• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning

    2012-11-06 07:01:06JIANGLiangXingZHONGShuiPingLAIYanQingXiaoJunHONGBoPENGHongJianZHOUXiangYangLIJieLIUYeXiang
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:電積陽(yáng)極泥電流效率

    JIANG Liang-Xing ZHONG Shui-Ping LAI Yan-Qing,* Lü Xiao-Jun HONG BoPENG Hong-Jian ZHOU Xiang-Yang LI Jie LIU Ye-Xiang

    (1School of Metallurgical Science and Engineering,Central South University,Changsha 410083,P.R.China;2Zijin Mining Group Co.,Ltd.,Shanghang 364200,Fujian Province,P.R.China)

    Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning

    JIANG Liang-Xing1ZHONG Shui-Ping2LAI Yan-Qing1,*Lü Xiao-Jun1HONG Bo1PENG Hong-Jian1ZHOU Xiang-Yang1LI Jie1LIU Ye-Xiang1

    (1School of Metallurgical Science and Engineering,Central South University,Changsha 410083,P.R.China;2Zijin Mining Group Co.,Ltd.,Shanghang 364200,Fujian Province,P.R.China)

    We studied the anodic potential,corrosion rate,and anodic passive layer of a flat plate Pb-Ag(0.8%(mass fraction,w)anode over a long period of polarization under different current densities.Additionally,the cathode current efficiency and quality of the zinc product in the ZnSO4-MnSO4-H2SO4electrolyte were also studied.The morphology of the anodic passive layer was characterized by scanning electron microscopy(SEM).The results show that the current density greatly affects the electrochemical behavior of the anode and the cathode during zinc electrowinning irrespective of Mn2+.With an increase in the current density,the anodic potential,corrosion rate,cathode current efficiency,and quantity of anode slime increased while the Pb content in the zinc product decreased.When the current density decreased from 500 to 200 A·m-2in the ZnSO4-MnSO4-H2SO4electrolyte,the stable anodic potential and the corrosion rate decreased by 64 mV and 40%,respectively.Under a lower current density,the anodic potential stabilizes more easily and the passive layer that forms on the surface of the anode is denser and it adheres better to the base body,which is advantageous for the reduction of the corrosion rate.Therefore,to reduce the anodic potential,corrosion rate,and the quantity of anode slime,increase the cathode current efficiency and quality of zinc product,we suggested that the ideal working condition for zinc electrowinning is a higher cathodic current density and lower anodic current density.

    Zinc electrowinning;Current density;Pb-Ag anode;Anodic potential;Corrosion rate

    As an important nonferrous metal,zinc is mainly produced by hydrometallurgical process.Zinc hydrometallurgy is typically divided into four processes as roasting,leaching,purifying,and electrowinning.In zinc electrowinning process,it involves the electrodeposition of zinc at the cathode and oxygen evolution at the anode.And the insoluble anode,mainly made of Pb-Ag (0.5%-1%(w))alloys,determines the energy consumed in the process as for the high oxygen evolution over-potential(about 860 mV)[1].Other problems of anode are the high corrosion rate of lead and subsequent incorporation of lead corrosion products in the cathode,which decrease the purity of zinc product.

    In order to reduce the energy consumption,enhance the corrosion resistance,improve the product quality,and reduce the quantity of Ag required or even dispense with it,people have done much research work,which is mainly focused on lead-based alloy anode[2-9]and Ti-based coating anode(named DSA?)[10-15]. As for lead-based alloy anode,although many alloy anodes which can effectively reduce the quantity of Ag have been reported,only Pb-Co and Pb-Ag-Sn-Co anodes performed well in the perspective of reducing anodic potential.Regretfully,their complicated manufacturing conditions restricted their further commercial use.For Ti-based coating anodes,they are costly and can not avoid the passivation of Ti-base when anodized in H2SO4solution,so their further application is confined.Therefore,lead-based anode is still the anode that can be used industrially now and in the future[16].

    In the zinc electrowinning industry,although the working current density is about 500 A·m-2,a pre-treatment of the anodes under low temperature and low current density is always performed before electrowinning.After that,a dense PbO2film is formed which can protect the anode from corrosion by H2SO4. Also,a novel porous Pb-Ag anode,which has a high specific surface area and then reduces the working current density,was reported[17-19].As the porous anode is always operated near pretreatment conditions,the anodic potential and corrosion rate are much lower than flat plate anode at the same apparent current densities.Therefore,current density may have great effect on the electrochemical behavior of anode.Although there have been some empirical analyses about the effect of current density on anodic potential,corrosion rate,the passive layer structure, current efficiency,and quality of Zn[3,20-23],no systematic study has been reported.

    In order to further understand the electrochemical properties of porous anode and provide theoretical data of the effect of current density on anodic electrochemical behavior,the anodic potential,corrosion rate,and structure of passive layer of flat plate Pb-Ag anode were studied systematically under different current densities in electrolyte of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4,respectively.Furthermore,in ZnSO4-MnSO4-H2SO4electrolyte,the quantity of anode slime,cathode current efficiency,and quality of zinc product were studied.

    1 Experimental

    The Pb-Ag alloy was cut into cubic samples(10 mm×10 mm× 5 mm)and sealed by epoxy resin with 1 cm2surface exposed to the air.Before electrochemical and corrosion test,the electrodes havetobedegreasedby alkali and ethanol and washed by doubledistilled water.

