• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of CO Addition on the Lean Premixed CH4/Air Flame

    2012-11-06 07:01:07CHENWenTingJIANGYongQIURong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:氮氧化合物層流一氧化碳

    CHEN Wen-Ting JIANG Yong QIU Rong

    (State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,P.R.China)

    Effects of CO Addition on the Lean Premixed CH4/Air Flame

    CHEN Wen-Ting JIANG Yong*QIU Rong

    (State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,P.R.China)

    A numerical study was carried out to determine the effects of CO addition on the laminar burning velocity,NOxemission,and extinction strain rate in a premixed CH4/CO/air flame under the lean condition(equivalence ratio of fuel to air φ=0.60-0.80).When more CO was added to the fuel,the laminar burning velocity decreased,which is different from that observed for H2addition.To explain this,we studied the strong correlation between laminar burning velocity and H+OH peak concentrations.Results showed that the H+OH peak concentrations decreased linearly with an increase in CO content.This tendency is in good agreement with that of the laminar burning velocity.For NOx,we observed that increments in CO addition led to a remarkable reduction in the NOxemission.In addition,we investigated the NO formation mechanism and determined the relevant reactions for NO production using a sensitive analysis.The NO concentrations decreased significantly with enrichment by CO and the NO production rate also clearly decreased.We calculated the radial strain rate Sradand discussed the influence of strain rate on lean flame stability with regards to the addition of different CO mole fractions to the fuel.The extinction strain rates indicated that the lean flammability limits were extended by CO addition in some way.

    CO addition;Laminar burning velocity;NOxemission;Extinction strain rate

    At present,due to energy crisis as well as global environmental threats,lean combustion technology has received great attention in the combustion and other related fields,so lean combustion has become a popular method to meet increasingly stringent emissionsrequirements.Someresearchers[1]havepointedthatlean combustion can greatly reduce the fuel consumption and emis-sions of greenhouse gases and pollutants,including NOx,soot[2], and other particle matter,which was mainly the result of the low flame temperatures encountered in the lean conditions[3-5].

    The lean combustion has its special prospects,but has some disadvantages.The most serious one is that at low equivalence ratio,the combustion stability will be affected and the processes of stretching and heat loss may cause extinction[6].To solve this problem,the traditional approach is to adopt fuel enrichment and increase the concentration of the fuel.Though this strategy can enhance the overall burning intensity and the flame stability,but the flame temperatures and the NOxemissions will be increased. Another method is to add a small amount of other fuels,which can solve the stability problem,while,the NOxemissions can receive substantial reduction.Hereto,some researchers suggest adding reformate gas to ensure the flame stability,which can diminish the quenching distance and extend the flame limits,as well as reduce NOxformation.It is well known that H2is an important component of reformate gas,so hydrogen addition has attracted many scholars′research.And the previous studies have proved that hydrogen addition can widen the lean burn operation and reduce unburned hydrocarbon and carbon dioxide emissions[7-8].This method was discussed more by Yu et al.[1],and they measured the fundamental laminar flame speed of CH4/air flame with H2addition by using the counter flow configuration. R?rtveit et al.[9]studied the lean premixed flame utilizing four kinds of burner experimentally and their results revealed that the flame stability with H2addition and the NOx,CO emissions depended largely on the type of burner and the excess air ratio.

    Even though this is an attractive proposition,some specialists, such as Ren et al.[5]pointed that we must realize that it is a challenge to make a large number of H2into use because it is expensive to produce.In comparison,the production and storage technology of CO has been quite mature.However,the effect of the addition of various additives on the CH4/air flame has been investigated,such as H2,reformate gas[10-13],astonishingly there is very few information available in the related literature about the influence of CO addition,especially considering the condition of lean burning.As a kind of important component of reformate gas,it is necessary to study the combustion characteristics of CO.Hence,in this case,we investigate the characteristics of the CH4/air flame with different CO additions under the condition of lean burning(equivalence ratio,φ=0.60-0.80).It has been thought that the laminar burning velocity is an important parameter of a combustible mixture as it contains fundamental information regarding reactivity,diffusivity,and exothermicity[14],on which the changes of flame structure and dynamics are found to depend when fuel composition is varying.The control of NOxemissions has become an essential factor in the design of modern combustion systems[15]and the extinction strain rate is the main basis of the flame stability judgment.Therefore,we focus on these three most concerning problems to analyze specific changes with different CO mole fractions in the fuel.

    1 Modeling details

    1.1 Chemical kinetic model

    In this paper,we employ the kinetic model of GRI Mech 3.0[16], which consists of 325 elementary chemical reactions and 53 species,including NOxkinetics.This kinetic model has been tested and validated extensively for CH4and other natural gases combustion over a wide range of pressure and temperature conditions.Guo et al.[17]has investigated the extinction strain rate and the NOxemissions of the premixed CH4/H2/air flame by employing GRI Mech 3.0,whose object has much consistency with ours.

