• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coexistence of Oligonucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates

    2012-11-06 07:01:06GUOXiaLIHuaGUORong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:囊泡電子顯微鏡單鏈

    GUO Xia LI Hua GUO Rong

    (School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu Province,P.R.China)

    Coexistence of Oligonucleotide/Single-Chained Cationic Surfactant Vesicles with Precipitates

    GUO Xia*LI Hua GUO Rong

    (School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu Province,P.R.China)

    It is well known that DNA(including oligonucleotide)and cationic surfactant can form insoluble complex.In this study,by turbidity measurement and TEM image,we found that the single-chained cationic surfactant could transform the oligonucleotide/single-chained cationic surfactant precipitates into vesicles and the vesicles coexist with the insoluble complex.The hydrophobic interaction between the cationic surfactant and the precipitates plays a key role in vesicle formation.Moreover,when the temperature reaches a specific value where the oligonucleotide begins to melt,the oligonucleotide/single-chained cationic surfactant vesicles form far easier.Thus,the more extended the oligonucleotide,the much easier for vesicle formation.As far as we know,the study about the oligonucleotide/cationic surfactant vesicle formation is very limited.Therefore,considering the growing importance and significance of DNA(including oligonucleotide)/amphiphile systems in medicine,biology,pharmaceutics,and chemistry,this study should provide some helpful information in further understanding these systems.

    Surfactant;Self-assembly;Vesicle; Oligonucleotide;Transmission electron microscope

    Surfactants have the ability to form organized assemblies such as micelles,vesicles,and lamellar structures in solution[1-4].DNA,including oligonucleotide,is a kind of important natural polyelectrolyte.So far,there have been many studies about the interactions between DNA and vesicles and/or cationic surfactants because of their biological and technological significances[5-13].It has been concluded that DNA can become compacted in the presence of cationic surfactant or positively charged vesicles[14-17].In DNA/cationic surfactant system,when the surfactant concentration is much lower than its critical micelle concentration (cmc)but reaches the critical aggregation concentration(cac), surfactant molecules can aggregate into micelle-like structure along the DNA chain[14-15],followed by precipitate formation[14,16-17]; and when the surfactant concentration is much higher than the cmc,DNA can induce micelles to elongate into rod-like structures[18].Moreover,depending on the composition of the complex, the insoluble DNA/cationic surfactant complex can exhibit hexagonal structure,cubic structure,and/or lamellar structure[18-21]and the DNA/vesicle complex can self-assemble into a condensed multilamellar mesophase and an inverted hexagonal phase[21-23].

    Recently,we observed that in the single-chained cationic surfactant/oligonucleotide system,when the surfactant concentration was close to or higher than the cmc,all the precipitates could become soluble and the oligonucleotide/cationic surfactant vesicles could form[24].Furthermore,the facilitation efficiencyofoligonucleotideonvesicle formation depends on its size and base composition;the oligonucleotide with a bigger size or with a hairpin structure favors vesicle formation more[25].The increases in the size of the head group and/or the length of the alkyl group of surfactant decrease the facilitation efficiency of oligonucleotide[25].Since so far,there is very limited report about the vesicle formation in DNA/cationic surfactant solution,this study may be expected to increase the efficiency and applicability for DNA/amphiphile system.However,whether oligonucleotide/ cationic surfactant vesicles only form with surfactant concentration close to or higher than the cmc is left unknown.In the present paper,we will report that the oligonucleotide/cationic surfactant vesicles can form when the surfactant concentration is much lower than the cmc,i.e.,the oligonucleotide/cationic surfactant vesicles coexist with the precipitates.

    1 Materials and methods

    1.1 Materials

    Dodecyl triethyl ammonium bromide(DEAB)was synthesized from dodecyl bromide and triethylamine and the crude product was recrystallized 5 times from acetone/ethanol.Its purity was examined and no surface tension minimum was found in the surface tension curve(1H NMR(600 MHz,D2O,25.0℃),δ:0.777 (t,3J(H,H)=7.2 Hz,3H;CH3),1.192(br,25H),1.275(br,2H), 1.575(br,2H;CH2),3.061(t,3J(H,H)=7.8 Hz,2H;CH2),3.201 (q,3J(H,H)=7.2 Hz,6H;3CH2)).Dodecyl trimethyl ammonium bromide(DTAB)andcetyltrimethylammoniumbromide(CTAB) were bought from Amresco Co.,USA (>99%purity).Oligonucleotides were purchased from Takara Co.(Dalian,China).Propidium iodide(PI)was bought from BD Biosciences(Pharmingen, USA).The water used is ultrapure prepared by Milli-Q system (Millipore Corporation,USA).

