• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete Oxidation of Ethanol and Thermal Stability of Ceria-Based Materials Modified by Doping Cu

    2012-11-06 07:01:06WANGJianQiangSHENMeiQingWANGJunWANGWuLinJIALiWei
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:美國(guó)進(jìn)口天津大學(xué)熱穩(wěn)定性

    WANG Jian-Qiang SHEN Mei-Qing WANG Jun WANG Wu-Lin JIA Li-Wei

    (1Key Laboratory for Green Chemical Technology of the Ministry of Education,School of Chemical Engineering&Technology,Tianjin University,Tianjin 300072,P.R.China; 2State Key Laboratory of Engines,Tianjin University,Tianjin 300072,P.R.China;3China Automotive Technology&Research Center,Tianjin 300162,P.R.China;4Weifu Environmental Catalysts Co.,Ltd.,Wuxi 214028,Jiangsu Province,P.R.China)

    Complete Oxidation of Ethanol and Thermal Stability of Ceria-Based Materials Modified by Doping Cu

    WANG Jian-Qiang1,3SHEN Mei-Qing1,2,*WANG Jun1WANG Wu-Lin3JIA Li-Wei4

    (1Key Laboratory for Green Chemical Technology of the Ministry of Education,School of Chemical Engineering&Technology,Tianjin University,Tianjin 300072,P.R.China;2State Key Laboratory of Engines,Tianjin University,Tianjin 300072,P.R.China;3China Automotive Technology&Research Center,Tianjin 300162,P.R.China;4Weifu Environmental Catalysts Co.,Ltd.,Wuxi 214028,Jiangsu Province,P.R.China)

    The complete oxidation of ethanol(COE)was studied over Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxcatalysts prepared by the sol-gel method.Samples were characterized by X-ray powder diffraction(XRD),Brunauer-Emmett-Teller(BET)adsorption,Raman spectroscopy,hydrogen temperature-programmed reduction(H2-TPR),X-ray photoelectron spectroscopy(XPS),and electron paramagnetic resonance(EPR).Results show that for fresh samples,the activity of COE is found to be superior over Cu0.1Ce0.9Oxthan over Cu0.1Ce0.6Zr0.3Oxwhereas this is reversed for aged samples.The thermal stability improves after the introduction of Zr.Furthermore,the relationship between the active species and the activity for COE was investigated.

    Cu0.1Ce0.9Ox; Cu0.1Ce0.6Zr0.3Ox; Complete oxidation of ethanol; Thermal stability

    Environmental problems associated with air pollution are now deteriorating our entire earth and represent some of the most formidable challenges facing global society in the future.Furthermore,limited energy sources warn of a potential lack of energy in the future.Environmental considerations and the energy crisis have led engineers and scientists to anticipate the need to develop a clean,renewable and sustainable energy system.Presently,ethanol is considered as an alternative fuel extensively used in automobiles.The main reason for advocating ethanol is that it can be produced from nature products or waste materials compared with gasoline,which is only produced from non-renewable nature resources.The use of ethanol as fuel or fuel ad-ditive can reduce the emission of conventional pollutants such as carbon monoxide,total hydrocarbon and NOx,but may increase unburned ethanol and acetaldehyde emissions[1-3].These compounds are harmful to human health and considered as major contributors of environmental pollution.Hence,how to solve ethanol and acetaldehyde pollution problems has already become the major restriction of alternative fuels used widely.

    Complete oxidation of ethanol(COE)catalysts has been studied for the control of the emissions from ethanol-fuelled vehicles by many researchers[4-10].Base metal oxides like CuO,MnOx, CrOx,and supported precious metal catalysts(Pt,Pd)have been used so far for COE.Precious metal catalysts are in general more active and tolerant to sulphur poisoning than base metal oxides.However,base metal oxide catalysts are much cheaper, allowing a higher loading.McCabe et al.[4-5]found that a commercial hopcalite catalyst(CuO-MnO2)exhibited comparable activity to Pt/Al2O3for ethanol oxidation.Wahlberg et al.[6]found that catalysts containing Cu and Cu-Mn were more selective for COE than precious metal.Larsson et al.[9]found that the interaction between cerium and copper resulted in improved reducibility of the active copper species,which is considered to be determinant for the activity of COE.

    Copper oxides and supported copper materials have been studied in many fields,such as the combustion of CO and CH4[11-13], the water-gas shift reaction[14-15],and the wet oxidation of phenol[16]. According to Kato et al.[17],Cu-containing catalyst involves a large volume change during oxidation/reduction process that leads to fragmentation of the catalyst.Noronha et al.[18]have observed that precious metal particles were covered by base metal oxide for Pd-based catalyst for oxidation of ethanol.Therefore, it is necessary that the base metal ions are fixed and retain immobile,especially after thermal treatment,which may reduce the negative effect on precious metal catalysts for oxidation of ethanol.Further,it has been reported that doping with Zr(IV) can control the structure or the sites of ceria crystallite,which causes the improvement in the oxygen storage capacity,thermal stability,and redox property[19].To the best of our knowledge,few literatures have been reported on the comparative study of Cu-Ce-O and Cu-Ce-Zr-O catalysts for the COE,especially after high-temperature treatment.The present work investigates Cu-Ce-O and Cu-Ce-Zr-O samples in the form of solid solution for the COE.The microstructure and the thermal stability were characterized by XRD,Raman,TPR,XPS,and EPR.And the relationship between structure properties and the activity of COE was proposed.

