人电影高清在线观看| 国产在线一区二区三区精| 丁香六月欧美| 麻豆成人av在线观看| 国产精品国产av在线观看| 久久亚洲真实| 亚洲avbb在线观看| 9热在线视频观看99| 国产精品麻豆人妻色哟哟久久| 啦啦啦视频在线资源免费观看| 精品国产国语对白av| 十八禁高潮呻吟视频| 99国产精品免费福利视频| 天天操日日干夜夜撸| 99精品久久久久人妻精品| 夫妻午夜视频| 香蕉久久夜色| 亚洲精品在线观看二区| 久久精品熟女亚洲av麻豆精品| 亚洲情色 制服丝袜| 日韩免费高清中文字幕av| 亚洲av成人不卡在线观看播放网| av有码第一页| 国产极品粉嫩免费观看在线| 亚洲av片天天在线观看| 新久久久久国产一级毛片| 久久人妻福利社区极品人妻图片| 热99re8久久精品国产| 精品高清国产在线一区| 美女视频免费永久观看网站| 91麻豆精品激情在线观看国产 | 亚洲欧洲精品一区二区精品久久久| 国产精品99久久99久久久不卡| 80岁老熟妇乱子伦牲交| 高清毛片免费观看视频网站 | 一区二区日韩欧美中文字幕| 夜夜爽天天搞| 亚洲综合色网址| 大码成人一级视频| 别揉我奶头~嗯~啊~动态视频| 淫妇啪啪啪对白视频| 18禁观看日本| 在线观看免费视频网站a站| 在线观看免费日韩欧美大片| 怎么达到女性高潮| 国产亚洲精品第一综合不卡| 久久久久久久精品吃奶| 亚洲欧洲日产国产| a级毛片黄视频| 两个人免费观看高清视频| 夜夜爽天天搞| 国产亚洲午夜精品一区二区久久| 麻豆乱淫一区二区| 久久久久精品人妻al黑| 欧美日韩成人在线一区二区| 真人做人爱边吃奶动态| 精品国产一区二区三区四区第35| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 老司机在亚洲福利影院| 国产xxxxx性猛交| 满18在线观看网站| 久久精品国产99精品国产亚洲性色 | 老司机影院毛片| 老司机午夜福利在线观看视频 | 成在线人永久免费视频| 国产免费视频播放在线视频| 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 亚洲精品在线观看二区| 无人区码免费观看不卡 | 国产精品偷伦视频观看了| 青青草视频在线视频观看| 黄色成人免费大全| 美女高潮喷水抽搐中文字幕| 久久精品熟女亚洲av麻豆精品| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 女警被强在线播放| 一级毛片电影观看| 建设人人有责人人尽责人人享有的| 国产精品自产拍在线观看55亚洲 | 成人三级做爰电影| 又紧又爽又黄一区二区| 亚洲av电影在线进入| 亚洲综合色网址| 妹子高潮喷水视频| 欧美黄色片欧美黄色片| 女警被强在线播放| 午夜激情av网站| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 麻豆成人av在线观看| 国产一区二区三区综合在线观看| 国产国语露脸激情在线看| 国产成人免费无遮挡视频| 乱人伦中国视频| 91av网站免费观看| 色尼玛亚洲综合影院| 另类精品久久| 91成年电影在线观看| 久久久国产一区二区| 久久久精品区二区三区| 日韩熟女老妇一区二区性免费视频| 9色porny在线观看| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 国产在线一区二区三区精| av福利片在线| 黄网站色视频无遮挡免费观看| 成人免费观看视频高清| 无人区码免费观看不卡 | 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 在线观看66精品国产| 免费在线观看完整版高清| 欧美日韩福利视频一区二区| 欧美 亚洲 国产 日韩一| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 黄色成人免费大全| 中文字幕另类日韩欧美亚洲嫩草| 最新美女视频免费是黄的| tube8黄色片| 国产欧美日韩一区二区精品| 757午夜福利合集在线观看| 日韩三级视频一区二区三区| 人妻久久中文字幕网| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 午夜成年电影在线免费观看| 婷婷成人精品国产| 中文字幕另类日韩欧美亚洲嫩草| 日本五十路高清| 