    1.2 Sample preparation

    The stock solutions of oligonucleotide and surfactant were prepared in water and the oligonucleotide concentration was determined from UV spectrum at 260 nm and expressed as nucleotide or phosphate(1 mol·L-1nucleotide or phosphate is ca 330 g·L-1).

    The surfactant/oligonucleotide mixtures were prepared by adding water and the desired amounts of the stock solutions of surfactant and oligonucleotide successively in a test tube.

    All the samples,except those used to determine the turbidity with varying temperature,were equilibrated for 1 h at experimental temperature before measurements.

    1.3 Methods

    Turbidity measurements were carried out using a Lambda 850 spectrophotometer(PerkinElmer,USA)at 514 nm at(25.0±0.1)℃or at varying temperatures.In the latter case,the temperature ranges from 5-28℃with an increment of 2℃and an equilibration time of 20 min at each temperature was used throughout the experiment.

    The images of surfactant/oligonucleotide aggregates were observed with a transmission electron microscope(TECNAI 12, Philip Apparatus Co.,The Netherlands)by negative staining technique;the negative staining reagent was uranyl acetate aqueous solution.

    Circular dichroism(CD)spectra were collected on a Jasco J-810 spectrometer at(25.0±0.1)℃.The path length of the quartz cuvette used was 1 cm and four scans were averaged.The step interval is 0.5 nm,the integration time 0.5 s,the bandwidth 1.0 nm,and the scanning rate 20 nm·min-1.The thermal melting analysis was monitored at 288 nm from 10.0 to 75.0℃(±0.1℃) at 2-3℃increments.An equilibration time of 15 min at each temperature was used throughout the melt.

    Dynamic light scattering(DLS)measurements were performed withan ALV 5022 laser light-scattering instrument equipped with a 22 mW He-Ne laser at 632 nm(JDS model 1145P,Germany)in combination with an ALV-5000 digital correlator with a sampling time range from 1.0 μs to 100 ms.The scattering angle was 90°and the intensity autocorrelation functions were analyzed by using CONTIN method.The experimental temperature was 25.0℃.It should be noted here that before we measured the CD spectra and DLS plots for oligonucleotide/cationic surfactant systems,the samples were filtered through a filter paper with a pore size(bigger than 2 μm)to remove the precipitates.

    All the experiments were repeated at least 3 times.

    2 Results and discussion

    2.1 Oligonucleotide/cationic surfactant vesicles coexist with precipitates

    Just as described above,with the increase of the concentration of cationic surfactant,the oligonucleotide/cationic surfactant system is first clear(region A),then becomes turbid and the precipitates can be observed(region B),and finally,when the surfactant concentration is close to or higher than the cmc,all the precipitates become soluble(region C).Take oligo d(C)25/DEAB system as example.The DEAB concentrations in regions A,B,and C are lower than 0.1 mmol·L-1,between 0.1 and 10 mmol·L-1, and higher than 10 mmol·L-1,respectively[24].Fig.1 shows the tur-bidity of oligo d(C)25/DEAB system in region B,from which it can be seen that the readings become obvious and are increased linearly when DEAB concentration reaches 1 mmol·L-1.The monotonic increase in region B(Fig.1)is surprising and interesting because(i)the turbidity readings for a system with precipitates should be very unstable due to precipitation[26],(ii)when DEAB concentration is close to 10 mmol·L-1,the precipitates are very few,however,the turbidity under this condition is most obvious in region B,and(iii)after we remove the precipitates by centrifugation with an Eppendorf microcentrifuge at 5000 r· min-1for 30 min or by using a filter paper with a pore size larger than 2 μm,the turbidity is still obvious(although it becomes smaller).Therefore,the monotonic increase in region B(Fig.1) suggests that some aggregates other than precipitates should exist.

