• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins

    2012-11-06 07:01:06YANGWeiBenRENLi
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:壬基聚氧乙烯醚聚集體

    YANG Wei-Ben REN Li

    (College of Chemistry and Environment Science,Nanjing Normal University,Nanjing 210097,P.R.China)

    Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins

    YANG Wei-Ben*REN Li

    (College of Chemistry and Environment Science,Nanjing Normal University,Nanjing 210097,P.R.China)

    The aim of this study was to determine the behaviors and mechanism of three hypercrosslinked polymers during the adsorption of nonylphenol ethoxylated decylether(NPEO-10)from aqueous solutions.The polymers were characterized to determine their specific surface areas,pore sizes,and elemental contents.The adsorption isotherms of NPEO-10 on the three polymers fit the Langmuir and double Langmuir models better than the Freundlich model,and the isotherm curves had similar shapes on a lg-lg scale.The amount of adsorbed NPEO-10 depends on the specific surface area,the pore size of the polymer,and the temperature of the solution.Thermodynamic analysis indicated that the adsorption process was characterized by an interaction of the hydrophobic part of the surfactant molecule with the surface of the polymer and by the formation of micelle-like aggregates on the surface of the polymer.A twodimensional mixture consists of singly dispersed surfactant molecules and monolayered or bi-layered aggregates on the surface of the polymers.Adsorption dynamics confirmed that the adsorption process involved two plateaus which were related to the formation of a monolayer and a bi-layer.Finally,the elution processes were investigated to further establish the appropriate adsorption conditions for the purification of water containing NPEO-10.

    Elution;Nonylphenol polyethoxylate;Isotherm;Resin;Temperature

    Nonylphenol polyethoxylates(NPEOs)are the most widely used non-ionic surfactants.Over 300000 tons of NPEOs are produced and used annually throughout the world in many industries,such as those of pulp and paper,textile manufacturing,plastics,petroleum production,cleaning products,pesticides,metal processing,paint and protective coating,etc.However,NPEOs are endocrine disrupting chemicals,and their biodegradation intermediates,nonylphenol mono-ethoxylate,diethoxylate,and nonylphenol,are more toxic and persistent than their parent substances in the environment[1].Moreover,as surfactants, NPEOs can remarkably enhance the solubility of hydrophobic organic contaminants,and accordingly worsen water quality and increase the difficulty and cost of water treatment.The use of NPEOs has been banned in Europe for several industrial uses because they are common water pollutants discharged into wastewater treatment facilities or directly into the aquatic environment, whereas an exception is made for industries possessing wastewater treatment technologies which are able to completely remove theorganicfractionofthewaste(EUregulationNo.1816,2004)[2].

    Several methods,such as membrane[3],oxidation[4],and adsorption[5-8],are available for the removal of NPEOs from contaminated water.Comparatively,though adsorption of NPEOs has achieved considerable attention,the study on adsorption of NPEOs by polymeric adsorbents is still limited.Specially,the importance of porous structure on the adsorption of NPEOs in aqueous solution is not well understood and needs further study.Moreover,the design and optimization of an adsorption process on an industrial scale relies on a thorough understanding of the fundamental mechanisms involved in the various adsorption interactions.

    Adsorption process of NPEOs at a solid/water interface is affected by coulombic interactions,the hydrophobicity and polarity of the solid surface,the length of the hydrophobic chain and hydrophilic group of NPEOs[9].As a consequence,systematic studies are needed to explore different variables of the systems and to establish their influence on NPEOs adsorption.Non-functionalized macroporous hypercrosslinked polymer is particularly suitable for the efficient sorption of high molecular weight organic molecules with lipophilic properties.This polymeric material can be regenerated more easily by using organic solvents such as ethanol,methanol,or acetone[10-12].So,in the present work,adsorption behaviors and mechanisms of NPEO-10(representative of NPEOs)onto hypercrosslinked polymer NU-100 prepared in our laboratory were investigated.For comparison,commercially available hypercrosslinked polymers,NDA-150 and MN-200, were also adopted for study of NPEO-10 adsorption.