    1.2 Computational specification

    According to the object of this study,two different flame models are employed.One is freely propagation flame to get the laminar burning velocities and some parameters to analyze the characteristics of NOxemissions which is calculated using the PREMIX software[18]and the other is opposed-jet,symmetric, twin-flame to investigate the extinction strain rate by adopting the OPPDIF software[19].In the previous work,these two models were used mostly to compare experimentally observed trends with those predicted by the calculations.Moreover,the two softwares,which were applied mostly by scientific researches and validated in practical engineering fields[20-21],were both developed by Sandia National Laboratories.In the NOxsection,the NO related important reactions was obtained by utilizing the SENKIN package[22]of CHEMKIN II[23]to analyze the influence of CO addition thoroughly.

    In addition,in this study,there are some parameters as follows:CH4/CO/air flames with global equivalent ratios φ=0.60-0.80,and CO mole fraction in CO/CH4mixture α=0.0-0.9,where φ,α are defined as,

    where Xiis the mole fraction of species i in the fuel.

    2 Results and discussion

    As mentioned above,we investigate the effect of CO fraction on the CH4/air flames in terms of the laminar burning speed,the extinction strain rate,and the NOxformation under the circumstance of the lean burning(φ=0.60-0.80).

    2.1 Laminar burning velocity

    The calculations of the unstretched laminar burning velocities are performed with an unburned mixture under the normal atmospheric pressure.The temperature and the mass flow rate are set as 400 K,0.04 g·cm-2·s-1,respectively.The adaptive mesh parameters are GRAD=0.2 and GURV=0.6.The absolute and the relative error criteria are ATOL=1×10-9and RTOL=1×10-4. Fig.1 shows the laminar burning velocity under various CO addition,and equivalence ratios.We can note that(1)the laminar burning velocities reach the maximum at the rich side of stoichiometry;(2)when equivalence ratios are higher than 1,the velocity increases obviously with the increase of CO mole fraction in the fuel mixture.These results are in accord with the researches by Wu et al.[21].However,their studies have been restricted to the velocity changing trends at the overall equivalence ratios and the main positions of the maximum velocity, without aiming at the lean burning condition.

    So we calculate the laminar velocities at φ=0.65,0.70,0.75 with the changes of CO concentration in the fuel.Fig.2 shows that both the decreases of the equivalence ratio and the increases of the CO mole fraction lead to the reduction of the velocities. The result of Fig.1 is similar to the case of hydrogen addition to the fuel[8],while in Fig.2,we can observe that the result is obviously different from the hydrogen case.Halter et al.[24]studied the influence of hydrogen fraction on the laminar burning velocity of CH4/H2flame and the results showed that the laminar burning velocity increased as the increase of hydrogen fraction in the fuel mixture.Hu et al.[25]investigated the effects of the radical mole fractions of OH,H on the burning velocity and they proposed that there was a strong correlation between burning velocity and maximum radial mole fractions of OH+H radicals in the reaction zone of the premixed CH4/air flames.They pointed that with the increase of maximum concentration of OH+H,the burning velocity increased and also gave the detailed formulation,the burning velocity μ=0.07929+(XH+XOH)max,i.e.,μ changed linearly with(XH+XOH)max.Fig.3 shows the laminar burning velocity and the maximum mole fraction of OH+H at three different lean equivalence ratios.We can conclude that(1)at three ratios, the change trends of velocity are consistent with the peak mole fraction,that is,linear relationship exists between them,which is verified by the contrast between the simulation results and the fitting results in Fig.4.And the linear relationships can be expressed by the following formulas,respectively,

    μ0.65=0.00151+0.99779(XH+XOH)max

    μ0.70=0.00215+0.99777(XH+XOH)max

    μ0.75=0.00271+0.99628(XH+XOH)max

    (2)as more amount CO mole fraction in the fuel,the burning velocity and the maximum OH+H mole fraction decrease remarkably.Actually,the increases of CO addition cause the peak concentration of OH and H radicals to decrease at different lean equivalence ratios which are showed in the Fig.5.

    2.2 NOxemissions

    As one of the main sources of the air pollution,NOxemissions not only have a detrimental effect on human health,but also contribute significantly to the global environmental pollution, which has caused lots of concerning in the combustion and environment fields.Plenty of studies have focused on the effect of adding H2,CO2,H2O to natural gas on NOxproduction[26].And in this section,we study the effects on the NOxemissions index by adding CO,on the other hand,some questions related to the formation mechanisms are discussed.Fig.6 shows the distribution of the typical NOx(NO,NO2,N2O),and obvious differences are observed between NO and N2O formation.The NO formation mostly occurs in the high temperature region,while the N2O is mainly generated in the low temperature zone,while N2O is consumed in the high temperature region.These mainly depend on the formation mechanisms of NO and N2O.The mole fraction of NO,which accounts for 90%in the NOx,is much higher than N2O and NO2,so in the following studies we will take NO for the main research object.

    2.2.1Flame temperature

    It has been known that the formation of NOxhas been extremely influenced by the flame temperature.So many researchers,such as Tuzson[27]and Maughan et al.[28],have proposed to get low NOxemissions by bringing down the flame temperature.Because the thermal mechanism plays an important role in high temperature,the emissions are strongly depending on the high temperature,moreover in the Fig.7 we can observe that as the raise of the flame temperature,the NOxconcentration will increase.So in a large extent,we can conclude that high temperature indicates the high NOxconcentration.Fig.8 gives the profiles of temperature of CH4/air flame with different CO additions at φ=0.70.As CO addition increases,there is a small decrease in the temperature.According to the theory aforementioned,this change indicates that NOxemissions would achieve significantly reduc-tion.