    Fig.2 shows the TEM image and DLS plot of the supernatant (obtained by centrifugation)or the filtrate(obtained by filtering) of oligo d(C)25(120 μmol·L-1)/DEAB(3.33 mmol·L-1)system. Noaggregatescanbeobservedfor3.33mmol·L-1of DEAB aqueous solution since the cmc of DEAB is 16 mmol·L-1[24].However,in the presence of oligo d(C)25,vesicles can be seen(Fig.2a). The DLS plot(Fig.2b)indicates that the aggregates in the supernatant or the filtrate have an average hydrodynamic radius(Rh,app) of about 100 nm,coincident with the vesicle size from Fig.2a. Here,it should be mentioned that(1)when the DEAB concentration is lower than 1 mmol·L-1,although precipitates are observed, no vesicles can be found,and(2)vesicles are easily observed when all the precipitates become soluble(in region C,see Ref. [24]).Therefore,vesicles should be transformed from precipitates.This also explains why the turbidity in region B is most obvious(although the precipitates are very few)when DEAB concentration is close to 10 mmol·L-1.Fig.3 presents the CD spectra of the oligonucleotide aqueous solution(curve a)and of the filtrate of oligonucleotide/DEAB system(curve b).The smaller CD signal in curve b than that in curve a is reasonable since some of the oligonucleotide molecules exist in the precipitates. However,what should be noted is that compared with the case in water,when DEAB is present,both the positive and the negative Cotton effects for the oligonucleotide shift to longer wavelengths.The bathochromic shift of the Cotton effect suggests the oligonucleotide conformation should become more extended[24-25,27-29].

    Moreover,the same phenomenon is also observed when we use oligo d(A)15and oligo d(C)15or change the cationic surfactant from DEAB to CTAB or DTAB.

    2.2 Temperature effect on vesicle formation in region B

    It is well known that temperature shows a great effect on DNA conformation.To better understand the vesicle formation, we measured the turbidity of oligonucleotide/cationic surfactant system in region B with temperature(exemplified by the case for oligo d(C)25/DEAB system,Fig.4).

    From Fig.4,it can be seen that when the temperature is higher than 29℃,the turbidity is increased with temperature.Fig.5 further elucidates the TEM images of the supernatant or the filtrate of oligo d(C)25/DEAB system in region B at 37℃.By comparing with the case at 25℃(shown in Fig.2),it is easily seen that more vesicles can be found at higher temperature.

    Fig.6 presents the CD melting curves for oligo d(C)25in water (curve a)and in DEAB aqueous solution(curve b).By comparing curve a with curve b,it can be seen that in DEAB aqueous solution,oligo d(C)25becomes melt at ca 29℃,which means that from 29℃on,oligo d(C)25begins to extend from random-coiled structure.By combining the results from Figs.2-6,it could be concluded that in DEAB aqueous solution,at the temperature higher than 29℃,oligonucleotide becomes less compacted and more efficient for vesicle formation.

    It has been well illustrated that when the cationic surfactant concentration is lower than the cmc,DNA-surfactant complex is generally insoluble in water,with the alkyl chain of surfactant going out,and the hydrophobic interaction exists not only among the surfactant molecules but also between the bound surfactant and the hydrophobic DNA core[22,30-31].Fig.3 implies that the oligonucleotide should become more extended in the presence of cationic surfactant.With the addition of the cationic surfactant, the added surfactant could bind to the negatively charged elongated oligonucleotide chain to give more precipitates,or interact with the insoluble oligonucleotide/cationic surfactant complex driven by hydrophobic force.While a definite mechanism for vesicle formation is difficult to be drawn at present,the latter interaction should be attributable to the formation of bilayer membranous structure,which may result in vesicle formation.Figs.4 and 5 together further indicate that more extended oligonucleotide,much easier for vesicle formation,implying the important role of the hydrophobic interaction for vesicle formation since the bases are more exposed in the extended oligonucleotide.

    3 Conclusions

    With the increase of cationic surfactant concentration,the oligonucleotide/cationic surfactant precipitates could transform into vesicles due to the hydrophobic interaction between the added cationic surfactant and the precipitates.Moreover,more extended oligonucleotide,much easier for vesicle formation.Asfar as we know,this study reported for the first time that the oligonucleotide/cationic surfactant vesicles could be transformed from and coexist with the precipitates.Considering the structure and composition of DNA(including oligonucleotide)/amphiphile complex may play a key role in its application,such as in gene transfer,this study should be expected to provide helpful information for its efficient application.