    1 Experimental

    1.1 Sample preparation

    Cu-doped ceria-based mixed oxides (Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Ox)were synthesized by sol-gel method using citric acid as chelating agent.The corresponding Ce(III)(Zibo Rongruida),Zr(IV)(Zibo Rongruida),and Cu(II)(Tianjin Kewei)nitrates were of high purity over 99.9%.The citric acid was used as complex agent,and glycol was used as additive.After continuous stirring for 2 h,the mixed solution was treated at the temperature of 353 K overnight to form the sponge yellow gel. Then,the gel was dried at 373 K for 3 h and milled before calcinations.The dried gel was calcined at 573 K for 30 min and then at 773 K for 5 h.In this way,the fresh sample was obtained.The samples were further calcined at 973 and 1073 K in air for 3 h and referred to as Cu0.1Ce0.9Ox(973 K),Cu0.1Ce0.9Ox(1073 K), Cu0.1Ce0.6Zr0.3Ox(973 K),Cu0.1Ce0.6Zr0.3Ox(1073 K)..

    1.2 Characterization

    The X-ray powder diffraction(XRD)patterns were acquired with an X′Pert Pro diffractometer(Netherlands)operating at 40 kV and 40 mA with ferrum-filtered Co Kαradiation and ranging from 20°to 90°with a step size of 0.030°.

    The specific surface area of the sample was measured by the BET method using N2adsorption/desorption(Quantachrome NOVA2000,America)at 77 K.

    The Raman spectra of the powder samples were recorded with a Bruker FS100 FT-Raman spectrometer(Germany)and a liquid-N2-cooled super InGaAs detector.The spectra were excited with a diode pumped YAG laser(1064 nm)with a power of 100 mW.

    H2-TPR experiments were performed using a Micromeritics AutoChem 2910(America).The catalyst was first purged under N2(30 mL·min-1)at 473K for 1 h and then cooled to room temperature.The sample was then exposed to a flow of 5%H2/Ar (30 mL·min-1)while the temperature was ramped from room temperature to 1173 K at a rate of 10 K·min-1.

    X-ray photoelectron spectroscopy(XPS)analyses were conducted with PHI-1600ESCA spectrometer(America)with a nonmonochromatic Mg Kα(hν=1253.6 eV)radiation source operated at 15 kV and 400 W.The background pressure in the XPS chamber was kept below 0.67×10-6Pa.The binding energy(EB) was calibrated based on the line position of C 1s(284.6 eV).

    Electron paramagnetic resonance(EPR)spectra at the X band frequency(≈9.7 GHz)were recorded at room temperature with a Bruker A320 spectrometer(Germany)calibrated with 2,2-diphenyl-1-picrylhydrazyl(g=2.0036).Portions of same mass of samples were placed inside the quartz probe cell.The EPR parameter values have been precisely determined from the calculated spectra.g factor was determined by the equation,hν=gβH, where h is Planck constant,H is the applied magnetic field,β is Bohr magneton.

    1.3 Activity test

    The catalysts were tested in a fixed bed reactor made of a quartz tube.A catalyst sample was packed and sandwiched between two quartz wool plug.The feed was a mixture of air and ethanol(1.5%)with a space velocity of 30000 h-1.The concentration of CO2was measured as a function of temperature on line by IR(America).The temperature at 50%yield CO2is used as a measure of ethanol oxidation activity and is denoted as T50.

    2 Results and discussion

    2.1 XRD analysis

    Powder X-ray diffraction patterns of different samples are shown in Fig.1.For fresh Cu-doped samples(Fig.1a),a single fluorite-type phase(Fm3m space group)was found,there are no characteristic reflections of CuO phase found.We have previously reported[20]that it may be due to the high dispersion of the CuO nanoparticles with too small particle sizes on the surface of the support to be identified by the conventional X-ray diffraction method,or the localization of Cu2+ions in the solid solution[21]. After aging treatment,the XRD patterns for all samples show narrower diffraction line with respect to their respective counterpart,which indicated the increased crystallite size.It should be noted that a visible CuO phase at about 2θ=41.6°and 45.4°can be identified in the XRD patterns of Cu0.1Ce0.9Ox(973 K), Cu0.1Ce0.9Ox(1073 K),Cu0.1Ce0.6Zr0.3Ox(1073 K)samples,while Cu0.1Ce0.6Zr0.3Ox(973 K)sample remains a single fluorite lattice structure.It indicated that the introduction of Zr improve the thermal stability of sample and restrain the deactivation after aging treatment.

    The lattice parameters calculated by Bragg′s equation are listed in Table 1.For the Cu0.1Ce0.9Oxsamples,the introduction of Cu causes the shrink of the lattice due to its relatively smaller ion radius(0.072 nm)with respect to Ce4+(0.103 nm).It is worth noting that the Cu0.1Ce0.6Zr0.3Ox(0.5324 nm)sample shows much smaller lattice parameter than that of Cu0.1Ce0.9Ox(0.5399 nm), indicating the synergistic effect of Zr(IV)and Cu(II)shrink the lattice for their smaller ion radii.After aging treatment,obvious expansion of the lattice was observed compared with the fresh ones,indicating a segregation of Cu2+to form other compounds.

    The averaged crystallite sizes determined by Scherrer equation are listed in Table 1.As listed in Table 1,the average crystallite sizes of the fresh samples are 9.3 and 6.3 nm for Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Ox,respectively.After high temperature calcinations,the aggregation of crystals took place,and then the average crystallite size increased to 61.0 and 18.8 nm, respectively.Interestingly,the increasing amplitude of the average crystallite size for Cu0.1Ce0.6Zr0.3Oxis much smaller than that of Cu0.1Ce0.9Oxcatalyst after aging treatment.So,it was considered that the introduction of zirconia is more effective for improving the thermal stability.

    Evolution of specific surface areas of Cu doping samples is presented in Table 1.It can be found that a significant loss of surface area is observed after high-temperature treatment.It is worth noting that the catalytic activity of ceria-based material does not depend directly on its surface area.According to Monte et al.[22],the participation of bulk oxygen to reduction processes in ceriabased materials makes surface effects less important.