    2.2.2 NO concentrations

    In order to get a better investigation about NOxemissions after adding CO,we calculate NO mole fraction at φ=0.70,0.75,0.80 with CO addition α=0.1,0.2,0.4,0.6,0.8,as seen in Fig.9.It can be seen that at three different ratios,CO addition has a positive effect on NO emission reduction,and more CO concentration leads to lower NO mole fraction.Especially at φ=0.70, 0.75,the mole fractions reduce almost 65%,while at φ=0.80,the mole fraction leaves over 40%of the original.In general,the NO emission situation gets a large scale of improvement.We do not calculate N2O,NO2,but due to the mole fraction of NO accounting for about 90%in NOx,so we can deduce that the total NOxemissions get a remarkable reduction.

    2.2.3 Problems related to NOxreaction mechanism

    There are three major sources of the to NO formed in the combustion:(1)the thermal NO(Zeldovich)mechanism,(2)the prompt NO(Fenimore)mechanism,(3)the N2O→NO intermediate route.The thermal mechanism is that the NO is formed by a set of highly temperature-dependent chemical reactions known as the extended Zeldovich mechanism.The principal reactions governing the formation of thermal NO are as follows:O+N2= NO+N;N+O2=O+NO;N+OH=NO+H;N+NO=O+N2.In the previous researches[29],there were good evidences that prompt NO can be formed in a significant quantity in some combustion environments,such as in low-temperature,fuel-rich conditions.Although we study at the lean condition,to get precise analogue result,we also consider the prompt mechanism.This mechanism consists of the reactions[30];CH+N2=HCN+N;HCN+OH= CN+H2O;CN+O2=NO+CO.The final mechanism involved main reaction:N2O+O=2NO.The main reaction ways of NO production and consumption can be obtained from Fig.10,which also shows the primary materials and radicals involved in the reactions clearly.According to information provided in Fig.10,and considering the reactions contained in GRI Mech 3.0,the main 28 steps reactions related NO have been listed in Table 1.Among them,R178,R179,R180 belong to the thermal mechanism, R222 belongs to the prompt route and R182-R189 are the N2O→NO mechanism.We carry the NO concentration sensiti vity analysis on these 28 step reactions.Fig.11 shows(1)R178:N+ NO=N2+O,R179:N+O2=NO+O,R180:N+OH=NO+H,R189: NO2+H=NO+OH,these four reactions play positive roles in the NO production which tallys with the mechanism,(2)R186:HO2+ NO=NO2+OH;R249:CH2+NO=H+HNCO,are the main consumption routes.Fig.12 shows the profiles of the total production rates of NO.It can be observed that at φ=0.70,with the increase of CO addition,the rate changes fluctuate severely much. With the three different CO additions,all the peak values appear at the flame height from 0.15 to 0.20 where the temperature rises to the maximum and the valley values appear at the height from 0.05 to 0.10.Moreover,from the flame height 0.10 to 0.15,the fluctuation is fierce and these regions are precisely the place in which the temperature rises quickest.From α=0.2 to α=0.6,the peak values reduce by 60%,the valley values rise about 30%.

    Fig.13 indicated the profiles of NO production rate of the mainreactions(R178,R179,R180,R186,R189,R249)with different CO additions at φ=0.70.The results demonstrate that(1)as CO addition rises from 0.2 to 0.6,the peak values of the four positivereactionsreducealot,especiallyR179(N+O2=NO+O),whose peak value changes from 9.0×10-9to 1.5×10-9,about 80%;(2) with an increase in the CO mole fraction,the valley values vary greatly at the flame height and the changes of R249 and R186 are remarkable;(3)the positions of the R179,R180,R189 peak values are consistent with that of the total production rate peak value in Fig.12.But R178 is somewhat different,and the primary reason is that the temperature of R178 N+NO=N2+O reaction must be higher than 1500 K,which is in keeping with the temperature profiles in Fig.8.

    Table 1 Main reactions related to NO production and consumption

    2.3 Extinction strain rate

    From the above analysis,the lean combustion can cause a decrease in the flame temperature and make the NOxemissions under the effective control,but in the theory,the lean combustible gas has a weak stability,the flame stretch may possibly cause flameout.By CO addition,we hope that at low temperatures,it can maintain the high combustion intensity.Hence,it is important to investigate the changes of the strain rate and definite the extinction strain rate.Egolfopoulos et al.[31]studied the effects of the flame stretch experimentally and numerically.They focused on the flame structures and the extinction strain rates of the opposed jet and the single jet wall configuration.Ren et al.[5]mainly aimed at the lean condition and got the extinction strain rate of the CH4/air flame by using the opposed jet,symmetric,twinflame configuration.In this present study,we also adopt the opposed jet,symmetric,twin-flame configuration to get the effects of the strain rate on the CO enhanced lean CH4/air flame.The preheat temperatures of the two nozzles are set to 400 K and the pressure is 1.0×105Pa.And in this section,we study the radial strain rate Srad,which is definedwhere r is the flame radius and v is radial velocity.Fig.14 demonstrates that at three test cases,as the strain rates increase,the flame temperatures decline monotonously.And when the flame temperature is below 1580 K,the flame will become unstable,so the strain rate at 1580 K just is the extinction strain rate.From Fig.14,we can observe that,at the equivalence ratio φ=0.70,the extinction strain rate is 1387 s-1(α=0.2),1426 s-1(α=0.4),1465 s-1(α=0.6) respectively,i.e.,with CO content increases,the extinction strain rate rises,which indicates that adding CO is able to strengthen the stability of the lean combustion.