    1 Fendler,J.H.Membrane mimetic chemistry.New York:Wiley, 1982:110-125

    2 Holowka,E.P.;Pochan,D.J.;Deming,T.J.J.Am.Chem.Soc., 2005,127:12423

    4 Wang,Y.;Guo,X.;Guo,R.J.Colloid Interface Sci.,2008,317: 568

    5 de Lima,M.C.P.;Simoes,S.;Pires,P.;Faneca,H.;Duzgunes,N. Adv.Drug Delivery Rev.,2001,47:277

    6 Pontius,B.W.;Berg,P.Proc.Natl.Acad.Sci.U.S.A.,1991,88: 8237

    7 Geck,P.;Nasz,I.Anal.Biochem.,1983,135:264

    8 Allers,T.;Lichten,M.Nucleic Acids Research,2000,28:e6

    9 McLoughlin,D.M.;O′Brien,J.;Canus,J.J.;Gorelov,A.V.; Dawson,K.A.Bioseparation,2000,9:307

    10 Lander,R.J.;Winters,M.A.;Meacle,F.J.;Buckland,B.C.;Lee, A.L.Biotechnol.Bioeng.,2002,79:776

    11 Bell,P.C.;Bergsma,M.;Dolbnya,I.P.;Brass,W.;Stuart,M.C. A.;Rowan,A.E.;Feiters,M.C.;Engberts,J.B.F.N.J.Am.Chem. Soc.,2003,125:1551

    12 Vijayanathan,V.;Thoma,T.;Thomas,T.J.Biochemistry,2002, 41:14085

    13 Mel′nikov,S.M.;Sergeyev,V.G.;Yoshikawa,K.J.Am.Chem. Soc.,1995,117:2401

    14 Zhu,D.M.;Evans,R.K.Langmuir,2006,22:3735

    15 Clamme,J.P.;Bernacchi,S.;Vuilleumier,C.;Duportail,G.;Mely, Y.Biochimica et Biophysica Acta,2000,1467:347

    16 Mel′nikov,S.M.;Sergeyev,V.G.;Yoshikawa,K.;Takahashi,H.; Hatta,I.J.Chem.Phys.,1997,107:6917

    17 Sergeyev,V.G.;Mikhailenko,S.V.;Pyshkina,O.A.;Yaminsky,I. V.;Yoshikawa,K.J.Am.Chem.Soc.,1999,121:1780

    18 Ghirlando,R.;Wachtel,E.J.;Arad,T.;Minsky,A.Biochemistry, 1992,31:7110

    19 Zhou,S.;Liang,D.;Burger,C.;Yeh,F.;Chu,B. Biomacromolecules,2004,5:1256

    20 Krishnaswamy,R.;Mitra,P.;Raghunathan,V.A.;Sood,A.K. Europhys.Lett.,2003,62:357

    21 Hsu,W.L.;Chen,H.L.;Liou,W.;Lin,H.K.;Liu,W.L. Langmuir,2005,21:9426

    22 Karlsson,L.;van Eijk,M.C.P.;S?derman,O.J.Colloid Interface Sci.,2002,252:290

    23 Pizzey,C.L.;Jewell,C.M.;Hays,M.E.;Lynn,D.M.;Abbott,C. L.J.Phys.Chem.B,2008,112:5849

    24 Guo,X.;Li,H.;Zhang,F.M.;Zheng,S.Y.;Guo,R.J.Colloid Interface Sci.,2008,324:185

    25 Guo,X.;Cui,B.;Li,H.;Gong,Z.;Guo,R.J.Polym.Sci.A,2009, 47:434

    26 Spink,C.H.;Chaires,J.B.J.Am.Chem.Soc.,1997,119:10920

    27 Zhang,Z.;Huang,W.;Tang,J.;Wang,E.;Dong,S.Biophys. Chem.,2002,97:7

    28 Marck,C.;Thiele,D.Nucleic Acids Research,1978,5:1017

    29 Ivanov,V.I.;Minchenkova,L.E.;Schyolkina,A.K.;Poletayev,A. I.Biopolymers,1973,12:89

    30 Dias,R.S.;Magno,L.M.;Valente,A.J.M.;Das,D.;Prasanta,K.; Maiti,S.;Miguel,M.G.;Lindman,B.J.Phys.Chem.B,2008, 112:14446

    31 Hayakawa,K.;Santerre,J.P.;Kwak,J.C.T.Biophys.Chem., 1983,17:175

    寡聚核苷酸/單鏈陽離子表面活性劑囊泡與沉淀共存

    郭 霞*李 華 郭 榮

    (揚(yáng)州大學(xué)化學(xué)化工學(xué)院,江蘇揚(yáng)州 225002)