    2.2 Raman spectral analysis

    In contrast to the XRD results,which yield information related mainly to the cation sublattice,Raman spectra of these fluorite-type oxide structures are dominated by oxygen lattice vibra-tions,which are sensitive to the crystalline symmetry,being thus a potential tool to obtain additional structure information.The Raman profiles of all samples are shown in Fig.2.As reported in previous study[20],for pure CeO2,there is a peak at 464.2 cm-1ascribed to the F2gmode of fluorite(Fig.2(a)).And for fresh Cu0.1Ce0.9Oxsample,the dominant peak shifts to lower frequency accompanying with reduced intensity(Fig.2(c)).Two reasons contribute to the frequency shifts[23].The first is increased oxygen vacancies;the second is dilation or contraction of the lattice. The lattice variation indicates that some defects are generated. The presence of lattice defects induced the mobility of oxygen, which are favorable for the redox activity.Compared with fresh sample,the F2gband of aged sample shifted to higher frequency can be observed due to the expansion of the lattice,indicating the breaking of symmetry of the M—O bond[24].

    Table 1 BET special surface area,lattice parametersaand crystal sizesbof different samples

    For the Ce0.67Zr0.33Oxsample,in addition to the dominant band at 473.8 cm-1,ascribed to the F2gmode of fluorite,two minor peaks centered at around 298.3 and 620.4 cm-1appeared,as shown in previously study[20].We have reported that the appearance of weak bands around 298.3 and 620.4 cm-1,which is attributed to the tetragonal displacement of the oxygen atoms from the ideal fluorite lattice positions,indicates the formation of phase t″or t′[20,25].This was considered as a potential active structure for the ceria-zirconia solid solution.After doping Cu,the dominant peak shifts to 476.1 cm-1,and the other peaks are located at 304 and 638 cm-1,respectively.It is obviously that the Raman spectrum of Cu0.1Ce0.6Zr0.3Oxis very similar to that of Ce0.67Zr0.33O2,which indicates that the doping of Cu gives little influence on the structure of Ce0.67Zr0.33O2[20].Namely,Cu species were incorporated into the CeO2lattice forming solid solutions, or the Cu species were highly dispersed on the surface of ceriazirconia in agree with results of XRD.After aging treatment,the F2gband slightly shifted to lower frequency due to cell expansion,which is in line with the increased cell parameter.

    2.3 Activity of COE

    Result of activity tests,the temperature at 50%yield CO2(T50), are shown in Fig.3.For fresh samples,T50is lower over Cu0.1Ce0.9Oxthan that over Cu0.1Ce0.6Zr0.3Ox.According to Wang et al.[26],the dispersed CuO was responsible for the higher catalytic activity of the COE.Compared with Cu0.1Ce0.6Zr0.3Oxsample,the fresh Cu0.1Ce0.9Oxsample is characterized with a higher CuO dispersion degree and a lower reduction temperature confirmed by the TPR and EPR analysis.So the fresh Cu0.1Ce0.9Oxsample shows superior acticity for COE.After aging treatment,the activity of COE was badly decreased.Based on Stobbe[27]and María[28]et al.,the oxides with high degree of crystallinity had a pronounced decrease in the catalytic activity.For aged samples, T50ofCOE over Cu0.1Ce0.6Zr0.3Oxis lower than that over Cu0.1Ce0.9Ox. The T50over aged Cu0.1Ce0.9Oxis increased by 117 K,whereas the corresponding value is 76 K for Cu0.1Ce0.6Zr0.3Ox.It indicated that Cu0.1Ce0.9Oxis less stable and is easily deactivated against thermal treatment.The addition of Zr improved the thermal stability, which can prevent mixed oxides from reaching a crystalline structure.So the aged Cu0.1Ce0.6Zr0.3Oxsample retained more activity for the ethanol complete oxidation.

    2.4 H2-TPR analysis

    TPR profiles of all samples are presented in Fig.4.As reported in previous study[20],the CuO has one reduction peak at 591 K. And for CeO2,two reduction peaks located at 784 and 1074 K attributed to the release of surface oxygen and bulk oxygen,respectively.While for fresh Cu0.1Ce0.9Oxsample,two new strong reduction peaks(α and β)at about 434 and 458 K are appeared, which can be ascribed to the reduction of the finely dispersed CuO and the Cu2+in the Cu0.1Ce0.9Oxsolid solution.In addition, two reduction peaks around 718 and 1052 K ascribed to the release of bulk and surface oxygen(γ)and lattice oxygen(δ)are still evident,and shift to lower temperature compared with CeO2.It can be considered that the introduction of Cu improve the low-temperature activity of CeO2.After aging treatment,the intensity of low-temperature peaks(α and β)is weakened,meanwhile new reduction peaks attributed to the reduction of bulk CuO is occurred[29].

    For Cu0.1Ce0.6Zr0.3Oxsamples,the low-temperature peaks(α and β)shift to lower temperature in comparison with its counterpart due to the synergistic effects between CuO and the ceriazirconia[20].According to literature[9],the reduction of the finely dispersed CuO(α)is maybe as the active sites for COE.Compared with Cu0.1Ce0.9Ox,the addition of Zr leads to the decrease ofthe“α”peak intensity.The amount of H2uptake at the“α”peaks is calculated to be 548 μmol·g-1catalyst for Cu0.1Ce0.9Ox, while 264 μmol·g-1catalyst for Cu0.1Ce0.6Zr0.3Ox,which suggested that the quantity of CuO species dispersed on the surface of Cu0.1Ce0.9Oxis much more than that on Cu0.1Ce0.6Zr0.3Oxsample. This may explain the higher activity of complete oxidation ethanol for fresh Cu0.1Ce0.9Oxthan that for fresh Cu0.1Ce0.6Zr0.3Ox. For the aged samples,the Cu0.1Ce0.6Zr0.3Oxsample shows superior thermal stability to Cu0.1Ce0.9Oxconfirmed by XRD analysis, which is believed to be essential for the better activity of COE.