    3 Conclusions

    Numerical computations of the effects of CO addition on thefundamental characteristics,such as the laminar burning velocity,the NOxemissions,the extinction strain rate,are carried out with detailed chemistry and transport properties.

    (1)The laminar burning velocity decreases with CO mole fraction from 0.2 to 0.7 in the lean conditions of φ=0.65,0.70, 0.75.And the velocity depends on the peak value of H+OH mole fraction,moreover more CO mole fraction in the fuel can cause the decrease of the maximum OH+H mole fraction.

    (2)Under lean condition,the flame temperature declined and the formation of NO is restrained much with CO addition,which can infer from the NO mole fraction profiles macroscopically and the production rate of the important reactions microscopicly. Besides,the important reactions about NO production got from sensitivity analysis can help obtain the effective methods to reduce NOxemissions.

    (3)With CO enrichment,the extinction strain rate is increased in a certain extent,that is,the CO addition can enhance the stability of the CH4/air flame under the equivalence ratio φ= 0.70.

    1 Law,C.K.;Wu,C.K.;Zhu,D.L.;Yu,G.Combustion and Flame, 1986,63:339

    2 Frenklach,M.;Wang,H.Soot formation in combustion: mechanisms and models.Bockhorn,H.Ed.Berlin:Springer-Verlag,1994,59:162-196

    3 MacGregor,S.A.;Syred,N.;Claypole,T.C.Chemical Engineering Communications,1987,4-6:163

    4 Correa,S.Combustion Science and Technology,1992,87:327

    5 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Combustion Science and Technology,2002,174:181

    6 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Combustion and Flame,2001,124:717

    7 Zhang,Y.Y.;Wu,J.H.International Journal of Hydrogen Energy, 2009,34:519

    8 Coppens,F.H.V.;De Ruyck,J.;Konnov,A.A.Combustion and Flame,2007,149:409

    9 R?rtveit,G.J.;Zepter,K.;Skreiberg?,B.;Fossum,M.;Hustad,J. E.Proc.Combust.Inst.,2002,29:1123

    10 Guo,H.S.;Neil,W.S.Combustion and Flame,2009,156:477

    11 Guo,H.S.;Smallwood,G.J.;Gülder,O.L.Proc.Combust.Inst., 2007,31:1197

    12 Shy,S.S.;Chen,Y.C.;Yang,C.H.;Liu,C.C.;Huang,C.M. Combustion and Flame,2008,153:510

    13 Lee,C.E.;Lee,S.R.;Han,J.W.;Park,J.International Journal of Energy Research,2001,25:343

    14 Natarajan,J.;Lieuwen,T.;Seitzman,J.Laminar flame speeds and strain sensitivities of mixtures of H2with CO,CO2and N2at elevated temperatures.Proceedings of GT2007 ASME Turbo Expo 2007:Power for Land,Sea and Air.Montreal,Canada,GT2007-27967

    15 Cho,E.S.;Chung,S.H.Journal of Mechanical Science and Technology,2009,23:659

    16 Frenklach,M.;Wang,H.;Goldenberg,M.;Smith,G.P.;Golden, D.M.;Bowman,C.T.;Hanson,R.K.;Gardiner,W.C.;Lissianski, V.GRI-Mech:an optimized detailed chemical reaction mechanism for methane combustion.Gras Research Institute,Tech.Rep.GRI-951OO58.Chicago:Gras Research Institute,1995

    17 Guo,H.;Smallwood,G.J.;Liu,F.;Ju,Y.;Gülder,O.L.Proc. Combust.Inst.,2005,30:303

    18 Kee,A.E.;Smoke,M.D.;Miler,J.A.PREMIX:a FORTRAN program for modeling steady laminar one-dimensional premixed flames.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1985

    19 Lutz,A.E.;Kee,R.J.;Grcar,J.F.;Rupley,F.M.OPPDIF:a FORTRAN program for computing opposed-flow diffusion flames. Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1997

    20 Jiang,Y.;Qiu,R.Chinese Science Bulletin,2005,50(3):276

    21 Wu,C.Y.;Chao,Y.C.;Cheng,T.S.;Chen,C.P.;Ho,C.T. Combustion and Flame,2009,156:362

    22 Lutz,A.E.;Kee,R.J.;Miller,J.A.SENKIN:a FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1987.

    23 Kee,R.J.;Rupley,F.M.;Miller,J.A.Chemkin-II:a FORTRAN chemical kinetics.Albuquerque,NM/Livermore,CA:Sandia National Laboratories Report,1989