    As shown in Table 1,the experiments were divided into two groups,in which group A was carried out in the electrolyte of ZnSO4-H2SO4,and group B was in the electrolyte of ZnSO4-MnSO4-H2SO4.All the reagents used were AR grade.

    1.1 Anodic potential

    The anodic potential was tested by chronopotentiometry(CP) under different current densities(raging from 50 to 700 A·m-2). All the tests were carried out in a glass three-electrode system. The anodic potential was measured against Hg/Hg2Cl2(SCE) reference electrode(If there is no particular demonstration,the potential is relative to the SCE.).All electrolytes were prepared with analytically pure grade chemicals and double-distilled water,and the volume of electrolytes is 1000 mL in every test to keep the ions variation comparable.The temperature was kept constant((37.0±0.5)℃)by means of an HH-1 thermostat.

    1.2 Corrosion rate

    The corrosion of the anode is caused by the dissolution of lead into electrolyte.Some of the dissolved lead co-deposits with zinc on the cathode,while some inter-mixes with anode slime.Two ways were used to test the corrosion rate of anodes. One is weight loss method.The other is Pb balance method which uses the Pb content change in the electrolyte and Zn to determine the corrosion rate.Atomic absorption spectrophotometer(Hitachi Japan,Z-5000)was used to test the Pb2+concentration change in the solution both before and after anodic polarization.Quartzspectrograph(ИСΠ-30)wasusedtotestPbcontent in Zn.The corrosion rate(vcorr)measured by Pb balance method was calculated by the following equation:

    where C is the concentration of Pb2+in electrolyte(g·L-1),V is the electrolyte volume(L),w is the mass percentage of Pb in zincproduct(%),m is the mass of zinc product(g),S is the apparent area of anode(m2),and t is the polarization time(h).

    Table 1 Experimental conditions

    1.3 Microstructure of passive layer

    After polarization for 72 h,the anode was removed from electrolyte,washed with double-distilled water and dried immediately.Then,the microstructure of the passive layer was observed by scanning electron microscopy(JEOL Japan,JSM-6360LV).

    2 Results and discussion

    2.1 Anodic potential

    Fig.1 shows the Galvanostatic polarization of flat Pb-Ag (0.8%)anode in the electrolyte of pure ZnSO4-H2SO4at different current densities.It can be seen from Fig.1 that the anodic potential of flat plate anode is obviously different under different current densities and it increases with the increase of current density.When the current density increases from 100 to 500 A· m-2,the stable anodic potential increases about 100 mV,which is from 1.742 to 1.835 V.But the increasing speed is not the same,when the current density is above 300 A·m-2,the effect of current density on anodic potential is less.It can also be found that the anodic potential decreases rapidly at the beginning and then stabilizes gradually.This is because a nonconductive PbSO4layer is firstly generated on the fresh anode surface,and then the current density and potential of the uncovered surface will increase.Due to high oxygen evolution potential on the surface of Pb,the generated PbSO4and the uncovered Pb will transform into PbO2covering the anode surface and then the reaction of oxygen evolution will take place on the surface[24].When the reaction reaches balance,the anode potential will stabilize.But we can also find that the time needed to reach stable is different. The time is about 10 h when the current density is less than 200 A·m-2.While the current density is greater than 200 A·m-2,the time needed is about 15 h.Although the anode potential is difficult to achieve stabilization,we can conclude that the anode surface is easier to stabilize under lower current density.

    Fig.1 Galvanostatic polarization of flat Pb-Ag(0.8%)anode in the electrolyte of pure ZnSO4-H2SO4at different current densitiesi/(A·m-2):(A1)50,(A2)100,(A3)200,(A4)300,(A5)400,(A6)500, (A7)600,(A8)700

    Fig.2 Galvanostatic polarization of Pb-Ag(0.8%)anode in the electrolyte of ZnSO4-MnSO4-H2SO4at different current densitiesi/(A·m-2):(B1)50,(B2)100,(B3)200,(B4)300,(B5)400,(B6)500, (B7)600,(B8)700

    In the electrolyte of ZnSO4-MnSO4-H2SO4,we have the similar results(Fig.2)that further confirm the conclusion above.The only difference is that the anodic potential firstly increases and then stabilizes under a specific current density.

    According to the data in Fig.1 and Fig.2,we obtained the Tafel curves of flat plate anode as shown in Fig.3.We can see that the Tafel curves are parallel straight lines(Tafel slopes are 0.13 V/decade),which indicates that the oxygen evolution mechanism is the same both in the electrolyte of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4.The existence of Mn2+in electrolyte has no effect on it.Meanwhile,the difference between the parameter a in different electrolytes is 52 mV,the depolarization effect of Mn2+is obvious.Under the current density of 500 A·m-2,the anodic potential with and without Mn2+in electrolyte is 1.792 and 1.835 V,respectively.

    2.2 Corrosion rate

    The corrosion rates of the traditional flat plate anode under different current densities were measured by both the anode weight loss method and the Pb balance method,and the results are shown in Table 2.

    Fig.3 Tafel curves of flat plate anode

    Table 2 Corrosion rate of Pb-Ag(0.8%)anode in different electrolytes

    It can be found that the corrosion rate measured by anode weight loss method is a little bigger than that by Pb balance method.For example,when the current density is 500 A·m-2, the corrosion rates measured by the anode weight loss method and the Pb balance method are 1.620 and 1.065 g·m-2·h-1,respectively.However,the variation tendency of corrosion rate measured by the two methods is the same,that is,the corrosion rate increases with the increase of current density.