    2.5 XPS analysis

    In order to obtain more information on the state of copper species,XPS spectra were recorded for all samples as shown in Fig.5.According to literature[13,30],the presence of the shake-up peak and a higher Cu 2p3/2binding energy(933.0-933.8 eV)are two major XPS characteristics of CuO,while a lower Cu 2p3/2binding energy(932.2-933.1 eV)and the absence of the shake-up peak are characteristics of reduced copper species.As shown in Fig.5,the fresh Cu0.1Ce0.9Oxsample contained a shake-up peak of weak intensity at 939-944 eV and the Cu 2p3/2peak was centered at about 932.7 eV.The value is lower than the Cu 2p binding energy of CuO(933.6 eV).The lower Cu 2p3/2binding energies(932.7 eV)and the low intensity of the shake-up satellite structure suggest that the presence of active copper species in the Cu0.1Ce0.9Oxsample,which may be Cu+or Cu2+species[20].According to Avgouropoulos et al.[13],both Cu2+and Cu+species present in CuO-CeO2catalysts prepared with various methods confirmed by Cu L3VV Auger kinetic energy.It may be suggested that the reduced copper species such as Cu+exit on the surface of the catalyst besides Cu2+species.The formation of Cu+species can be derived from the strong interaction of the copper clusters with ceria.It is worth noting that the Cu 2p XPS spectra for aged Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxsamples contained a shake-up peak of weak intensity at 939-944 eV and the Cu 2p3/2peak was centered at about 933.0 eV.It suggested that the presence of some bulk CuO on the surface of catalysts,is in agreement with the XRD results.

    As shown in Fig.5,it can be observed O 1s spectra display two main features,the major contribution at EB≈529.3 eV corresponds to lattice oxygen species in fresh Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxsamples,the broad peak with EB≈531.5 eV can be attributed to adsorbed oxygen.By fitting the O 1s peak with two set of oxygen species,we have previously found that the fresh Cu0.1Ce0.9Oxsample has almost the same amount of adsorbed oxygen species(21.1%)with respect to the fresh Cu0.1Ce0.6Zr0.3Ox(21.6%)[20].Therefore,the effect of oxygen species over different samples on activity for COE is similar between the fresh Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Ox.After aging treatment, the amount of adsorbed oxygen species for the aged Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxare 24.8%and 34.0%,respectively.So the adsorbed oxygen species over aged Cu0.1Ce0.6Zr0.3Oxsample for the COE is more contributive than that of the aged Cu0.1Ce0.9Oxsample.

    2.6 EPR analysis

    EPR spectra of Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxsamples are shown in Fig.6.Each spectrum is composed of three signals which can be attributed to monomers,dimers,and clusters of Cu2+.Based on the literature[20,31-33],the A1signals was attributed to isolated Cu2+ions located in octahedral sites in ceria with a tetragonal distortion and surrounded by more than six ligands.The A2signal was attributed to Cu2+in form of clusters.And the signal K in the spectra corresponds to Cu2+-Cu2+ion pairs arising from the coupling between unpaired electrons of two Cu2+ions. After aging treatment,some changes have taken in the characteristics of the EPR spectrum of the catalysts.Formation of CuO crystallites on the catalyst surface can decrease the effective intensity of the isolated Cu2+signal[26].As shown in Fig.6,there is no significant difference in the intensity of the Cu2+signal for fresh and aged Cu0.1Ce0.6Zr0.3Oxsamples.However the difference for fresh and aged Cu0.1Ce0.9Oxsamples is visible.It indicated the better thermal stability for Cu0.1Ce0.6Zr0.3Oxsample,in agreement with the XRD analysis.Furthermore the abatement of K signal in low magnetic field indicates the decrease of Cu2+ion pairs in the lattice of CeO2,which reveals that Cu2+ion pairs possess higher reducibility.

    3 Conclusions

    In summary,Cu0.1Ce0.9Oxand Cu0.1Ce0.6Zr0.3Oxwere synthesized by sol-gel method,investigated for the structure characteristics, thermal stability,and the activity for COE.Fresh Cu0.1Ce0.9Oxsample enriched with well-dispersed CuO species,shows higher performance for COE than Cu0.1Ce0.6Zr0.3Ox,the role of well-dispersed CuO on the catalysis activity may be important.The aged Cu0.1Ce0.6Zr0.3Oxsample is more active for the ethanol oxidation than that for the aged Cu0.1Ce0.9Oxbecause the addition of Zr improved the thermal stability,sintering may be the major factor that leads to the activity variation for aged sample.

    1 Gaffney,J.S;Marley,N.A.;Martin,R.S.;Dixon,R.W.;Reyes,L. G.;Popp,C.J.Environ.Sci.Technol.,1997,31:3053

    2 He,B.Q.;Wang,J.X.;Hao,J.M.;Yan,X.G.;Xiao,J.H.Atmos. Environ.,2003,37:949

    3 Jia,L.W.;Shen,M.Q.;Wang,J.;Lin,M.Q.J.Hazard.Mater., 2005,123:29

    我國(guó)從美國(guó)進(jìn)口的豬、牛、羊產(chǎn)品總量都不大,2017年,我國(guó)從美國(guó)進(jìn)口豬肉及其制品5.84萬(wàn)噸,占豬肉需求總量的26.64%,進(jìn)口總量不大;牛肉及其制品美國(guó)進(jìn)口量為0.22萬(wàn)噸,占國(guó)內(nèi)牛肉需求總量的比例僅為0.75%,且多為高端牛肉制品;羊肉及其制品從美國(guó)的進(jìn)口量?jī)H0.6噸。因此,中美貿(mào)易摩擦對(duì)國(guó)內(nèi)和我省肉制品市場(chǎng)供求和貿(mào)易格局影響不大,而且豬肉和牛肉制品進(jìn)口的下降一定程度上還有利于緩解國(guó)內(nèi)豬、牛肉的銷售壓力。