    1 Materials and methods

    1.1 Materials

    NPEO-10(molecular weight 660)was obtained from Aldrich Chemical Company.The water used for the NPEO-10 adsorption was purified by distillation.Nitrobenzene,acetone,hydrochloric acid,sulfuric acid,ethanol,and benzene were all analytically pure grades and were obtained from Shanghai Chemical Reagent Plant(Shanghai,China).

    1.2 Polymers

    Hypercrosslinked polymer NU-100 was prepared in our laboratory with the method described in literature[13-14].Commercially hypercrosslinked polymers,MN-200 and NDA-150,were used in this work.MN-200 was supplied by Shanghai Office,Purolite International Co.,Ltd.,and NDA-150 was donated by Jiangsu Nandagede Environmental Science&Technology Co.,Ltd.in Nanjing,China.The polymers were conditioned in methanolhydrochloric acid mixtures and finally in water before used in the adsorption experiments.Nitrogen adsorption and desorption experiments were carried out at temperature 77 K to determine the textural properties of the polymeric resins.The BET surface area was calculated from the desorption isotherms using the standard Brunauer-Emmert-Teller equation,and the mesoporous pore size distribution was determined from desorption isotherms through the Barrett-Joyner-Halenda(BJH)method.All these calculations were performed by an Accelerated Surface Area and Porosimeter system(ASAP 2010,Micromeritics,USA)automatically.The elemental analysis of the polymers was peformed using a Perkin-Elmer 240C Elemental Analytical Instrument (Wellesley,MA,USA).

    1.3 Adsorption assay

    The equilibrium adsorption experiments of polymers were carried out at 288,303,and 318 K.Firstly,0.0500 g polymer was introduced into a series of 150 mL conical flasks and 100 mL aqueous solution of NPEO-10 with known concentration was added into each flask.The initial concentrations of the solutions were 200,400,600,800,and 1000 mg·L-1.The flasks were then completely sealed and placed in a model G25 incubator shaker at a pre-set temperature with shaking speed of 130 r· min-1.The adsorption tests were run continuously for 72 h to ensure the equilibrium.

    Finally the residual concentrations of NPEO-10 in solutions were determined with spectrophotometric measurements on a UV3100-PC ultraviolet and visible spectrometer(Mapada,China) at 230 nm.The adsorption capacity was calculated using Eq.(1):

    where C0is the initial concentration(mg·L-1),Ceis the residual concentration(mg·L-1)at equilibrium;qeis the adsorption capacity(mg·g-1)of NPEO-10 on the polymer at equilibrium system;V is the volume(L)of solution;and m is the mass(g)of dry polymer.

    1.4 Kinetics and elution

    To obtain the kinetic data and determine the time required for equilibrium for the adsorption of NPEO-10 onto the polymer, 100 mL NPEO-10 solution were introduced into a series of 150 mL conical flasks.The NPEO-10 solutions with an initial concentration of 1000 mg·L-1were shaken with 0.0500 g polymer at 303 K and sampled at different time intervals.The adsorption capacity was calculated using Eq.(1).And then,0.0500 g of the polymer that adsorbed NPEO-10 was placed in 100 mL aqueous solutions with various ethanol contents and shaken for 24 h at 303 K.The amounts of NPEO-10 eluted were estimated by measuring the absorbance of solutions at 230 nm.

    2 Results and discussion

    2.1 Characterization of polymers

    It is well known that pore diameter and specific surface area of polymer affect its adsorption capacity[15].In order to investigate the adsorption behaviors and mechanisms of NPEO-10 onto the three hypercrosslinked polymers,the physicochemical properties of the polymers were characterized and listed in Table 1.