    From Table 2 we can also find that Mn2+does not change the variation tendency of corrosion rate,that is,the corrosion rate increases with the increase of current density.For example, when the current density decreases from 500 to 100 A·m-2,the anodic corrosion rate decreases from 0.957 to 0.350 g·m-2·h-1. Under the same current density,the existence of Mn2+can reduce the corrosion rate of anode remarkably,which is in line with the literature search and industrial practice[20,25].This is because Mn2+was oxidized to permanganic acid on the anode through the following equation:

    4MnSO4+6H2O+5O2=4HMnO4+4H2SO4(2) Then,the permanganic acid in the solution reacts with Mn2+to form MnO2according to the following equation:

    2HMnO4+3MnSO4+2H2O=5MnO2+3H2SO4(3) A part of MnO2deposits to the bottom of electrolytic tank which is usually recycled and used in the leaching system.The rest of MnO2adheres to the anode and forms a composite protective layer on the anode surface with PbO2and then the corrosion rate is reduced.At the same time,MnO2is well known as oxygen evolution catalyst,the Pb/PbO2-MnO2composite anode formed in ZnSO4-MnSO4-H2SO4electrolyte can reduce the anodic potential.This phenomenon is called the depolarization effect and Fig.3 is the evidence.

    2.3 Passive layer and anode slime

    In order to observe the effects of current density on the morphology of passive layer,the surface morphology of flat plate anode was observed by SEM after 72 h galvanostatic polarization in electrolytes of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4under current densities of 50,100,and 500 A·m-2,respectively. The relevant pictures are shown in Fig.4 and Fig.5.

    As can be seen from Fig.4,the surface morphologies change a lot with the change of current density.When the current density is 50 A·m-2,dense surface morphology is observed and the passive layer is well combined with the base body after 72 h polarization.When the current density increases to 500 A·m-2,the anode surface morphology becomes loose as shown in Fig.4c. Combining with the corrosion rate,we can conclude that low current density can produce dense PbO2coating on the anode surface which is beneficial for protecting the anode from corrosion,while high current density will produce loose oxidized layer and then increase the corrosion rate.

    As shown in Fig.5,the surface morphologies also change a lot with the change of current density in ZnSO4-MnSO4-H2SO4electrolyte.Under the current density of 50 A·m-2,the particles on the anode surface are coarse and well combined with the base body.When the current density is 500 A·m-2,the particles are fine,loose,and not well combined with the base body.The surface morphology for the current density of 100 A·m-2is between them.Comparing Fig.4 and Fig.5,it can be found that Mn2+has significant influence on the microstructure of passive layer.

    Fig.4 SEM images of Pb-Ag(0.8%)anode after 72 h polarization in the electrolyte of pure ZnSO4-H2SO4at different current densitiesi/(A·m-2):(a)50,(b)100,(c)500

    Fig.5 SEM images of Pb-Ag(0.8%)anode after 72 h polarization in the electrolyte of ZnSO4-MnSO4-H2SO4at different current densitiesi/(A·m-2):(a)50,(b)100,(c)500

    Table 3 Change of Mn2+content in the electrolyte of ZnSO4-MnSO4-H2SO4with current density

    As current density has large influence on the anode morphology,it is predictable that current density will have some influence on the quantity of anode slime.Because of the small anode surface,limited polarization time and unable to collect the anode slime,the variation of Mn2+concentration before and after electrolysis was used to determine the formation of anode slime(the main component of the anode slime is manganese dioxide), and the results are shown in Table 3.

    From Table 3 it can be found that when the current density is low(such as 50 A·m-2),the Mn2+content is almost not changed after 24 h polarization(from 4.000 to 3.969 g·L-1).With the increase of current density,the Mn2+content after electrolysis is rapidly decreased.When the current density reaches to 500 A· m-2,the Mn2+content is only left to 3.570 g·L-1.In other words, with the increase of current density,the Mn2+diluting phenomenon becomes more severe,which means that the quantity of anode slime increases.

    2.4 Current efficiency and Zn product

    Table 4 lists the current efficiency and quality of Zn for the Pb-Ag(0.8%)anode after 24 h galvanostatic polarization in the electrolyte of ZnSO4-MnSO4-H2SO4.

    It can be seen from Table 4 that the current efficiency is gradually increased with the increase of current density.When current density is above 400 A·m-2,the current efficiency is all above 90%,and the maximum value is 93.80%.As we know that Zn lies considerably above H2in the electrochemical series, the evolution of H2should be easier than that of Zn.But the evolution overpotential of H2is high on zinc deposits and Al electrode used in zinc electrowinning,which causes the evolution potential of H2to shift negatively and become lower thanthe deposition potential of Zn.With the increase of current density,the H2evolution overpotential increases,which is propitious to the deposition of Zn and the increase of current efficiency.But when high current density is adopted,high concentration of Zn and low temperature electrolysis should be guaranteed.So the current density is usually controlled at around 500 A·m-2in industry.