    4 McCabe,R.W.;Mitchell,P.J.Ind.Eng.Chem.Prod.Res.Dev., 1983,22:212

    5 McCabe,R.W.;Mitchell,P.J.Ind.Eng.Chem.Prod.Res.Dev., 1984,23:196

    6 Wahlberg,A.;Pettersson,L.J.;Bruce,K.;Andersson,M.;Jansson, K.Appl.Catal.B,1999,23:271

    7 Rajesh,H.;Ozkan,U.S.Ind.Eng.Chem.Res.,1993,32:1622

    8 YuYao,Y.F.Ind.Eng.Chem.Process Des.Dev.,1984,23:60

    9 Larsson,P.O.;Anderssony,A.J.Catal.,1998,179:72

    10 Rao,T.;Shen,M.Q.;Jia,L.W.;Hao,J.J.;Wang,J.Catal. Commun.,2007,8:1743

    12 Liu,W.;Flyzani-Stephanopoulos,M.J.Catal.,1995,153:317

    13 Avgouropoulos,G.;Ioannides,T.Appl.Catal.A,2003,244:155

    14 Wang,X.Q.;Rodriguez,J.A.;Hanson,J.C.;Gamarra,D.; Martínez-Arias,A.;Fernández-García,M.J.Phys.Chem.B,2006, 110:428

    15 Prashant,K.;Raphael,I.Energ.Fuel,2007,21:522

    16 Hocevar,S.;Krasovec,U.O.;Orel,B.;AricóA,S.;Kim,H.Appl. Catal.B,2000,28:113

    17 Kato,S.;Fujimaki,R.;Ogasawara,M.;Wakabayashi,T.; Nakahara,Y.;Nakata,S.Appl.Catal.B,2009,89:183

    18 Noronha,F.B.;Dur?o,M.C.;Batista,M.S.Catal.Today,2003, 85:13

    19 Trovarelli,A.Catal.Rev-Sci.Eng.,1996,38:439

    20 Jia,L.W.;Shen,M.Q.;Wang,J.;Gu,W.W.J.Alloy.Compd., 2009,473:293

    21 Shan,W.J.;Shen,W.J.;Li,C.Chem.Mater.,2003,15:4761

    22 Monte,R.D.;Kaspar,J.;Fornasiero,P.;Graziani,M.;Pazé,C.; Gubitosa,G.Inorg.Chim.Acta,2002,334:318

    23 McBride,J.R.;Hass,K.C.;Poindexter,B.D.J.Appl.Phys.,1994, 76:2435

    24 Fornasiero,P.;Speghini,A.;Monte,R.D.;Bettinelli,M.;Kaspar, J.;Bigotto,A.;Sergo,V.;Graziani,M.Chem.Mater.,2004,16: 1938

    25 Vidal,H.;Ka&par,J.;Pijolat,M.;Colon,G.;Bernal,S.;Cordón,A.; Perrichon,V.;Fally,F.Appl.Catal.B,2000,27:49

    26 Wang,S.P.;Zheng,X.C.;Wang,X.Y.;Wang,S.R.;Zhang,S. M.;Yu,L.H.;Huang,W.P.;Wu,S.H.Catal.Lett.,2005,105: 163.

    27 Stobbe,E.R.;deBoer,B.A.;Geus,J.W.Catal.Today,1999,7: 161

    28 María,R.M.;Bibiana,P.B.;Luis,E.C.Fuel,2008,87:11

    29 Luo,M.F.;Ma,J.M.;Lu,J.Q.;Song,Y.P.;Wang,Y.J.J.Catal., 2007,246:52

    30 Avgouropoulos,G.;Ioannides,T.;Matralis,H.Appl.Catal.B, 2005,56:87

    31 Martínez-Arias,A.;Fernández-García,M.;Soria,J.;Conesa,J.C. J.Catal.,1999,182:367

    32 Parthasarathi,B.;Priolkar,K.R.;Sarode,P.R.;Hegde,M.S.; Emura,S.;Kumashiro,R.;Lalla,N.P.Chem.Mater.,2002,14: 3591

    33 Philip,G.H.;Ian,K.B.;Wan,A.;Wayne,D.;Daniella,G.Chem. Mater.,2000,12:3715

    Cu摻雜鈰基材料的乙醇完全氧化活性及熱穩(wěn)定性

    王建強(qiáng)1,3沈美慶1,2,*王 軍1王務(wù)林3賈莉偉4

    (1天津大學(xué)化工學(xué)院,綠色合成與轉(zhuǎn)化教育部重點(diǎn)實(shí)驗(yàn)室,天津 300072;2天津大學(xué)內(nèi)燃機(jī)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072;3中國(guó)汽車技術(shù)研究中心,天津 300162;4無(wú)錫威孚環(huán)保催化劑有限公司,江蘇無(wú)錫 214028)

    考察了采用溶膠-凝膠法制備固溶體Cu0.1Ce0.9Ox和Cu0.1Ce0.6Zr0.3Ox樣品的乙醇完全氧化(COE)性能.采用X射線衍射(XRD)、BET比表面積、拉曼(Raman)、氫氣程序升溫還原(H2-TPR)、光電子能譜(XPS)及電子順磁共振(EPR)技術(shù)對(duì)樣品結(jié)構(gòu)進(jìn)行了表征.結(jié)果表明:新鮮Cu0.1Ce0.9Ox樣品的乙醇完全氧化活性優(yōu)于Cu0.1Ce0.6Zr0.3Ox;樣品經(jīng)過(guò)老化處理后,結(jié)果相反;Zr的加入改善了樣品的熱穩(wěn)定性.此外,還考察了乙醇完全氧化活性與活性物種之間的關(guān)系.