    24 Halter,F.;Chauveau,C.;Djeba?li-Chaumeix,N.;G?kalp,I.Proc. Combust.Inst.,2005,30:201

    25 Hu,E.J.;Huang,Z.H.;He,J.J.;Miao,H.Y.International Journal of Hydrogen Energy,2009,34:6951

    26 Ren,J.Y.;Egolfopoulos,F.N.;Tsotsis,T.T.Industrial& Engineering Chemistry Research,2001,40:5155

    27 Tuzson,J.Journal of Engineering for Gas Turbines and Power, 1992,114:682

    28 Maughan,J.R.;Bowen,J.H.;Cooke,D.H.;Tuzson,J.Journal of Engineering for Gas Turbines and Power,1996,116:78

    29 Konnov,A.A.Combustion and Flame,2009,156:2093

    30 Vasudeevan,V.;Hanson,R.K.;Bowman,C.T.;Golden,D.M.; Davidson,D.F.J.Phys.Chem.A,2007,111:11818

    31 Egolfopoulos,F.N.;Zhang,H.;Zhang,Z.Combustion and Flame, 1997,109:237

    一氧化碳添加對(duì)甲烷/空氣貧燃預(yù)混火焰的影響

    陳文婷 蔣 勇*邱 榕

    (中國(guó)科學(xué)技術(shù)大學(xué)火災(zāi)科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,合肥 230026)

    通過(guò)對(duì)貧燃條件下(燃料與空氣化學(xué)計(jì)量比φ=0.60-0.80)的甲烷/一氧化碳/空氣火焰結(jié)構(gòu)進(jìn)行數(shù)值模擬,研究燃料中一氧化碳添加量對(duì)層流燃燒速度、氮氧化合物的排放以及熄火拉伸率的影響.隨著燃料中一氧化碳添加量的不斷增加,層流燃燒速度有所下降,這與燃料中加入氫氣產(chǎn)生的現(xiàn)象有所不同.為了解釋這一現(xiàn)象,本文深入探討了層流燃燒速度與H+OH濃度峰值之間的關(guān)系,結(jié)果表明,一氧化碳的增加導(dǎo)致H+OH濃度峰值呈線性下降,與層流燃燒速度下降趨勢(shì)完全一致.隨著一氧化碳的增加,氮氧化合物排放量有所下降.探討了NO的生成機(jī)理,且由敏感性分析得到生成NO的重要反應(yīng),分析當(dāng)一氧化碳量增大時(shí),NO的濃度以及重要反應(yīng)的NO生成率均下降.此外,利用數(shù)值模擬求解徑向拉伸率,深入分析燃料中添加一氧化碳時(shí)拉伸率對(duì)貧燃火焰穩(wěn)定性的影響.由計(jì)算結(jié)果得到熄火拉伸率,發(fā)現(xiàn)燃料中一氧化碳的添加在一定程度上能夠增強(qiáng)火焰的穩(wěn)定性.

    一氧化碳添加;層流燃燒速度;氮氧化合物排放;熄火拉伸率

    O643

    Received:January 7,2010;Revised:March 17,2010;Published on Web:April 27,2010.

    *Corresponding author.Email:yjjiang@ustc.edu.cn;Fax:+86-551-3601669.

    The project was supported by the National Natural Science Foundation of China(50876097)and Program for New Century Excellent Talents in University of China(NCET-06-0546).