    The data for MN-200 determined in this study are in accordance with those given by Purolite Corporation[16-17].The contents of oxygen,carbon,and hydrogen of the NU-100 resin prepared in our laboratory are similar to those of the MN-200 and NDA-150 resins.Both surface area and micropore area of the MN-200 resin are larger than those of the NU-100 and NDA-150 resins; and the average pore diameters of the polymers exhibit an opposite trend.

    2.2 Adsorption isotherm

    The amounts of NPEO-10 adsorbed per gram of the polymers (qe)versus the equilibrium concentration(Ce)are shown in Fig.1.From these plots it can be seen that the effect of temperature on the adsorption capacity is different for the three polymers.At 318 K with the largest concentration,the adsorption capacities of the polymers are in the following order:NDA-150>NU-100>MN-200,which agrees well with the order of their average pore diameters.In addition,for all the studied temperatures the adsorption capacities of NDA-150 are always greater than those of NU-100 at the highest concentration.Surprisingly,the adsorption capacities of the three polymers at 288 and 303 K did not increase as their specific surface area or average pore diameter increased,indicating that the adsorption capacity of the polymers was possibly affected simultaneously by several factors,including the specific area,pore structures of adsorbents,and temperature of the solution.

    Table 1 Properties of polymers measured in our study

    Generally,adsorption of surfactants onto solid-liquid interface is controlled by many factors,such as the nature of the solid surfaces,the type of head group and tail part of the surfactant molecule.In the case of NPEO-10 adsorption onto hydrophobic surfaces of the three hypercrosslinked polymers,the hydrocarbon moiety of the NPEO-10 is in contact with the surface of the polymers,and the oxyethylenic part of the molecule protrudes into the aqueous solution.From the profiles of the adsorption isotherm,the arrangement of surfactant molecules on the adsorbent surface can be modeled as a single layer of surfactant molecules at the initial stage of adsorption,a close-packed ad-sorbate layer in the further course and a multi-layer aggregate at the last stage[19-20].The following two isotherm models were employed to fit the above data.

    Linear Langmuir model:

    where KLis a direct measure of the intensity(L·mg-1)of the adsorption process;M is a constant relating to the surface area occupied by a monolayer of adsorbate,reflecting the adsorption capacity(mg·g-1);Kfis a system constant related to the bonding energy;Kfis defined as an adsorption or distribution coefficient that represents the general capacity of the adsorbate adsorbed onto the adsorbent for a unit equilibrium concentration;and the slope n is a measure of the adsorption intensity or surface heterogeneity.

    Table 2 lists the fitting results with the Langmuir and Freundlich models and the correlation coefficients R2values. Clearly,the experimental data fit better with the Langmuir model (R2≥0.999)than that with the Freundlich one(R2ranges from 0.866 to 0.961).

    Many researchers reported that the adsorption isotherms of surfactant could not be well fitted with the Freundlich equation. Moreover,when the Freundlich model is plotted on a lg-lg scale, four regions can be distinguished in the adsorption isotherms[21-22]. In the present work,it is shown in Fig.1D that the adsorptionisotherms of NPEO-10 on a lg-lg scale nearly have the same shape and consist of three main regions rather than four regions as described in the literature(plotted as an insert in Fig.1D).This is mainly due to the ignorance of the low concentration range (<100 mg·L-1)in our study.

    Table 2 Fitted adsorption parameters under different temperatures with the Langmuir model and the Freundlich model

    Although the isotherms can be perfectly fitted with the Langmuir equation,it is difficult to interpret the arrangement of surfactant molecules on the adsorbent surface with the corresponding parameters because the basic assumption of Langmuir equation is monlayer adsorption.Double Langmuir model provides a semi-empirical method to analyze the experimental results of adsorption processes.This model,extrapolated to the solid/liquid interface,allows the arrangement of adsorbed molecules to be studied in more detail.González-Gárc and coworkers[23]analyzed the surfactant adsorption behavior by applying the Double Langmuir equation and interpreted the experimental data successfully.Double Langmuir equation is given as follows:

    where Mtis the total amount of adsorbate adsorbed at the equilibrium concentration Ce;M1,M2and KL1,KL2are parameters corresponding to each individual Langmuir equation.