    Cu0.1Ce0.9Ox; Cu0.1Ce0.6Zr0.3Ox; 乙醇完全氧化; 熱穩(wěn)定性

    O643

    Received:December 30,2009;Revised:March 5,2010;Published on Web:May 13,2010.

    *Corresponding author.Email:mqshen@tju.edu.cn;Tel/Fax:+86-22-27892301.

    The project was supported by the National High-Tech Research and Development Program of China(863)(2009AA064803).

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(863)(2009AA064803)資助

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    美國(guó)進(jìn)口天津大學(xué)熱穩(wěn)定性
    利好!重要輪胎市場(chǎng)需求復(fù)蘇
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡(jiǎn)介
    我國(guó)將對(duì)自美國(guó)進(jìn)口的肥料最高加征25%關(guān)稅
    學(xué)生寫(xiě)話
    “美國(guó)進(jìn)口蝸?!?/a>
    PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
    提高有機(jī)過(guò)氧化物熱穩(wěn)定性的方法
    可聚合松香衍生物的合成、表征和熱穩(wěn)定性?
    對(duì)羥基安息香醛苯甲酰腙的合成、表征及熱穩(wěn)定性
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2014年總目次
    亚洲中文日韩欧美视频| 又黄又粗又硬又大视频| 男人舔女人的私密视频| 捣出白浆h1v1| 两性夫妻黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 色播在线永久视频| 十八禁高潮呻吟视频| 免费在线观看完整版高清| 国产福利在线免费观看视频| 国产精品人妻久久久影院| 大片免费播放器 马上看| 婷婷成人精品国产| 九草在线视频观看| 黄色片一级片一级黄色片| 黄色a级毛片大全视频| 手机成人av网站| 亚洲图色成人| 男女床上黄色一级片免费看| 大型av网站在线播放| 如日韩欧美国产精品一区二区三区| 男女国产视频网站| 一级a爱视频在线免费观看| 国产成人系列免费观看| 国产成人精品无人区| 一本—道久久a久久精品蜜桃钙片| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 亚洲欧洲精品一区二区精品久久久| 久久久久网色| 国产欧美日韩一区二区三 | 午夜福利,免费看| 麻豆av在线久日| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 国产在线观看jvid| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| 曰老女人黄片| 熟女av电影| 这个男人来自地球电影免费观看| 国产精品免费大片| 丝袜脚勾引网站| 久久狼人影院| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 考比视频在线观看| 老鸭窝网址在线观看| 一级片'在线观看视频| 一本大道久久a久久精品| 91成人精品电影| 99精国产麻豆久久婷婷| av网站在线播放免费| av不卡在线播放| 免费黄频网站在线观看国产| 久久九九热精品免费| 久久午夜综合久久蜜桃| 一级黄片播放器| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| 日韩大片免费观看网站| 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 亚洲九九香蕉| www.精华液| 亚洲欧美中文字幕日韩二区| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 高潮久久久久久久久久久不卡| 国产精品久久久久久精品古装| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 欧美大码av| 亚洲熟女毛片儿| 国产91精品成人一区二区三区 | 男女之事视频高清在线观看 | av线在线观看网站| 性色av乱码一区二区三区2| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产av成人精品| 波多野结衣av一区二区av| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久| 99九九在线精品视频| 真人做人爱边吃奶动态| 大话2 男鬼变身卡| 亚洲欧美一区二区三区黑人| 2018国产大陆天天弄谢| 精品少妇久久久久久888优播| 精品卡一卡二卡四卡免费| 少妇 在线观看| 女人高潮潮喷娇喘18禁视频| 热99久久久久精品小说推荐| 老司机影院毛片| 国产精品国产三级专区第一集| 日本vs欧美在线观看视频| 国产日韩一区二区三区精品不卡| 丝袜美足系列| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲国产日韩一区二区| 母亲3免费完整高清在线观看| bbb黄色大片| 9色porny在线观看| 欧美精品亚洲一区二区| 免费少妇av软件| 电影成人av| 国产一区二区 视频在线| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码 | 日韩精品免费视频一区二区三区| 中文欧美无线码| 日日夜夜操网爽| 国产在线一区二区三区精| 男女之事视频高清在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久久久久婷婷小说| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 中国美女看黄片| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 十八禁人妻一区二区| 久久99热这里只频精品6学生| 91字幕亚洲| 国产熟女欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 老司机靠b影院| 99精国产麻豆久久婷婷| 9色porny在线观看| tube8黄色片| 色精品久久人妻99蜜桃| 热re99久久国产66热| 午夜影院在线不卡| 99精品久久久久人妻精品| 精品久久久精品久久久| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 男女午夜视频在线观看| 超色免费av| 国产免费视频播放在线视频| 久久久国产欧美日韩av| 日本色播在线视频| 超碰成人久久| 18禁国产床啪视频网站| 在线av久久热| 免费在线观看影片大全网站 | 黄色毛片三级朝国网站| 国产淫语在线视频| 