    Table 4 Current efficiency and quality of Zn in the electrolyte of ZnSO4-MnSO4-H2SO4under different current densities

    Table 4 also lists the change of Pb content in cathode zinc under different current densities.When the current density changes from 50 to 600 A·m-2,the Pb content decreases from 0.0350%to 0.0061%.It can be concluded that the increase of current density can be beneficial for improving Zn quality.The reason is that the precipitate speed of impurity is not only relative with precipitate potential but also relative with diffusion speed.When the impurity concentration reaches a certain low degree,the ionic extreme surface current will be in direct proportion of diffusion coefficient and the precipitation speed of a certain ion will be determined by its extreme current density. The impurity content in the cathode zinc is determined by the following equation:

    where idis the extreme current density(A·m-2),MPband MZnare the atomic weights of Pb and Zn(g·mol-1),respectively,η is the current efficiency(%),and i is the current density(A·m-2).It can be concluded that if the current density increases,the Pb content in the cathode Zn will decrease and the quality of output will be improved.

    3 Conclusions

    (1)The anodic potential increases with the increase of current density.When current density decreases from 500 to 100 A·m-2, the anodic potential(vs SCE)decreases from 1.835 to 1.742 V in the ZnSO4-H2SO4electrolyte.

    (2)The corrosion rate decreases with the decrease of current density.When current density decreases from 500 to 100 A·m-2, the corrosion rate decreases from 1.620 to 0.652 g·m-2·h-1in the pure ZnSO4-H2SO4electrolyte.

    (3)With the increase of current density,the Mn2+diluting phenomenon becomes more severe.When the current density is low,the Mn2+content is almost not changed after 24 h polarization.With the increase of current density,the Mn2+content decreases rapidly after polarization.

    (4)The anodic passive layer under different current densities presented the different microstructures.When the current density is 50 A·m-2,dense surface morphology is observed and the passive layer is well combined with the base body after 72 h polarization.When the current density is increased to 500 A·m-2, the anode surface morphology will become loose.

    In a word,the decrease of the anodic potential,corrosion rate, and quantity of anode slime can be realized by reducing the current density.However,that will decrease the cathodic current efficiency and the quality of zinc.If the anode can be made porous,the conductive area of anode would be increased a lot and the anodic current density would be reduced without changing the current,so energy would be saved.

    1 Petrova,M.;Stefanov,Y.;Noncheva,Z.;Dobrev,T.;Rashkov,S. British Corrosion Journal,1999,34(3):198

    2 Stefanov,Y.;Dobrev,T.Transactions of the Institute of Metal

    Finishing,2005,83(6):296

    3 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy, 2000,57:109

    4 Rashkov,S.;Dobrev,T.;Noncheva,Z.;Stefanov,Y.;Rashkova, B.;Petrova,M.Hydrometallurgy,1999,52:223

    5 Newnham,R.H.Journal of Applied Electrochemistry,1992,22: 116

    6 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.; Liu,Y.X.Journal of Central South University of Technology, 2009,16(2):236

    7 Lupi,C.;Pilone,D.Hydrometallurgy,1997,44:347

    8 Rashkov,S.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Kunchev,N.;Petrov,D.;Vlaev,S.T.;Mihnev,V.;Zarev,S.; Georgieva,L.;Buttinelli,D.Hydrometallurgy,1996,40:319

    9 Camurri,C.P.;López,M.J.;Pagliero,A.N.;Vergara,F.G. Materials Characterization,2001,47:105

    10 Li,B.S.;Lin,A.;Gan,F.X.Trans.Nonferrous Met.Soc.China, 2006,16(5):1193

    11 Hu,J.M.;Zhang,J.Q.;Cao,C.N.International Journal of Hydrogen Energy,2004,29(8):791

    12 Stefanov,Y.;Dobrev,T.Transactions of the Institute of Metal Finishing,2005,83(6):291

    13 Cattarin,S.;Guerriero,P.;Musiani,M.Electrochimica Acta,2001, 46:4229

    14 Shrivastava,P.;Moats,M.S.Journal of the Electrochemical Society,2008,155(7):E101

    15 de Mussy,J.P.G.;MacPherson,J.V.;Delplancke,J.L. Electrochimica Acta,2003,48:1131

    16 Felder,A.;Prengaman R.D.JOM,2006,58(10):28

    17 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.; Liu,Y.X.Journal of Central South University of Technology, 2008,15(6):757

    18 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.; Liu,Y.X.Hydrometallurgy,2010,102:73

    19 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.; Liu,Y.X.Hydrometallurgy,2010,102:81

    20 Peng,R.Q.;Ren,H.J.;Zhang,X.P.Metallurgy of lead and zinc. Beijing:Science Press,2003:413 [彭容秋,任鴻九,張訓(xùn)鵬.鉛鋅冶金學(xué).北京:科學(xué)出版社,2003:413]

    21 Mei,G.G.;Wang,R.D.;Zhou,J.Y.;Wang,H.Hyrometallurgy of zinc.Changsha:Central South University Press,2001:340-402 [梅光貴,王德潤(rùn),周敬元,王 輝.濕法煉鋅學(xué),長(zhǎng)沙:中南大學(xué)出版社,2001:340-402]

    22 Zhang,Y.P.Hydrometallurgy of China,2001,20(4):169 [張玉萍.濕法冶金,2001,20(4):169]

    23 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy, 2000,57:125

    24 Nguyen,T.;Atrens,A.Hydrometallurgy,2009,96:14

    25 Pu,Y.;O′Keefe,T.J.Journal of the Electrochemical Society, 2002,149(5):558

    電流密度對(duì)鋅電積用Pb-Ag平板陽(yáng)極電化學(xué)行為的影響

    蔣良興1衷水平2賴延清1,*呂曉軍1洪 波1彭紅建1周向陽(yáng)1李 劼1劉業(yè)翔1

    (1中南大學(xué)冶金科學(xué)與工程學(xué)院,長(zhǎng)沙 410083;2紫金礦業(yè)集團(tuán)股份有限公司,福建上杭 364200)