    Similarly,the results of R2values listed in Table 3 show that the adsorption isotherms can be fitted well with the Double Langmuir equation.Mtis the total amount absorbed on the resins,which is the sum of M1and M2.The values of M1are almost the same as those of M2on the three polymers at 288 K, whereas the values of M1and M2are totally different at 318 K. Furthermore,the values of KL1and KL2are identical at 288 and 303 K,whereas the values of KL1are much smaller than those of KL2at 318 K.These observations indicate that the arrangement of NPEO-10 molecules on the polymers′surface is fundamentally affected by the temperature of the studied system.

    According to the fitting results of the Langmuir,Freundlich, and Double Langmuir equations,the NPEO-10 molecules appeared to be united as a“monolayer”on the surface of the polymers,and this“monlayer”resulted from the merger of two or more layers.At very low surface concentrations,the adsorption proceeds via attachment of single molecule,and a certain number of the segments of the hydrophobic tail conformably attaches to the surface of the adsorbent.The sudden steep rise in region 2in the inset of Fig.1D indicates a dramatic change in the adsorption mechanism which is due to the formation of small cluster of NPEO-10 molecules onto the surface until the surface is saturatedwiththehemimicelles[24-26].In region 3,formation of new surface cluster slows down;hence there is a decrease in the slope of isotherm.At higher concentrations,the slope of isotherm decreases,and a plateau forms(region 4),where the adsorption amounts remain constant.NPEO-10 may also adsorb onto the surfaces containing oxygen by electrostatic interaction between the oxyethylenic groups and the surfaces.The adsorbed phase is assumed to be a two-dimensional mixture consisting of singly dispersed surfactant molecules,monolayered and bilayered aggregates of various sizes,and empty sites[27-28].The explanations for the nature of adsorption curve in the three regions are depicted in Fig.2.

    Table 3 Regression data of isotherms by double Langmuir equation

    2.3 Factors affecting the adsorption process

    The factors affecting the adsorption process include the length of the hydrophobic and hydrophilic chains in the molecule and the relative size and cross-sectional area of the solvent and solute molecules[29].The interaction between adsorbate and adsorbent is reflected by the experimental adsorption isotherm and,if some theoretical models are assumed,by the predictions of the free energy of adsorption evaluated from the models.In this study, Eq.(5)is employed to determine the standard Gibbs energy change(ΔG0)[30].

    where KLis a thermodynamic constant determined from Langmuir equation;T is the absolute temperature in K;and R is the gas constant with a value of 8.314 J·mol-1·K-1.The values of ΔG0were calculated and listed in Table 2.These values are very similar for the three polymers at the same temperature.Further, to a certain adsorbent,the absolute values of ΔG0increases as the temperature increases.ΔG0indicates the degree of spontaneity of an adsorption process,and a higher absolute value reflects a more energetically favorable adsorption.This observation is consistent with the adsorption behavior of ethoxylated nonionic surfactants,that is,at higher temperature,the larger the pore size,the more the amount adsorbed on the polymer surface.

    Typically,the polar chain of non-ionic surfactants has a size well above the dimension of alkyl chain and forms an extended polar corona.The NEPO-10 molecule has a length of 4.9 nm, with a hydrophobic part of 1.8 nm and a hydrophilic part of 3.1 nm[31-32].Therefore,during the transfer of the adsorbate molecule onto the surface of the polymers,steric repulsion and stretching deformation should be considered.Essentially,the critical micelle concentration(CMC)of NEPO-10 was affected by the temperature.At different adsorption temperatures the NEPO-10 molecules possessed different conformations,and thus different adsorption behaviors were observed[33].As the surface concentration increased,the NEPO-10 molecules tended to compete with each other to adsorb on the available adsorption sites,the amounts of which depend on the pore size and the free adsorbent surface area.As a result,the adsorption on the wall of the pores became a rate-limiting step.A small pore size made the formation of double layer aggregates of surfactant unfavorable[34]. As shown in Table 1 and Fig.1,in comparison to MN-200 resin, NDA-150,which has the largest pore size,exhibited the highest adsorption capacity toward NPEO-10 at 318 K,even though its surface area is the least among the three polymers.