国产成人一区二区三区免费视频网站 | 最近手机中文字幕大全| 18禁国产床啪视频网站| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 国产有黄有色有爽视频| 人人妻人人添人人爽欧美一区卜| 成年动漫av网址| 制服诱惑二区| 欧美日韩av久久| 国产一区二区三区综合在线观看| xxx大片免费视频| 日韩中文字幕欧美一区二区 | 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 成人三级做爰电影| 中文字幕制服av| 久久人妻熟女aⅴ| 欧美大码av| 亚洲伊人色综图| 欧美在线一区亚洲| 久久 成人 亚洲| 国产免费又黄又爽又色| 观看av在线不卡| 国产精品久久久久成人av| 尾随美女入室| 色综合欧美亚洲国产小说| 国产精品一二三区在线看| 午夜福利免费观看在线| 男女边吃奶边做爰视频| 亚洲 国产 在线| 满18在线观看网站| 黄色毛片三级朝国网站| av欧美777| 欧美日韩福利视频一区二区| 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频 | 一个人免费看片子| 国产黄色免费在线视频| 超碰成人久久| 性高湖久久久久久久久免费观看| 国产精品一区二区在线不卡| 国产在线观看jvid| 制服诱惑二区| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 国产免费视频播放在线视频| 午夜免费男女啪啪视频观看| 在线av久久热| 国产爽快片一区二区三区| 国产成人精品久久二区二区91| 午夜免费鲁丝| 天天影视国产精品| 在线观看免费午夜福利视频| 亚洲五月色婷婷综合| 亚洲国产日韩一区二区| 69精品国产乱码久久久| 丰满人妻熟妇乱又伦精品不卡| 一本综合久久免费| 亚洲国产精品成人久久小说| 搡老岳熟女国产| 在线看a的网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| tube8黄色片| 亚洲欧美一区二区三区黑人| 啦啦啦在线观看免费高清www| 高清欧美精品videossex| 午夜福利视频在线观看免费| 99国产综合亚洲精品| 日本wwww免费看| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 悠悠久久av| 人成视频在线观看免费观看| 丰满少妇做爰视频| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 国产av精品麻豆| 欧美大码av| 国产成人系列免费观看| bbb黄色大片| 国产亚洲av高清不卡| 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 熟女av电影| av又黄又爽大尺度在线免费看| 国产高清视频在线播放一区 | 成人影院久久| h视频一区二区三区| 国产一区二区在线观看av| 建设人人有责人人尽责人人享有的| 久久人妻熟女aⅴ| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 精品国产超薄肉色丝袜足j| 国产免费福利视频在线观看| av网站在线播放免费| 久热爱精品视频在线9| 老司机影院毛片| 在线av久久热| 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲 | 老司机影院毛片| 91老司机精品| 亚洲,欧美精品.| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 性色av一级| 欧美在线一区亚洲| 在线 av 中文字幕| 国产免费福利视频在线观看| 好男人视频免费观看在线| 一本一本久久a久久精品综合妖精| 国产男人的电影天堂91| 亚洲国产毛片av蜜桃av| 亚洲av男天堂| 97在线人人人人妻| 人人妻人人澡人人看| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 国产一区二区激情短视频 | 欧美日韩黄片免| 精品福利永久在线观看| 中文乱码字字幕精品一区二区三区| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频 | 美女午夜性视频免费| 日本vs欧美在线观看视频| 欧美成人精品欧美一级黄| 又大又爽又粗| 久久人人爽人人片av| 日本a在线网址| 好男人视频免费观看在线| 久久久久精品人妻al黑| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三 | 久久青草综合色| 国产精品国产av在线观看| 又粗又硬又长又爽又黄的视频| 亚洲av成人不卡在线观看播放网 | 亚洲 欧美一区二区三区| kizo精华| 男女边吃奶边做爰视频| 人妻 亚洲 视频| 国产成人欧美在线观看 | 欧美国产精品一级二级三级| 欧美97在线视频| 首页视频小说图片口味搜索 | 国产亚洲午夜精品一区二区久久| av在线老鸭窝| 欧美黄色淫秽网站| 日本91视频免费播放| 精品一区二区三区四区五区乱码 | 超色免费av| 亚洲精品一卡2卡三卡4卡5卡 | 波多野结衣一区麻豆| 麻豆乱淫一区二区| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 中国美女看黄片| 欧美日韩精品网址| 日韩一本色道免费dvd| 女性被躁到高潮视频| 最近中文字幕2019免费版| 丁香六月欧美| 女性生殖器流出的白浆| 99久久综合免费| 19禁男女啪啪无遮挡网站| 欧美久久黑人一区二区| 亚洲久久久国产精品| 青春草亚洲视频在线观看| 国产精品香港三级国产av潘金莲 | 免费看不卡的av| 国产精品免费大片| 少妇被粗大的猛进出69影院| 男女国产视频网站| 欧美激情 高清一区二区三区| 满18在线观看网站| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 超碰成人久久| 人成视频在线观看免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 99热国产这里只有精品6| 飞空精品影院首页| 国产成人av教育| 亚洲精品国产av蜜桃| 最黄视频免费看| 国产高清视频在线播放一区 | 真人做人爱边吃奶动态| 久久国产精品大桥未久av| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 国产1区2区3区精品| 亚洲国产日韩一区二区| 亚洲中文日韩欧美视频| 亚洲九九香蕉| 久久久久网色| 久久天躁狠狠躁夜夜2o2o | 一区二区三区精品91| 一级黄色大片毛片| 国产黄色免费在线视频| 免费看av在线观看网站| 免费在线观看黄色视频的| 亚洲av综合色区一区| 中文欧美无线码| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 伊人久久大香线蕉亚洲五| 少妇人妻 视频| 自线自在国产av| 国产精品秋霞免费鲁丝片| 亚洲 国产 在线| 精品一区二区三区四区五区乱码 | 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人久久精品综合| 午夜影院在线不卡| 欧美另类一区| 一本一本久久a久久精品综合妖精| 精品一区二区三区av网在线观看 | 中文字幕制服av| 国产国语露脸激情在线看| 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 91成人精品电影| 可以免费在线观看a视频的电影网站| 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 2018国产大陆天天弄谢| kizo精华| 国精品久久久久久国模美| 90打野战视频偷拍视频| 超碰成人久久| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 69精品国产乱码久久久| 97在线人人人人妻| 一边亲一边摸免费视频| 亚洲,欧美精品.