    DNA(包括寡聚核苷酸)和陽離子表面活性劑可形成難溶復(fù)合物.本文通過濁度測試和透射電子顯微鏡觀察,發(fā)現(xiàn)單鏈陽離子表面活性劑可以誘使寡聚核苷酸/單鏈陽離子表面活性劑沉淀轉(zhuǎn)變成為寡聚核苷酸/單鏈陽離子表面活性劑囊泡,且寡聚核苷酸/單鏈陽離子表面活性劑囊泡可以與寡聚核苷酸/單鏈陽離子表面活性劑沉淀共存.在寡聚核苷酸/單鏈陽離子表面活性劑沉淀向囊泡的轉(zhuǎn)變過程中,表面活性劑和沉淀之間的疏水作用力發(fā)揮了重要作用.此外,當(dāng)體系溫度達(dá)到寡聚核苷酸開始融解的溫度后,寡聚核苷酸/單鏈陽離子表面活性劑體系更容易形成囊泡.因此,寡聚核苷酸的鏈越伸展,越易于寡聚核苷酸/單鏈陽離子表面活性劑囊泡的生成.據(jù)我們所知,有關(guān)寡聚核苷酸/陽離子表面活性劑囊泡的報(bào)道尚不多見.因此,考慮到DNA(包括寡聚核苷酸)/兩親分子體系在醫(yī)學(xué)、生物學(xué)、藥學(xué)和化學(xué)中的重要性,該研究應(yīng)該有助于我們進(jìn)一步了解該體系并對(duì)其進(jìn)行更合理有效的應(yīng)用.

    表面活性劑;自組裝;囊泡;寡聚核苷酸;透射電子顯微鏡

    O648

    Received:March 1,2010;Revised:May 5,2010;Published on Web:June 25,2010.

    *Corresponding author.Email:guoxia@yzu.edu.cn;Tel:+86-514-87975590-9513;Fax:+86-514-87975244.The project was supported by the National Natural Science Foundation of China(20603031).