免费观看av网站的网址| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 亚洲人成电影观看| 欧美激情久久久久久爽电影 | 少妇裸体淫交视频免费看高清 | 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 久久 成人 亚洲| 一进一出好大好爽视频| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 高清毛片免费观看视频网站 | 亚洲中文av在线| 高清毛片免费观看视频网站 | 美女午夜性视频免费| 精品视频人人做人人爽| 欧美乱妇无乱码| 99精品在免费线老司机午夜| 日韩一区二区三区影片| 高清视频免费观看一区二区| 久久久国产成人免费| 黄色a级毛片大全视频| 国产精品麻豆人妻色哟哟久久| 69精品国产乱码久久久| 少妇粗大呻吟视频| bbb黄色大片| 999久久久国产精品视频| 日韩有码中文字幕| www.自偷自拍.com| 菩萨蛮人人尽说江南好唐韦庄| 自线自在国产av| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 色婷婷av一区二区三区视频| av线在线观看网站| 一本色道久久久久久精品综合| 国产野战对白在线观看| 欧美成人免费av一区二区三区 | 国产一卡二卡三卡精品| 久久久久精品国产欧美久久久| 久久久精品免费免费高清| 国产片内射在线| 另类亚洲欧美激情| 我的亚洲天堂| 大香蕉久久网| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 一边摸一边抽搐一进一出视频| 久久久久久久精品吃奶| 久热爱精品视频在线9| 免费看十八禁软件| 亚洲精品在线美女| 黄色片一级片一级黄色片| 人人妻,人人澡人人爽秒播| 夜夜夜夜夜久久久久| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 国产精品香港三级国产av潘金莲| 搡老乐熟女国产| 宅男免费午夜| 丁香六月欧美| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 欧美精品人与动牲交sv欧美| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频| 久久这里只有精品19| 精品亚洲成国产av| 美女扒开内裤让男人捅视频| 亚洲视频免费观看视频| 日本av手机在线免费观看| 国产精品.久久久| 亚洲av成人一区二区三| 精品免费久久久久久久清纯 | 精品一品国产午夜福利视频| 9色porny在线观看| videosex国产| 国产精品久久久久成人av| 精品福利永久在线观看| 精品一区二区三区视频在线观看免费 | 高清在线国产一区| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 性色av乱码一区二区三区2| 国产老妇伦熟女老妇高清| 亚洲国产欧美一区二区综合| 热re99久久精品国产66热6| 久久精品国产99精品国产亚洲性色 | 午夜福利在线免费观看网站| 免费日韩欧美在线观看| 又大又爽又粗| 老司机靠b影院| 国产成人av教育| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 午夜福利影视在线免费观看| 最近最新免费中文字幕在线| 婷婷成人精品国产| 夜夜夜夜夜久久久久| 国产淫语在线视频| 精品第一国产精品| 90打野战视频偷拍视频| 成年人午夜在线观看视频| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 色婷婷av一区二区三区视频| 国产主播在线观看一区二区| 免费在线观看日本一区| 黄片小视频在线播放| 亚洲色图综合在线观看| 免费观看av网站的网址| 日韩一区二区三区影片| 日本wwww免费看| 欧美在线黄色| 黄色a级毛片大全视频| 免费高清在线观看日韩| 亚洲色图av天堂| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 日韩大片免费观看网站| kizo精华| 午夜福利视频精品| 亚洲av日韩在线播放| 亚洲三区欧美一区| 人人妻人人澡人人看| 国产又爽黄色视频| 精品第一国产精品| 大陆偷拍与自拍| 9热在线视频观看99| 