| 久久99热这里只频精品6学生| 美女高潮到喷水免费观看| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 亚洲欧美清纯卡通| 天天操日日干夜夜撸| 侵犯人妻中文字幕一二三四区| 又大又爽又粗| 久久久久久人人人人人| 最新在线观看一区二区三区 | 日韩制服骚丝袜av| 美女午夜性视频免费| 一级毛片电影观看| 深夜精品福利| 好男人视频免费观看在线| 免费女性裸体啪啪无遮挡网站| a级毛片黄视频| 1024视频免费在线观看| 国产一级毛片在线| 亚洲国产av影院在线观看| 91成人精品电影| 熟女少妇亚洲综合色aaa.| av视频免费观看在线观看| 国产精品一区二区在线不卡| 大香蕉久久网| 高清欧美精品videossex| 美女大奶头黄色视频| 秋霞在线观看毛片| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 久久av网站| 免费一级毛片在线播放高清视频 | 性高湖久久久久久久久免费观看| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 日韩伦理黄色片| 精品人妻1区二区| 亚洲国产欧美在线一区| 久久亚洲国产成人精品v| 国精品久久久久久国模美| 国产精品av久久久久免费| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 青春草视频在线免费观看| 在线观看国产h片| 日本黄色日本黄色录像| 一级毛片我不卡| 男的添女的下面高潮视频| 亚洲三区欧美一区| 又大又黄又爽视频免费| 日本欧美视频一区| 亚洲国产精品一区三区| 亚洲人成77777在线视频| 男的添女的下面高潮视频| 9热在线视频观看99| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 国产伦理片在线播放av一区| 国产免费一区二区三区四区乱码| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 日日夜夜操网爽| 狠狠婷婷综合久久久久久88av| 一级a爱视频在线免费观看| 日本午夜av视频| 久久久国产欧美日韩av| 中文字幕最新亚洲高清| 波野结衣二区三区在线| 777久久人妻少妇嫩草av网站| 成人手机av| 日本五十路高清| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 欧美性长视频在线观看| 嫁个100分男人电影在线观看 | 黑人猛操日本美女一级片| 亚洲国产日韩一区二区| 色婷婷久久久亚洲欧美| 制服诱惑二区| 欧美av亚洲av综合av国产av| 国产一区二区 视频在线| 久久女婷五月综合色啪小说| 亚洲欧美精品综合一区二区三区| 免费在线观看黄色视频的| 免费少妇av软件| 精品一区二区三区av网在线观看 | 久久国产精品男人的天堂亚洲| 久久国产精品人妻蜜桃| 夫妻性生交免费视频一级片| 久久久久国产精品人妻一区二区| 午夜老司机福利片| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 亚洲七黄色美女视频| 国产精品国产三级国产专区5o| 日本wwww免费看| 久久久精品免费免费高清| 久久 成人 亚洲| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 一级片'在线观看视频| 老汉色av国产亚洲站长工具| 免费日韩欧美在线观看| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| 制服人妻中文乱码| 国产熟女欧美一区二区| 久久精品久久久久久久性| 一级毛片 在线播放| 1024香蕉在线观看| 精品久久久精品久久久| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 人人澡人人妻人| 国产伦人伦偷精品视频| 欧美亚洲日本最大视频资源| xxx大片免费视频| 十八禁网站网址无遮挡| 中文乱码字字幕精品一区二区三区| 99久久99久久久精品蜜桃| 中国美女看黄片| 午夜免费成人在线视频| 亚洲国产精品一区三区| 狠狠婷婷综合久久久久久88av| 丰满饥渴人妻一区二区三| 国产精品亚洲av一区麻豆| 高清视频免费观看一区二区| 日本欧美国产在线视频| 99香蕉大伊视频| 波多野结衣av一区二区av| √禁漫天堂资源中文www| 亚洲欧美色中文字幕在线| 婷婷丁香在线五月| 赤兔流量卡办理| 久久综合国产亚洲精品| 欧美激情极品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 少妇人妻 视频| 久久毛片免费看一区二区三区| 亚洲成人手机| 日韩大码丰满熟妇| 涩涩av久久男人的天堂| 50天的宝宝边吃奶边哭怎么回事| 亚洲av日韩在线播放| 午夜精品国产一区二区电影| www.熟女人妻精品国产| 久久国产精品大桥未久av| 一区二区三区激情视频| 中文字幕色久视频| 黄色视频不卡| 亚洲精品一卡2卡三卡4卡5卡 | 在线观看免费午夜福利视频| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 国产在线观看jvid| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕av电影在线播放| 国产伦人伦偷精品视频| 国产高清视频在线播放一区 | 99热全是精品| 久久久久久亚洲精品国产蜜桃av| 欧美激情 高清一区二区三区| 国产精品久久久久成人av| 久9热在线精品视频| 久久狼人影院| 王馨瑶露胸无遮挡在线观看| 国产精品成人在线| 国产淫语在线视频| netflix在线观看网站| 中文欧美无线码| 国产精品香港三级国产av潘金莲 | 天天躁夜夜躁狠狠久久av| 亚洲图色成人| 天堂8中文在线网| 最近最新中文字幕大全免费视频 | 午夜久久久在线观看| 成在线人永久免费视频| 国产精品久久久久久精品古装| 日本猛色少妇xxxxx猛交久久| 夫妻性生交免费视频一级片| 国产精品国产三级国产专区5o| 爱豆传媒免费全集在线观看| 成年人免费黄色播放视频| 下体分泌物呈黄色| 两人在一起打扑克的视频| 精品人妻熟女毛片av久久网站| 777久久人妻少妇嫩草av网站| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品999| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 尾随美女入室| 手机成人av网站| 女人精品久久久久毛片| 啦啦啦 在线观看视频| 狂野欧美激情性bbbbbb| 亚洲国产av新网站| 久久av网站| 777久久人妻少妇嫩草av网站|