    研究了在不同電流密度下進(jìn)行長(zhǎng)時(shí)間極化后Pb-Ag(0.8%(質(zhì)量分?jǐn)?shù),w))平板陽(yáng)極的陽(yáng)極電位、腐蝕率及陽(yáng)極鈍化膜.同時(shí),也研究了該陽(yáng)極在ZnSO4-MnSO4-H2SO4電解液中的陰極電流效率和陰極鋅品質(zhì).陽(yáng)極鈍化膜的表面形貌用掃描電鏡(SEM)進(jìn)行觀測(cè).實(shí)驗(yàn)結(jié)果表明,不管電解液中是否存在Mn2+,電流密度對(duì)陽(yáng)極和陰極的電化學(xué)行為都產(chǎn)生了顯著的影響.隨著電流密度的升高,陽(yáng)極電位、腐蝕率、陰極電流效率和陽(yáng)極泥生成量也增加,而陰極鋅中的Pb含量則減少.當(dāng)電流密度從500 A·m-2降到200 A·m-2時(shí),陽(yáng)極在ZnSO4-MnSO4-H2SO4電解液中的穩(wěn)定電位和腐蝕率分別減少64 mV和40%.此外,在比較低的電流密度下,陽(yáng)極電位更容易穩(wěn)定,陽(yáng)極表面生成的鈍化膜更加致密并與基體結(jié)合牢固,這些都有利于降低陽(yáng)極腐蝕率.為了降低陽(yáng)極電位、減小陽(yáng)極腐蝕率及陽(yáng)極泥生成量并提高陰極電流效率和陽(yáng)極鋅品質(zhì),鋅電積的理想工作條件是較低的陽(yáng)極電流密度和較高的陰極電流密度.

    鋅電積;電流密度;Pb-Ag陽(yáng)極;陽(yáng)極電位;腐蝕率

    O646

    Received:April 12,2010;Revised:May 31,2010;Published on Web:July 27,2010.

    *Corresponding author.Email:csulightmetals@126.com;Tel:+86-731-88830649.

    The project was supported by the National Natural Science Foundation of China(50954006).