日本av免费视频播放| 亚洲av成人不卡在线观看播放网| 亚洲精品国产一区二区精华液| 99精品欧美一区二区三区四区| 99久久99久久久精品蜜桃| 天天操日日干夜夜撸| 国产无遮挡羞羞视频在线观看| 性少妇av在线| 他把我摸到了高潮在线观看 | 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 三级毛片av免费| 天天影视国产精品| 天堂8中文在线网| 精品国产一区二区三区久久久樱花| 一边摸一边抽搐一进一出视频| 欧美精品一区二区免费开放| 国产男靠女视频免费网站| 午夜久久久在线观看| 捣出白浆h1v1| 我要看黄色一级片免费的| 久久精品91无色码中文字幕| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 一二三四社区在线视频社区8| 香蕉久久夜色| 桃红色精品国产亚洲av| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 亚洲精品国产精品久久久不卡| 老司机亚洲免费影院| 亚洲五月婷婷丁香| 亚洲少妇的诱惑av| 高清在线国产一区| 精品久久久久久久毛片微露脸| 国产精品1区2区在线观看. | 欧美另类亚洲清纯唯美| 国产在线视频一区二区| www日本在线高清视频| 在线观看免费日韩欧美大片| 精品人妻1区二区| 正在播放国产对白刺激| 国产精品自产拍在线观看55亚洲 | 久久天堂一区二区三区四区| 亚洲av成人一区二区三| 一边摸一边抽搐一进一小说 | 成人免费观看视频高清| 国产精品99久久99久久久不卡| 操出白浆在线播放| 精品人妻在线不人妻| 99国产精品99久久久久| 欧美精品人与动牲交sv欧美| 亚洲 国产 在线| 熟女少妇亚洲综合色aaa.| 岛国毛片在线播放| 97人妻天天添夜夜摸| 人人妻人人澡人人看| 久久精品国产亚洲av香蕉五月 | 韩国精品一区二区三区| 午夜久久久在线观看| 女性生殖器流出的白浆| 一级a爱视频在线免费观看| 久久午夜亚洲精品久久| 午夜视频精品福利| aaaaa片日本免费| avwww免费| 免费在线观看日本一区| 交换朋友夫妻互换小说| 天天躁夜夜躁狠狠躁躁| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99| 一本久久精品| 久久99一区二区三区| 又紧又爽又黄一区二区| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| 国产精品一区二区免费欧美| 美女高潮到喷水免费观看| av不卡在线播放| 麻豆国产av国片精品| 久久精品熟女亚洲av麻豆精品| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| av线在线观看网站| 久久国产精品人妻蜜桃| 中文字幕人妻丝袜制服| 亚洲国产欧美日韩在线播放| 国产激情久久老熟女| 国产亚洲欧美在线一区二区| 国产精品一区二区精品视频观看| 日韩一卡2卡3卡4卡2021年| 国产一卡二卡三卡精品| 一本大道久久a久久精品| 欧美精品一区二区免费开放| 日韩 欧美 亚洲 中文字幕| 真人做人爱边吃奶动态| 又大又爽又粗| 国产一区有黄有色的免费视频| 久久青草综合色| 纵有疾风起免费观看全集完整版| www.自偷自拍.com| 黄色丝袜av网址大全| 露出奶头的视频| 黑人巨大精品欧美一区二区mp4| 99热网站在线观看| 人妻一区二区av| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩福利视频一区二区| 热99久久久久精品小说推荐| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区免费开放| 久久精品熟女亚洲av麻豆精品| 色播在线永久视频| 高清毛片免费观看视频网站 | 两性午夜刺激爽爽歪歪视频在线观看 | 18禁国产床啪视频网站| 一本综合久久免费| 欧美人与性动交α欧美精品济南到| 精品人妻在线不人妻| 搡老熟女国产l中国老女人| 久久精品亚洲av国产电影网| 国产不卡一卡二| 一区二区三区国产精品乱码| 又大又爽又粗| 日本欧美视频一区| 亚洲中文日韩欧美视频| 一区二区三区精品91| 搡老岳熟女国产| 亚洲中文日韩欧美视频| 91国产中文字幕| 成年动漫av网址| 99久久99久久久精品蜜桃| 国产av又大|