    國(guó)家自然科學(xué)基金(50876097)和教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-06-0546)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    氮氧化合物層流一氧化碳
    煤炭取暖的意外——一氧化碳
    一氧化碳中毒事故的統(tǒng)計(jì)分析及防范措施
    層流輥道電機(jī)IP56防護(hù)等級(jí)結(jié)構(gòu)設(shè)計(jì)
    摻氫對(duì)二甲醚層流燃燒特性的影響
    淺析低氮燃燒技術(shù)在火電廠的應(yīng)用
    層流切應(yīng)力誘導(dǎo)microRNA-101下調(diào)EZH2抑制血管新生
    澳斯麥特爐氮氧化合物產(chǎn)生的原因分析
    The Generalization on Inequalities of Hermite-Hadamard’s Integration
    氮氧化物廢氣的生化處理技術(shù)應(yīng)用研究
    化工管理(2017年5期)2017-03-05 08:28:57
    X80鋼層流冷卻溫度場(chǎng)的有限元模擬
    22中文网久久字幕| 全区人妻精品视频| 久久婷婷青草| 十八禁高潮呻吟视频| 熟妇人妻不卡中文字幕| 香蕉精品网在线| 五月天丁香电影| 精品久久久精品久久久| 国产成人a∨麻豆精品| 啦啦啦中文免费视频观看日本| 亚洲av电影在线观看一区二区三区| 高清av免费在线| 丰满迷人的少妇在线观看| 久久人人爽av亚洲精品天堂| 国产视频首页在线观看| 夫妻午夜视频| 欧美少妇被猛烈插入视频| 日韩制服骚丝袜av| 亚洲美女视频黄频| 精品国产一区二区久久| 日韩制服骚丝袜av| 草草在线视频免费看| 大香蕉久久成人网| 成人手机av| 免费观看a级毛片全部| 亚洲精品日韩在线中文字幕| 亚洲精品乱码久久久久久按摩| 久久久亚洲精品成人影院| 欧美精品人与动牲交sv欧美| 最近最新中文字幕大全免费视频 | 午夜视频国产福利| 欧美变态另类bdsm刘玥| 日韩成人伦理影院| 免费人成在线观看视频色| 国产又爽黄色视频| 欧美精品高潮呻吟av久久| 高清毛片免费看| 18禁观看日本| 欧美丝袜亚洲另类| 99热全是精品| 欧美3d第一页| 97精品久久久久久久久久精品| 国产黄色视频一区二区在线观看| 久久国内精品自在自线图片| 一本久久精品| 91精品伊人久久大香线蕉| 黄色毛片三级朝国网站| 在线观看国产h片| 久久综合国产亚洲精品| 丰满乱子伦码专区| 免费久久久久久久精品成人欧美视频 | 一级爰片在线观看| 巨乳人妻的诱惑在线观看| 高清在线视频一区二区三区| 国产无遮挡羞羞视频在线观看| 国产日韩欧美视频二区| 国产精品国产三级国产专区5o| 黄色视频在线播放观看不卡| 日韩 亚洲 欧美在线| 1024视频免费在线观看| 国产av码专区亚洲av| 国产免费一级a男人的天堂| 日产精品乱码卡一卡2卡三| 国产 一区精品| 五月伊人婷婷丁香| 亚洲欧洲国产日韩| 免费播放大片免费观看视频在线观看| 久久精品国产自在天天线| 又大又黄又爽视频免费| av免费在线看不卡| 日韩大片免费观看网站| 在线观看三级黄色| 久久久精品94久久精品| 一级a做视频免费观看| 九色成人免费人妻av| 又粗又硬又长又爽又黄的视频| 一级毛片电影观看| 日韩成人av中文字幕在线观看| 高清不卡的av网站| 天堂8中文在线网| videossex国产| 丝袜脚勾引网站| 国产精品嫩草影院av在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精品成人av观看孕妇| 秋霞在线观看毛片| 国产乱来视频区| 美女视频免费永久观看网站| 亚洲精品456在线播放app| 丝瓜视频免费看黄片| 精品99又大又爽又粗少妇毛片| 极品少妇高潮喷水抽搐| 国产亚洲精品第一综合不卡 | 一区在线观看完整版| 观看av在线不卡| 国产极品粉嫩免费观看在线| 看非洲黑人一级黄片| 十分钟在线观看高清视频www| 十分钟在线观看高清视频www| 精品久久久久久电影网| 日韩大片免费观看网站| 少妇的丰满在线观看| 国产国拍精品亚洲av在线观看| 激情五月婷婷亚洲| 国产高清国产精品国产三级| 在线观看国产h片| 日日爽夜夜爽网站| av在线播放精品| 精品国产国语对白av| 2021少妇久久久久久久久久久| av女优亚洲男人天堂| 午夜激情av网站| 亚洲精品中文字幕在线视频| 少妇熟女欧美另类| 九色亚洲精品在线播放| 青春草国产在线视频| 天天躁夜夜躁狠狠躁躁| 国产又爽黄色视频| 亚洲精品美女久久av网站| 欧美日韩一区二区视频在线观看视频在线| 国产高清不卡午夜福利| 最近中文字幕2019免费版| 最近最新中文字幕大全免费视频 | 国产精品 国内视频| 亚洲精品日韩在线中文字幕| 日产精品乱码卡一卡2卡三| 亚洲欧美成人综合另类久久久| 久久久久久伊人网av| 一级毛片电影观看| 一二三四在线观看免费中文在 | 男女下面插进去视频免费观看 | 97在线人人人人妻| 另类亚洲欧美激情| 纵有疾风起免费观看全集完整版| 日韩一本色道免费dvd| 亚洲精品日韩在线中文字幕| 亚洲精品视频女| 汤姆久久久久久久影院中文字幕| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 免费久久久久久久精品成人欧美视频 | 天天操日日干夜夜撸| 亚洲精品视频女| av福利片在线| 精品一区二区三区四区五区乱码 | 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 国产亚洲欧美精品永久| 色视频在线一区二区三区| 亚洲精品国产av成人精品| 九色亚洲精品在线播放| a级毛色黄片| 亚洲国产精品国产精品| kizo精华| 欧美激情极品国产一区二区三区 | 高清欧美精品videossex| 国产麻豆69| www.