    國家自然科學(xué)基金(20603031)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    囊泡電子顯微鏡單鏈
    本刊對(duì)稿件組織病理學(xué)彩色圖片及電子顯微鏡圖片中標(biāo)尺的要求
    本刊對(duì)稿件組織病理學(xué)彩色圖片及電子顯微鏡圖片中標(biāo)尺的要求
    聚二乙炔囊泡的制備及其在醫(yī)療檢測領(lǐng)域的應(yīng)用
    逐步添加法制備單鏈環(huán)狀DNA的影響因素探究*
    人教版高中生物教材中囊泡的作用及功能行使過程
    鹽酸克倫特羅生物素化單鏈抗體在大腸埃希氏菌中的表達(dá)
    急性淋巴細(xì)胞白血病單鏈抗體(scFv)的篩選與鑒定
    SDS/DTAB/堿金屬氯化鹽復(fù)配囊泡為模板制備PMMA微球
    DNA處理蛋白A在細(xì)菌自然轉(zhuǎn)化中的作用
    透射電子顯微鏡中的掃描探針裝置
    国内精品久久久久久久电影| 国产高潮美女av| 亚洲乱码一区二区免费版| 丰满的人妻完整版| 国产精品三级大全| 色播亚洲综合网| 无人区码免费观看不卡| 黄色欧美视频在线观看| 一级黄色大片毛片| 色吧在线观看| 中国美女看黄片| 欧美极品一区二区三区四区| 亚洲性久久影院| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| 淫秽高清视频在线观看| 日韩 亚洲 欧美在线| 又黄又爽又刺激的免费视频.| 又黄又爽又免费观看的视频| 亚洲成人中文字幕在线播放| 亚洲黑人精品在线| 直男gayav资源| 免费av观看视频| 午夜福利高清视频| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头 嗯啊视频| 免费av观看视频| 97碰自拍视频| 亚洲av一区综合| 国产成人av教育| 联通29元200g的流量卡| 99视频精品全部免费 在线| 我的老师免费观看完整版| 久久99热这里只有精品18| 99国产精品一区二区蜜桃av| 亚洲美女搞黄在线观看 | 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 免费看av在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 少妇被粗大猛烈的视频| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| 日本成人三级电影网站| 深夜精品福利| 在线免费十八禁| 中文字幕久久专区| 国产三级中文精品| 亚洲无线在线观看| 99热6这里只有精品| 99久久精品一区二区三区| 1000部很黄的大片| 国产国拍精品亚洲av在线观看| 日本 欧美在线| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 99久久无色码亚洲精品果冻| 又黄又爽又刺激的免费视频.| 亚洲国产高清在线一区二区三| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 久久精品国产鲁丝片午夜精品 | 免费观看的影片在线观看| 亚洲av电影不卡..在线观看| 亚洲成人免费电影在线观看| 日韩欧美三级三区| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 69av精品久久久久久| 国产美女午夜福利| 免费看光身美女| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 欧美日韩亚洲国产一区二区在线观看| 国产毛片a区久久久久| 国产一区二区在线观看日韩| 一个人观看的视频www高清免费观看| 如何舔出高潮| 亚洲人成网站在线播放欧美日韩| 变态另类丝袜制服| 在线免费观看不下载黄p国产 | 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 日韩一区二区视频免费看| 国产三级中文精品| 亚洲国产精品成人综合色| 免费黄网站久久成人精品| 亚洲精品一卡2卡三卡4卡5卡| 搡女人真爽免费视频火全软件 | 国产亚洲av嫩草精品影院| 国产aⅴ精品一区二区三区波| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| 精品人妻熟女av久视频| 亚洲成av人片在线播放无| 波多野结衣高清无吗| 乱人视频在线观看| 亚洲久久久久久中文字幕| 免费av不卡在线播放| eeuss影院久久| 免费人成视频x8x8入口观看| 国产成人a区在线观看| 1000部很黄的大片| 嫩草影院新地址| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 黄片wwwwww| 天天躁日日操中文字幕| 国产综合懂色| 22中文网久久字幕| 观看美女的网站| 91麻豆av在线| 一个人看的www免费观看视频| 丰满的人妻完整版| 精品无人区乱码1区二区| 久久久久久久久久成人| 国产蜜桃级精品一区二区三区| 毛片女人毛片| 在线观看舔阴道视频| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 美女高潮喷水抽搐中文字幕| 97超级碰碰碰精品色视频在线观看| 日本熟妇午夜| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 免费观看精品视频网站| 国产一区二区三区av在线 | 国产高清有码在线观看视频| 男女那种视频在线观看| 99久久久亚洲精品蜜臀av| 九九热线精品视视频播放| 久久久国产成人精品二区| 白带黄色成豆腐渣| 有码 亚洲区| 在线看三级毛片| 久久久久免费精品人妻一区二区| 久久精品国产清高在天天线| 国内精品久久久久久久电影| 女同久久另类99精品国产91| 国产精品爽爽va在线观看网站| 两人在一起打扑克的视频| 久久精品国产亚洲av天美| 亚洲午夜理论影院| 亚洲专区中文字幕在线| 国产亚洲91精品色在线| 久久亚洲真实| 日本在线视频免费播放| 91在线观看av| 一级黄色大片毛片| 亚洲人成网站在线播放欧美日韩| 亚洲综合色惰| 精品乱码久久久久久99久播| 精品午夜福利在线看| av视频在线观看入口| 国模一区二区三区四区视频| 中文字幕精品亚洲无线码一区| 99热这里只有是精品在线观看| 日本黄色片子视频| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站| 久久久久久伊人网av| 亚洲精品粉嫩美女一区| 一区二区三区免费毛片| 日韩欧美在线二视频| netflix在线观看网站| 不卡一级毛片| 亚洲av.av天堂| 一级毛片久久久久久久久女| 99精品久久久久人妻精品| 99久国产av精品| 少妇的逼水好多| av.