    As described above,the specific surface area and pore size are important factors affecting the adsorption amount.Therefore,the process of NPEO-10 adsorption on the surface of the polymer can be characterized by the interaction of the hydrophobic part of the surfactant molecule with the surface of the polymer and the formation of micelle-like aggregates on the surface of the polymer.The former interaction is exothermic in nature,whereas the latter is related to the endothermic interactions[35-36].The experimental results suggest that the adsorption mechanisms are quite similar for the studied polymers,and the adsorption capacity mainly depends on the surface area and average pore diameter of the adsorbents.High temperature is favorable to the formation of micelle-like structures,since the intermicellar interactions undergoes a change from repulsive to attractive as the temperature increases.Therefore,an increase of temperature will result in an increase of the adsorption amounts[37-38].

    2.4 Adsorption kinetics and elution

    In order to develop NU-100 as a polymeric adsorbent for the removal and recovery of nonylphenol polyethoxylates from industrial wastewater,adsorption kinetics and elution of NPEO-10 from 1000 mg·L-1aqueous solution onto NU-100 at 303 K and desorption with various contents of ethanol were tested.

    Fig.3 shows that the amount of NPEO-10 adsorbed on NU-100 adsorbent from aqueous solution increased with time.A plateau with an adsorption amount of about 250 mg·g-1was observed from 10 to 24 h.After 24 h,the adsorption amount started to increase again until 50 h.A second plateau was observed after 50 h,with the adsorption amount of about 350 mg·g-1.The above adsorption kinetics is interpreted as follows.At a low surface coverage the adsorption takes place with the hydrocarbon chain lying flat.The first plateau region corresponds to a close-packed monolayer of flat-lying surfactant.With a further increase in the adsorbed NPEO-10 molecules,the amount of the molecules is enough to form a partial bi-layer until the kinetic curve extends to the second plateau region[39].According to the above explanation of the adsorption process,we can speculate that the actual aggregate structure on the polymers tested may be intermediate between the monolayer structure and the partial bi-layer structure(Fig.2),such as 1.3 layers,1.5 layers,or 1.7 layers[40].

    In general,the high adsorption potential and the high affinity of the polymer matrix for the surfactant might render surfactant elution from the polymers very difficult.It is worthwhile to investigate the elution behavior of NPEO-10 from the polymer and the possibility of recycled use of the polymer.Fig.3 shows the influence of ethanol on the elution rate of NPEO-10 from NU-100 resin.The elution rate increased as the ethanol content in solution increased.The elution rate of solute on NU-100 polymer is greater than 98%with an ethanol concentration of 40% (volume fraction,φ).The observed high elution rate may be related to the fact that the non-ionic surfactants are mainly adsorbed physically,therefore can be desorbed easily with organic solvents.By additional distilling,both NPEO-10 and ethanol can be easily recovered.

    3 Conclusions

    The presence of non-ionic surfactants in aqueous environment has considerably increased,and there is a need to search for a suitable method to remove them from wastewater.The adsorption characteristics of nonylphenol polyethoxylates in aqueous solution on the three hypercrosslinked polymers have been examined.The following conclusions can be drawn from the present study:

    (1)The three polymers have similar structure and their contents of oxygen,carbon,and hydrogen are almost identical.Both surface area and micropore area of the MN-200 resin are bigger than those of the NU-100 resin and NDA-150 resin,whereas the average pore diameters of the polymers exhibit an opposite trend.