熟女人妻精品国产 | 国产成人精品在线电影| 免费人妻精品一区二区三区视频| 亚洲一级一片aⅴ在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 久久久欧美国产精品| 最近最新中文字幕大全免费视频 | 久久午夜福利片| 婷婷成人精品国产| 欧美老熟妇乱子伦牲交| 亚洲av国产av综合av卡| av天堂久久9| 久久久久久久国产电影| 中文天堂在线官网| 91精品国产国语对白视频| 韩国精品一区二区三区 | 999精品在线视频| 99视频精品全部免费 在线| 极品人妻少妇av视频| 亚洲国产色片| 欧美最新免费一区二区三区| 国产片内射在线| 午夜精品国产一区二区电影| 国产永久视频网站| 久久 成人 亚洲| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 99热全是精品| 久久久久久久久久人人人人人人| 天堂8中文在线网| 亚洲精品一区蜜桃| 国产精品国产三级专区第一集| 一区二区三区四区激情视频| 国产亚洲精品第一综合不卡 | 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美视频二区| 国产成人精品久久久久久| 中国国产av一级| 97在线人人人人妻| 丝袜人妻中文字幕| 成人影院久久| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久视频综合| 久热久热在线精品观看| 满18在线观看网站| 国产成人a∨麻豆精品| 久久这里有精品视频免费| 中文字幕人妻熟女乱码| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 天堂俺去俺来也www色官网| 色网站视频免费| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区 | 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 成人18禁高潮啪啪吃奶动态图| 超碰97精品在线观看| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图| av在线app专区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 国国产精品蜜臀av免费| 亚洲欧美色中文字幕在线| 观看av在线不卡| 熟女人妻精品中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 国产精品不卡视频一区二区| 一边亲一边摸免费视频| 国产日韩欧美亚洲二区| 搡女人真爽免费视频火全软件| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 91精品国产国语对白视频| 午夜免费男女啪啪视频观看| 啦啦啦在线观看免费高清www| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 人妻少妇偷人精品九色| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 国产淫语在线视频| 亚洲成国产人片在线观看| 蜜桃国产av成人99| 超色免费av| 99久久精品国产国产毛片| 亚洲精品美女久久久久99蜜臀 | 亚洲,欧美,日韩| 国产男人的电影天堂91| 国产在线一区二区三区精| av播播在线观看一区| 中文乱码字字幕精品一区二区三区| 国产在线免费精品| 多毛熟女@视频| 涩涩av久久男人的天堂| 精品一区二区三区四区五区乱码 | a级毛片在线看网站| 一区二区三区乱码不卡18| 伦精品一区二区三区| 一边亲一边摸免费视频| 免费少妇av软件| 免费在线观看黄色视频的| 国产乱来视频区| 亚洲一码二码三码区别大吗| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 午夜福利视频精品| 国产毛片在线视频| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 大片电影免费在线观看免费| 国产成人精品一,二区| 日韩伦理黄色片| 久久99热6这里只有精品| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99| 黑人欧美特级aaaaaa片| 亚洲丝袜综合中文字幕| 亚洲综合色网址| 99久久人妻综合| 一区二区三区精品91| 在现免费观看毛片| 日本黄大片高清| 精品少妇内射三级| 欧美激情极品国产一区二区三区 | 人人妻人人澡人人爽人人夜夜| 国产成人av激情在线播放| 久久婷婷青草| 色哟哟·www| 极品少妇高潮喷水抽搐| 熟妇人妻不卡中文字幕| 91国产中文字幕| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 婷婷色综合www| 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 久久久欧美国产精品| 大片电影免费在线观看免费| 成人综合一区亚洲| 午夜激情久久久久久久| 国产淫语在线视频| 啦啦啦在线观看免费高清www| 精品亚洲成a人片在线观看| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 国产探花极品一区二区| 视频中文字幕在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女xxoo啪啪120秒动态图| 人妻 亚洲 视频| 黑人高潮一二区| 极品少妇高潮喷水抽搐| 99久久中文字幕三级久久日本| 天天躁夜夜躁狠狠躁躁| 日韩精品有码人妻一区| 国产深夜福利视频在线观看| 少妇人妻 视频| 中文字幕亚洲精品专区| 免费播放大片免费观看视频在线观看| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 成年av动漫网址| 久久精品国产自在天天线| 性色av一级| 国产黄色免费在线视频| 99热这里只有是精品在线观看| 1024视频免费在线观看| 青春草国产在线视频| 婷婷色麻豆天堂久久| 国产精品久久久久久精品电影小说| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| 免费观看在线日韩| a级毛片黄视频| 免费女性裸体啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 女人久久www免费人成看片| 国产av国产精品国产| 捣出白浆h1v1| 91精品伊人久久大香线蕉| 国产在线免费精品| 亚洲成人手机| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 欧美国产精品va在线观看不卡| 午夜福利在线观看免费完整高清在| 中文字幕精品免费在线观看视频 | 一边摸一边做爽爽视频免费| av播播在线观看一区| 热re99久久精品国产66热6| 亚洲国产av影院在线观看| 另类亚洲欧美激情| 国产乱人偷精品视频| 黄色怎么调成土黄色| 午夜久久久在线观看| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 天堂中文最新版在线下载| 亚洲国产av新网站| 日本av手机在线免费观看| videos熟女内射| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 亚洲av电影在线进入| 爱豆传媒免费全集在线观看| 欧美xxxx性猛交bbbb| 国产精品一区二区在线观看99| 成人影院久久| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 午夜91福利影院| 国产毛片在线视频| 欧美精品国产亚洲| 久久99热6这里只有精品| 免费大片黄手机在线观看| 黑人高潮一二区| 丝袜在线中文字幕| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 熟妇人妻不卡中文字幕| 日本黄大片高清| 一区二区三区四区激情视频| 午夜影院在线不卡| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 亚洲,欧美,日韩| 亚洲综合色网址| 久热久热在线精品观看| 你懂的网址亚洲精品在线观看| 两个人看的免费小视频| 在线观看一区二区三区激情| 一区在线观看完整版| 欧美日韩av久久| 亚洲中文av在线| 免费av中文字幕在线| 自线自在国产av| 汤姆久久久久久久影院中文字幕| videossex国产| 日本黄色日本黄色录像| 黑人高潮一二区| 亚洲伊人色综图| 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| www.