    國(guó)家自然科學(xué)基金(50954006)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    電積陽(yáng)極泥電流效率
    低濃度溶液中金的旋流電積
    濕法冶金(2022年1期)2022-02-18 08:03:06
    銅鎘渣酸浸液旋流電積提銅對(duì)比分析
    提高鉛電解回收率生產(chǎn)實(shí)踐
    有機(jī)物對(duì)電解錳電流效率的影響
    濕法冶金(2020年1期)2020-02-24 06:22:04
    銅電解電積脫銅生產(chǎn)高純陰極銅的實(shí)踐
    降低永久陰極銅電解陽(yáng)極泥含銅實(shí)踐
    淺析210KA電解槽電流效率的影響因素
    影響離子膜電解槽電流效率的因素
    工藝參數(shù)對(duì)高速鍍錫電流效率及鍍錫層表面形貌的影響
    銅陽(yáng)極泥中碲回收工程設(shè)計(jì)
    精品无人区乱码1区二区| 日韩欧美一区二区三区在线观看| 亚洲专区字幕在线| bbb黄色大片| 性色av乱码一区二区三区2| avwww免费| 亚洲人成网站在线播放欧美日韩| 国产免费男女视频| 很黄的视频免费| 精品免费久久久久久久清纯| 国产精品久久久久久精品电影 | 欧美日韩黄片免| 午夜久久久久精精品| 亚洲色图 男人天堂 中文字幕| 免费观看人在逋| 日韩成人在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 丁香六月欧美| 欧美国产日韩亚洲一区| 后天国语完整版免费观看| 国产精品九九99| 美女免费视频网站| 老司机在亚洲福利影院| 国产亚洲精品一区二区www| 色尼玛亚洲综合影院| 男人操女人黄网站| 听说在线观看完整版免费高清| 午夜福利欧美成人| 精品一区二区三区视频在线观看免费| av电影中文网址| 91麻豆av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 99热只有精品国产| av中文乱码字幕在线| 亚洲午夜精品一区,二区,三区| xxx96com| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一小说| 国产一区二区三区在线臀色熟女| 搡老岳熟女国产| 国产午夜福利久久久久久| 91在线观看av| 美女扒开内裤让男人捅视频| 高清毛片免费观看视频网站| 美女高潮到喷水免费观看| av在线播放免费不卡| 日韩欧美 国产精品| 在线十欧美十亚洲十日本专区| 日本一本二区三区精品| 久久久久国产一级毛片高清牌| 中文在线观看免费www的网站 | 亚洲精品国产精品久久久不卡| 亚洲第一av免费看| 动漫黄色视频在线观看| 曰老女人黄片| 真人做人爱边吃奶动态| 黄色丝袜av网址大全| 国产日本99.免费观看| 好男人在线观看高清免费视频 | 伦理电影免费视频| 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区91| 深夜精品福利| 久久精品夜夜夜夜夜久久蜜豆 | 最新美女视频免费是黄的| a在线观看视频网站| 制服丝袜大香蕉在线| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品999在线| 欧美日本亚洲视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久av美女十八| 日本成人三级电影网站| 亚洲av电影不卡..在线观看| 欧美色欧美亚洲另类二区| 欧美日韩一级在线毛片| 91国产中文字幕| 大型av网站在线播放| 亚洲一码二码三码区别大吗| 亚洲av第一区精品v没综合| av在线天堂中文字幕| 视频区欧美日本亚洲| 久久久久久久午夜电影| 亚洲精品粉嫩美女一区| 国产91精品成人一区二区三区| 国产高清激情床上av| 中文字幕人妻丝袜一区二区| 免费女性裸体啪啪无遮挡网站| 男女之事视频高清在线观看| 国产一区二区在线av高清观看| 欧美黄色片欧美黄色片| 黄色女人牲交| 久热这里只有精品99| 在线永久观看黄色视频| 日本 av在线| 欧美av亚洲av综合av国产av| 中文字幕人成人乱码亚洲影| 97人妻精品一区二区三区麻豆 | 国产私拍福利视频在线观看| av在线播放免费不卡| 国产在线观看jvid| 久久久国产欧美日韩av| 国产av在哪里看| 亚洲全国av大片| 亚洲专区国产一区二区| 婷婷亚洲欧美| 欧美乱色亚洲激情| 热re99久久国产66热| 夜夜躁狠狠躁天天躁| 国产又黄又爽又无遮挡在线| www.熟女人妻精品国产| 特大巨黑吊av在线直播 | 亚洲va日本ⅴa欧美va伊人久久| 丁香六月欧美| 午夜免费鲁丝| 久久国产精品人妻蜜桃| 国产久久久一区二区三区| 国产成人欧美在线观看| 午夜老司机福利片| 麻豆国产av国片精品| 久久久久九九精品影院| 亚洲五月天丁香| 俄罗斯特黄特色一大片| 99在线人妻在线中文字幕| 亚洲精品美女久久久久99蜜臀| 香蕉av资源在线| 美女大奶头视频| 日本免费一区二区三区高清不卡| 色哟哟哟哟哟哟| 黑人巨大精品欧美一区二区mp4| 国产精品一区二区精品视频观看| 婷婷亚洲欧美| 国产精品免费视频内射| 国产亚洲av高清不卡| 国产亚洲av高清不卡| 久久婷婷人人爽人人干人人爱| 久久精品夜夜夜夜夜久久蜜豆 | 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久久久久久久 | 超碰成人久久| 国产亚洲精品av在线| 亚洲国产欧美网| netflix在线观看网站| 一本综合久久免费| 香蕉久久夜色| 超碰成人久久| 激情在线观看视频在线高清| 欧美精品啪啪一区二区三区| 亚洲一区中文字幕在线| 国产免费男女视频| 日韩精品中文字幕看吧| 国语自产精品视频在线第100页| 欧美激情久久久久久爽电影| 国产精品乱码一区二三区的特点| 亚洲va日本ⅴa欧美va伊人久久| 日本成人三级电影网站| 一区二区三区激情视频| 免费在线观看影片大全网站| 亚洲 国产 在线| 婷婷精品国产亚洲av在线| av中文乱码字幕在线| 久久人人精品亚洲av| 99re在线观看精品视频| 欧美黑人精品巨大| 欧美午夜高清在线| 国产精品一区二区三区四区久久 | 久久精品91无色码中文字幕| 久久亚洲真实| 俺也久久电影网| 欧美色视频一区免费| 无人区码免费观看不卡| 欧美成人免费av一区二区三区| 99久久综合精品五月天人人| 欧美大码av| 一级毛片高清免费大全| 精品卡一卡二卡四卡免费| 久久久久国产精品人妻aⅴ院| 少妇 在线观看| 妹子高潮喷水视频| 久久精品人妻少妇| 啦啦啦免费观看视频1| 久久精品国产清高在天天线| 亚洲无线在线观看| 好男人在线观看高清免费视频 | 亚洲va日本ⅴa欧美va伊人久久| www日本在线高清视频| 亚洲专区国产一区二区| 亚洲精品在线美女| 在线观看66精品国产| 国产精品乱码一区二三区的特点| 777久久人妻少妇嫩草av网站| 成年版毛片免费区| 欧美成人午夜精品| 久久精品91蜜桃| 亚洲成人久久性| 12—13女人毛片做爰片一| 一区二区三区高清视频在线| 成人av一区二区三区在线看| 不卡一级毛片| 身体一侧抽搐| 18禁观看日本| 女人高潮潮喷娇喘18禁视频| 一级a爱片免费观看的视频| av在线播放免费不卡| 久久99热这里只有精品18| 亚洲成人国产一区在线观看| 亚洲av美国av| АⅤ资源中文在线天堂| 国产精品精品国产色婷婷| 欧美zozozo另类| 中国美女看黄片| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 中文字幕精品亚洲无线码一区 | 精品久久蜜臀av无| 国产v大片淫在线免费观看| 欧美一级a爱片免费观看看 | 国产精品一区二区免费欧美| 一级毛片女人18水好多| 国产亚洲精品综合一区在线观看 | 两个人看的免费小视频| 欧美最黄视频在线播放免费| 亚洲专区字幕在线| 久热爱精品视频在线9| ponron亚洲| 国产成人系列免费观看| 婷婷六月久久综合丁香| 男女床上黄色一级片免费看| 嫩草影院精品99| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 在线观看日韩欧美| 99riav亚洲国产免费| 一区二区三区激情视频| 韩国精品一区二区三区| 国产av一区二区精品久久| 长腿黑丝高跟| 久久人妻福利社区极品人妻图片| 免费看十八禁软件| 国产极品粉嫩免费观看在线| 精品欧美一区二区三区在线| 最近最新中文字幕大全电影3 | 亚洲人成网站在线播放欧美日韩| 黄色 视频免费看| 欧美av亚洲av综合av国产av| 亚洲熟妇熟女久久| 狠狠狠狠99中文字幕| 欧美日韩一级在线毛片| 99热这里只有精品一区 | 曰老女人黄片| 国产精品综合久久久久久久免费| 国产又爽黄色视频| 亚洲精品粉嫩美女一区| 国产精品久久久久久人妻精品电影| 大香蕉久久成人网| 精品一区二区三区四区五区乱码| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| 亚洲成人免费电影在线观看| 波多野结衣av一区二区av| 免费电影在线观看免费观看| 黑丝袜美女国产一区| 成人手机av| 亚洲avbb在线观看| 国产成人精品久久二区二区免费| 老司机在亚洲福利影院| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| 久久久久久国产a免费观看| 男女视频在线观看网站免费 | 国产成人精品久久二区二区91| 中文字幕人妻熟女乱码| 日韩欧美国产在线观看| 欧美绝顶高潮抽搐喷水| 日本免费一区二区三区高清不卡| 国产一卡二卡三卡精品| 日本免费a在线| 99久久国产精品久久久| 男女那种视频在线观看| 亚洲色图av天堂| 国产三级在线视频| 老汉色av国产亚洲站长工具| 欧美zozozo另类| 国产视频内射| 国产99久久九九免费精品| 不卡一级毛片| 一个人免费在线观看的高清视频| 在线看三级毛片| 人妻丰满熟妇av一区二区三区| 欧美精品啪啪一区二区三区| 午夜福利在线在线| 亚洲精品美女久久久久99蜜臀| 一级片免费观看大全| 亚洲免费av在线视频| 国产激情偷乱视频一区二区| 亚洲中文字幕日韩| avwww免费| 免费观看人在逋| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 亚洲国产精品合色在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品九九99| 青草久久国产| 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观 | 精品欧美一区二区三区在线| 国产成人精品久久二区二区免费| 身体一侧抽搐| 88av欧美| 成人手机av| 久久人妻av系列| 国产视频一区二区在线看| 亚洲片人在线观看| 欧美在线一区亚洲| 可以免费在线观看a视频的电影网站| 日日夜夜操网爽| 精品国产亚洲在线| 一a级毛片在线观看| 国产精品久久久人人做人人爽| 午夜福利18| 亚洲人成网站高清观看| 亚洲狠狠婷婷综合久久图片| 久久精品91蜜桃| 色老头精品视频在线观看| 97碰自拍视频| 亚洲成av片中文字幕在线观看| 欧美黑人巨大hd| 99热这里只有精品一区 | 男人舔女人的私密视频| 亚洲精品美女久久av网站| 久久性视频一级片| xxx96com| 成人特级黄色片久久久久久久| 国产精品,欧美在线| 精品久久久久久久末码| 高清在线国产一区| 精品福利观看| 国产主播在线观看一区二区| 国产亚洲精品久久久久5区| 十分钟在线观看高清视频www| 9191精品国产免费久久| 国产成人欧美| 国产欧美日韩精品亚洲av| 国产精品一区二区三区四区久久 | 日韩有码中文字幕| 麻豆一二三区av精品| 此物有八面人人有两片| 成在线人永久免费视频| 最新在线观看一区二区三区| 亚洲专区字幕在线| 欧美日本亚洲视频在线播放| 天天添夜夜摸| 在线看三级毛片| 搞女人的毛片| 亚洲国产精品999在线| 国产黄色小视频在线观看| 国产成人欧美在线观看| 日本成人三级电影网站| 黄片小视频在线播放| 俺也久久电影网| xxx96com| 悠悠久久av| 久久久久久大精品| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| ponron亚洲| 色综合站精品国产| 国产日本99.免费观看| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 在线国产一区二区在线| 午夜福利18| 免费搜索国产男女视频| 一本精品99久久精品77| 在线观看www视频免费| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 色播在线永久视频| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 久久草成人影院| 天天一区二区日本电影三级| 成人三级黄色视频| 一个人观看的视频www高清免费观看 | 亚洲人成电影免费在线| 国产激情偷乱视频一区二区| 日韩免费av在线播放| 成在线人永久免费视频| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 亚洲国产欧洲综合997久久, | 悠悠久久av| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 欧美午夜高清在线| 午夜精品在线福利| 