在线天堂| 亚洲av美国av| 嫩草影院新地址| 成熟少妇高潮喷水视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 五月伊人婷婷丁香| 我的女老师完整版在线观看| 久久国内精品自在自线图片| 亚洲欧美日韩高清专用| 亚洲三级黄色毛片| 全区人妻精品视频| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 亚洲av一区综合| 91久久精品国产一区二区三区| 久久久色成人| 亚洲美女搞黄在线观看 | 欧美又色又爽又黄视频| 搡女人真爽免费视频火全软件 | 人人妻人人澡欧美一区二区| 精品一区二区三区av网在线观看| 亚洲av二区三区四区| 他把我摸到了高潮在线观看| 日本爱情动作片www.在线观看 | 午夜老司机福利剧场| 免费看日本二区| 免费黄网站久久成人精品| 国产老妇女一区| 日日撸夜夜添| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 国产老妇女一区| 国产精品人妻久久久影院| videossex国产| 国产私拍福利视频在线观看| 91久久精品国产一区二区成人| 欧美中文日本在线观看视频| 人妻丰满熟妇av一区二区三区| 黄色日韩在线| 搡老岳熟女国产| 亚洲精华国产精华精| 国产精品久久电影中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 成人国产一区最新在线观看| 国产女主播在线喷水免费视频网站 | 久久久久久国产a免费观看| 欧美zozozo另类| 啦啦啦啦在线视频资源| 啦啦啦观看免费观看视频高清| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 国产精品久久视频播放| 成人鲁丝片一二三区免费| 中文字幕高清在线视频| 一级黄色大片毛片| 日日撸夜夜添| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 黄色一级大片看看| 黄片wwwwww| 女人十人毛片免费观看3o分钟| 麻豆国产av国片精品| 亚洲在线观看片| 亚洲 国产 在线| 黄色视频,在线免费观看| 国产美女午夜福利| 中国美白少妇内射xxxbb| 国产三级在线视频| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 国产在线精品亚洲第一网站| 国产三级在线视频| 精品无人区乱码1区二区| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 国产乱人伦免费视频| 淫秽高清视频在线观看| 日本一本二区三区精品| eeuss影院久久| 很黄的视频免费| 看十八女毛片水多多多| 日本免费a在线| 国产v大片淫在线免费观看| 国产高潮美女av| 日韩欧美精品免费久久| 99久久九九国产精品国产免费| 国产一区二区三区在线臀色熟女| 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 亚洲一区高清亚洲精品| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 色综合色国产| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 悠悠久久av| 少妇被粗大猛烈的视频| 啦啦啦韩国在线观看视频| 一个人看的www免费观看视频| 少妇丰满av| 午夜福利在线观看吧| 在线免费观看不下载黄p国产 | 精品不卡国产一区二区三区| 日本与韩国留学比较| 长腿黑丝高跟| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 99视频精品全部免费 在线| 女生性感内裤真人,穿戴方法视频| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 免费观看在线日韩| 99久久精品热视频| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 免费在线观看影片大全网站| 97超视频在线观看视频| 国产美女午夜福利| 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 亚洲久久久久久中文字幕| 国产熟女欧美一区二区| 日本色播在线视频| 99国产精品一区二区蜜桃av| 又黄又爽又刺激的免费视频.| 3wmmmm亚洲av在线观看| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 久久精品国产亚洲av香蕉五月| 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 九色成人免费人妻av| 国产精品永久免费网站| 欧美日本亚洲视频在线播放| 亚洲欧美日韩卡通动漫| 国产精品永久免费网站| av福利片在线观看| 在线观看一区二区三区| 亚洲av免费高清在线观看| 真人做人爱边吃奶动态| 久久热精品热| 岛国在线免费视频观看| 乱人视频在线观看| 免费在线观看成人毛片| 国产在视频线在精品| h日本视频在线播放| 国产一区二区三区在线臀色熟女| 麻豆国产av国片精品| 一个人看视频在线观看www免费| 色在线成人网| 欧美zozozo另类| 日本三级黄在线观看| 亚洲av二区三区四区| 亚洲内射少妇av| 性欧美人与动物交配| 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 日日撸夜夜添| 久久精品国产亚洲网站| 免费看日本二区| 看十八女毛片水多多多| 波多野结衣高清作品| 俺也久久电影网| 少妇的逼水好多| 国产伦精品一区二区三区视频9| 一本一本综合久久| 精品国内亚洲2022精品成人| 国产老妇女一区| 国产男人的电影天堂91| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 久久精品人妻少妇| 波多野结衣高清作品| 国产人妻一区二区三区在| 少妇熟女aⅴ在线视频| 一进一出抽搐gif免费好疼| 狂野欧美激情性xxxx在线观看| 极品教师在线视频| 午夜视频国产福利| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站| 丰满乱子伦码专区| 桃红色精品国产亚洲av| 国产av一区在线观看免费| 国产爱豆传媒在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩大尺度精品在线看网址| 黄色配什么色好看| 午夜福利欧美成人| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 色5月婷婷丁香| 免费av毛片视频| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看| 免费看日本二区| 欧美区成人在线视频| or卡值多少钱| 很黄的视频免费| 一级黄色大片毛片| 欧美在线一区亚洲| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| 22中文网久久字幕| 国产亚洲av嫩草精品影院| 成年版毛片免费区| 国产一区二区激情短视频| 久久精品国产鲁丝片午夜精品 | 