色视频.com| 丁香六月天网| 国产精品免费大片| 色5月婷婷丁香| 综合色丁香网| 90打野战视频偷拍视频| 国产亚洲精品久久久com| 最近最新中文字幕大全免费视频 | 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 美女视频免费永久观看网站| 制服丝袜香蕉在线| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 街头女战士在线观看网站| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 国产色婷婷99| av免费观看日本| 欧美精品亚洲一区二区| 成人免费观看视频高清| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 中文字幕人妻熟女乱码| 秋霞在线观看毛片| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 久久这里只有精品19| 国产精品麻豆人妻色哟哟久久| 久久人人爽人人爽人人片va| 欧美人与善性xxx| 久久精品久久精品一区二区三区| 国产一区二区激情短视频 | 中文字幕亚洲精品专区| 中国三级夫妇交换| 日韩欧美一区视频在线观看| 视频中文字幕在线观看| 欧美最新免费一区二区三区| 成年人午夜在线观看视频| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠躁躁| 欧美精品国产亚洲| 精品少妇黑人巨大在线播放| 午夜91福利影院| 精品人妻偷拍中文字幕| 999精品在线视频| 色婷婷av一区二区三区视频| 日韩欧美一区视频在线观看| 国精品久久久久久国模美| 国产精品久久久久久久电影| 国产精品一区www在线观看| 街头女战士在线观看网站| 亚洲伊人色综图| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 两个人看的免费小视频| 国产av码专区亚洲av| 在线免费观看不下载黄p国产| 免费少妇av软件| 国产亚洲最大av| www.av在线官网国产| 春色校园在线视频观看| 欧美亚洲 丝袜 人妻 在线| 高清毛片免费看| 久久人人爽人人爽人人片va| 国产在线视频一区二区| 亚洲四区av| 街头女战士在线观看网站| 国产日韩欧美亚洲二区| 久久久久人妻精品一区果冻| 老司机影院毛片| 一二三四在线观看免费中文在 | 人妻系列 视频| 日韩精品有码人妻一区| 日韩电影二区| 最近中文字幕高清免费大全6| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 国产有黄有色有爽视频| av电影中文网址| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 亚洲精品美女久久久久99蜜臀 | 久久久久国产精品人妻一区二区| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 香蕉丝袜av| 免费播放大片免费观看视频在线观看| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看| 免费黄网站久久成人精品| 草草在线视频免费看| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 十八禁网站网址无遮挡| 中文乱码字字幕精品一区二区三区| 街头女战士在线观看网站| 国产色爽女视频免费观看| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| a级毛色黄片| 日韩大片免费观看网站| 欧美+日韩+精品| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 熟妇人妻不卡中文字幕| 精品一区在线观看国产| 99视频精品全部免费 在线| 天堂俺去俺来也www色官网| 成人国语在线视频| 亚洲性久久影院| 中文字幕精品免费在线观看视频 | 亚洲精品一区蜜桃| 制服人妻中文乱码| av.在线天堂| 亚洲欧美日韩另类电影网站| av片东京热男人的天堂| 高清视频免费观看一区二区| 2021少妇久久久久久久久久久| 国产精品偷伦视频观看了| 又黄又爽又刺激的免费视频.| 黑人欧美特级aaaaaa片| 你懂的网址亚洲精品在线观看| 婷婷色av中文字幕| xxx大片免费视频| 久久鲁丝午夜福利片| 久久久久网色| 亚洲美女视频黄频| 18+在线观看网站| 婷婷色综合www| 欧美人与性动交α欧美精品济南到 | 国产成人免费无遮挡视频| 久久久亚洲精品成人影院| 乱人伦中国视频| av天堂久久9| 久久人妻熟女aⅴ| 中文字幕制服av| 欧美少妇被猛烈插入视频| av有码第一页| 人妻系列 视频| 五月玫瑰六月丁香| 黄色配什么色好看| 一二三四在线观看免费中文在 | 亚洲国产成人一精品久久久| 97在线视频观看| 亚洲av电影在线进入| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 丝袜脚勾引网站| 日本wwww免费看| 国产成人一区二区在线| 五月天丁香电影| 少妇人妻 视频| 色5月婷婷丁香| 男人爽女人下面视频在线观看| 99热国产这里只有精品6| 赤兔流量卡办理| 亚洲综合精品二区| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 日本-黄色视频高清免费观看| 亚洲成人一二三区av| 十分钟在线观看高清视频www| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 一区二区av电影网| 成年动漫av网址| 美女福利国产在线| a级毛片在线看网站| av线在线观看网站| 色哟哟·www| 欧美激情极品国产一区二区三区 | 你懂的网址亚洲精品在线观看| 熟女人妻精品中文字幕| 哪个播放器可以免费观看大片| 亚洲国产毛片av蜜桃av| 成人漫画全彩无遮挡|