一级毛片精品| 国产av在哪里看| 色播亚洲综合网| 欧美久久黑人一区二区| 亚洲成人久久性| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 国产成人av教育| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 男人的好看免费观看在线视频 | 欧美一级毛片孕妇| 国产精品免费视频内射| 国产精品,欧美在线| 国产真实乱freesex| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 好男人在线观看高清免费视频 | 日韩精品免费视频一区二区三区| 一本久久中文字幕| 日日爽夜夜爽网站| 97人妻精品一区二区三区麻豆 | 国产成人啪精品午夜网站| 精品一区二区三区视频在线观看免费| 黄色视频不卡| 性欧美人与动物交配| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久, | 日韩欧美 国产精品| 日韩视频一区二区在线观看| 中出人妻视频一区二区| 熟女电影av网| 成在线人永久免费视频| 国产成人啪精品午夜网站| 999精品在线视频| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 最好的美女福利视频网| 欧美成人一区二区免费高清观看 | av欧美777| www.www免费av| 亚洲在线自拍视频| 精品久久久久久,| 国产精品 国内视频| 欧美最黄视频在线播放免费| 搡老岳熟女国产| 91国产中文字幕| 一本大道久久a久久精品| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 午夜激情av网站| 国产私拍福利视频在线观看| 操出白浆在线播放| 成人国产综合亚洲| 啦啦啦 在线观看视频| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 一区二区三区激情视频| 91成年电影在线观看| 日本在线视频免费播放| 悠悠久久av| 亚洲国产欧美一区二区综合| 在线视频色国产色| 亚洲欧美日韩无卡精品| 嫁个100分男人电影在线观看| 免费观看精品视频网站| 国产三级在线视频| 男人的好看免费观看在线视频 | 亚洲天堂国产精品一区在线| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 免费观看精品视频网站| 男女午夜视频在线观看| 久久久久九九精品影院| 9191精品国产免费久久| 一级a爱片免费观看的视频| www.www免费av| 中文资源天堂在线| 亚洲男人天堂网一区| 欧美色欧美亚洲另类二区| 亚洲五月色婷婷综合| 久久久久久国产a免费观看| 午夜成年电影在线免费观看| 日韩欧美 国产精品| 久久久久久久精品吃奶| 成人精品一区二区免费| 色在线成人网| 久9热在线精品视频| 国产精品乱码一区二三区的特点| www.999成人在线观看| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 性色av乱码一区二区三区2| 制服人妻中文乱码| 国产av在哪里看| 禁无遮挡网站| 中文资源天堂在线| www.999成人在线观看| 婷婷丁香在线五月| 亚洲中文字幕一区二区三区有码在线看 | 最近最新免费中文字幕在线| 在线观看舔阴道视频| 国产精品久久久久久精品电影 | 97碰自拍视频| 免费搜索国产男女视频| 色播在线永久视频| 国产精品二区激情视频| 成人亚洲精品av一区二区| 成人国产一区最新在线观看| 亚洲精品久久国产高清桃花| 黑人操中国人逼视频| 亚洲成av片中文字幕在线观看| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 少妇 在线观看| 欧美日韩乱码在线| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 黄色片一级片一级黄色片| 亚洲电影在线观看av| 69av精品久久久久久| 久久久久免费精品人妻一区二区 | 99久久无色码亚洲精品果冻| 精品高清国产在线一区| 亚洲精品美女久久久久99蜜臀| 久久久久精品国产欧美久久久| 国产一区在线观看成人免费| 免费在线观看亚洲国产| 日韩欧美 国产精品| 日韩欧美一区视频在线观看| 欧美性猛交黑人性爽| 欧美日韩亚洲国产一区二区在线观看| av天堂在线播放| 亚洲五月婷婷丁香| 老熟妇乱子伦视频在线观看| 黑丝袜美女国产一区| 一级毛片精品| 亚洲av成人av| 最近最新中文字幕大全电影3 | 日韩中文字幕欧美一区二区| www.999成人在线观看| 99精品久久久久人妻精品| 怎么达到女性高潮| 熟女少妇亚洲综合色aaa.| 99精品在免费线老司机午夜| 午夜福利欧美成人| 可以免费在线观看a视频的电影网站| av天堂在线播放| 精品无人区乱码1区二区| 99久久久亚洲精品蜜臀av| 青草久久国产| 黄网站色视频无遮挡免费观看| 国产精品久久视频播放| 精品福利观看| 国产精品久久久久久人妻精品电影| 欧美乱色亚洲激情| 一夜夜www| av免费在线观看网站| 18禁美女被吸乳视频| 精品福利观看| 欧美zozozo另类| 美国免费a级毛片| 国产一区二区三区在线臀色熟女| 成人精品一区二区免费| 巨乳人妻的诱惑在线观看| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 免费观看人在逋| 男女那种视频在线观看| 国产免费av片在线观看野外av| 午夜久久久在线观看| 久久狼人影院| 精品日产1卡2卡| 午夜福利欧美成人| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 人妻丰满熟妇av一区二区三区| 变态另类丝袜制服| 国产精品亚洲美女久久久| 人成视频在线观看免费观看| 亚洲国产日韩欧美精品在线观看 | 国产乱人伦免费视频| 麻豆av在线久日| 久久久久国产精品人妻aⅴ院| 1024视频免费在线观看| 久久精品91蜜桃| 亚洲人成伊人成综合网2020| 亚洲片人在线观看| 免费观看精品视频网站| or卡值多少钱| 欧美 亚洲 国产 日韩一| 亚洲五月天丁香| 999精品在线视频| 成年免费大片在线观看| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久免费视频| 日韩视频一区二区在线观看| 婷婷亚洲欧美| 午夜精品在线福利| 免费看a级黄色片| 国产成人啪精品午夜网站| 亚洲精品美女久久久久99蜜臀| 欧美日本视频| 99久久无色码亚洲精品果冻| 精品国产亚洲在线| 亚洲人成伊人成综合网2020| 日韩欧美一区视频在线观看| 精品国内亚洲2022精品成人| 黄色视频不卡| 色精品久久人妻99蜜桃|