午夜福利视频1000在线观看| 在线国产一区二区在线| 亚洲精品成人久久久久久| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 亚洲av美国av| 在线免费观看不下载黄p国产 | 日韩欧美免费精品| 中文字幕高清在线视频| 色哟哟·www| 老女人水多毛片| 日日啪夜夜撸| 久久国内精品自在自线图片| 日本成人三级电影网站| 91久久精品国产一区二区成人| 亚洲,欧美,日韩| 草草在线视频免费看| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 毛片一级片免费看久久久久 | 99久久中文字幕三级久久日本| 国内久久婷婷六月综合欲色啪| 欧美日韩精品成人综合77777| 色视频www国产| 日日啪夜夜撸| 亚洲人与动物交配视频| 999久久久精品免费观看国产| 一区二区三区四区激情视频 | 观看美女的网站| 一本精品99久久精品77| 午夜影院日韩av| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费| 国产欧美日韩精品亚洲av| 国产69精品久久久久777片| 大型黄色视频在线免费观看| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 男女下面进入的视频免费午夜| 成人av在线播放网站| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 日本黄色片子视频| 一进一出抽搐gif免费好疼| 日本免费a在线| 乱系列少妇在线播放| 少妇高潮的动态图| 99久久无色码亚洲精品果冻| 色综合婷婷激情| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 少妇熟女aⅴ在线视频| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 如何舔出高潮| 国产乱人视频| 丰满少妇做爰视频| 久久久久久久久久成人| 成人国产av品久久久| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 少妇 在线观看| 黄色日韩在线| 欧美少妇被猛烈插入视频| 高清毛片免费看| 婷婷色麻豆天堂久久| 天天躁日日操中文字幕| 国产av一区二区精品久久 | 午夜免费鲁丝| 黄色欧美视频在线观看| 男女下面进入的视频免费午夜| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 高清不卡的av网站| 亚洲精华国产精华液的使用体验| 久久久国产一区二区| 少妇精品久久久久久久| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 少妇的逼好多水| 观看免费一级毛片| 26uuu在线亚洲综合色| 天堂俺去俺来也www色官网| .国产精品久久| 国产免费视频播放在线视频| 亚洲,欧美,日韩| 国产精品精品国产色婷婷| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| 色视频www国产| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 女性生殖器流出的白浆| 舔av片在线| 美女中出高潮动态图| 我的女老师完整版在线观看| 久久久久久久国产电影| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 色综合色国产| 精品久久国产蜜桃| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 欧美极品一区二区三区四区| 亚洲精品久久久久久婷婷小说| 在线 av 中文字幕| 熟女电影av网| 亚洲成人手机| 亚洲色图av天堂| 久久久久久久精品精品| 国产成人午夜福利电影在线观看| 国产亚洲91精品色在线| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 人妻系列 视频| 欧美精品人与动牲交sv欧美| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 男男h啪啪无遮挡| 亚洲在久久综合| 成人漫画全彩无遮挡| 久久久精品免费免费高清| 一级片'在线观看视频| 免费少妇av软件| 一级毛片 在线播放| 亚洲精品乱码久久久v下载方式| 成人黄色视频免费在线看| 免费看日本二区| 亚洲成人中文字幕在线播放| 纯流量卡能插随身wifi吗| 日本wwww免费看| 一级爰片在线观看| 精品午夜福利在线看| 99热这里只有是精品50| 中国三级夫妇交换| 丝袜喷水一区| 亚洲综合色惰| 国产日韩欧美亚洲二区| 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品古装| 男人舔奶头视频| 亚洲精品成人av观看孕妇| 2022亚洲国产成人精品| 99热6这里只有精品| 国产女主播在线喷水免费视频网站| 能在线免费看毛片的网站| 久久久久久久久久久免费av| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 在线观看国产h片| 成人午夜精彩视频在线观看| 久久人人爽人人爽人人片va| 精品亚洲成a人片在线观看 | 欧美精品亚洲一区二区| 国产精品一区二区性色av| 大香蕉97超碰在线| 日本免费在线观看一区| 午夜老司机福利剧场| av天堂中文字幕网| 国产免费视频播放在线视频| 不卡视频在线观看欧美| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 欧美一区二区亚洲| 久久毛片免费看一区二区三区| 精品久久久久久久久av| 男人添女人高潮全过程视频| 777米奇影视久久| 精品久久久噜噜| 97超视频在线观看视频| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 午夜福利高清视频| 国产精品一区www在线观看| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 亚洲av欧美aⅴ国产| 麻豆成人午夜福利视频| 高清黄色对白视频在线免费看 | 美女内射精品一级片tv| 成人免费观看视频高清| av卡一久久| 国产精品一区二区三区四区免费观看| 久久97久久精品| 色综合色国产| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 大片免费播放器 马上看| 一级毛片黄色毛片免费观看视频| 国产亚洲精品久久久com| 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 日韩,欧美,国产一区二区三区| 中国国产av一级| 亚洲在久久综合| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 国产成人精品一,二区| 免费av中文字幕在线| 亚洲无线观看免费| 国产成人免费无遮挡视频|