    (2)The adsorption isotherm can fit the Langmuir model and double Langmuir model better than the Freundlich model;the adsorption isotherms on a lg-lg scale nearly have the same shape and consist of three main regions,which can be interpreted by the molecule arrangement on the adsorbent surface.The specific surface area,pore size,and temperature are fundamental factors affecting adsorption amount.The temperature dependence of intermicellar interactions results in the increase of the adsorption amounts at elevated temperatures.

    (3)The investigation on adsorption dynamic indicates that the adsorption process involves two plateaus which are related to the formation of the monolayer and bi-layer.The elution process shows that the non-ionic surfactants are mainly adsorbed physically and can be desorbed easily with organic solvent.

    1 Hou,S.G.;Sun,H.W.;Gao,Y.Chemosphere,2006,63:31

    2 Gioiaa,D.D.;Sciubbaa,L.;Bertina,L.Water Res.,2009,43: 2977

    3 Hu,J.Y.;Chen,X.;Tao,G.Environ.Sci.Technol.,2007,41: 4097

    4 Ike,M.;Asano,M.;Belkada,F.D.Water Sci.Technol.,2002,46: 127

    5 John,D.M.;House,W.A.;White,G.F.Environ.Toxicol.Chem., 2000,19:293

    6 Misra,K.P.;Dash,U.;Somasundaran,P.Ind.Eng.Chem.Res., 2009,48:3403

    7 Caruso,F.;Serizawa,T.;Furlong,D.N.Langmuir,1995,11:1546

    8 Espantaleón,A.G.;Nieto,J.A.;Fernández,M.Appl.Clay Sci., 2003,24:105

    9 Nevskaia,D.M.;Sepulveda-Escribano,A.;Guerrero-Ruiz,A. Phys.Chem.Chem.Phys.,2001,3:463

    10 Streat,M.;Sweetland,L.A.React.Funct.Polym.,1997,35:99

    11 Penner,N.A.;Nesterenko,P.N.J.Chromatogr.A,2000,884:41

    12 Valderrama,C.;Cortina,J.L.;Farran,A.J.Colloid Interface Sci., 2007,310:35

    13 Tsyurupa,M.P.;Davankov,V.A.React.Funct.Polym.,2002,53: 193

    14 Ahn,J.H.;Jang,J.E.;Oh,C.G.Macromolecules,2006,39:627

    15 Yang,W.B.;Li,A.M.;Fan,J.Chemosphere,2006,64:984

    16 Valderrama,C.;Gamisans,X.;de las Heras,F.X.React.Funct. Polym.,2007,67:1515

    17 Streat,M.;Sweetland,L.A.Trans IChemE B,1998,76:115

    18 Per,W.;Bengt,J.Langmuir,1994,10:3268

    19 Misra,P.K.;Mishra,B.K.;Somasunduran,P.J.Colloid Interface Sci.,2003,265:1

    20 Shalaby,M.N.Polym.Adv.Technol.,2004,15:533

    21 Marcel,R.B.;Luuk,K.K.Langmuir,1992,8:2649

    22 Li,B.Q.;Eli,R.Langmuir,1996,12:5052

    23 González-García,C.M.;González-Martín,M.L.;Gómez-Serrano, V.;Bruque,J.M.;Labajos-Broncano,L.Langmuir,2000,16: 3950

    24 Drach,M.;Narkiewicz-Micha?ek,J.;Rudziński,W.Phys.Chem. Chem.Phys.,2002,4:2307

    25 Calvoa,E.;Bravoa,R.;Amigoa,A.Fluid Phase Equilib.,2009, 282:14

    26 Zhang,R.;Somasundaran,P.Langmuir,2004,20:8552

    27 Edwards,D.A.;Adeel,Z.;Luthy,R.G.Environ.Sci.Technol., 1994,28:1550

    28 Adeel,Z.;Luthy,R.G.Environ.Sci.Technol.,1995,29:1032

    29 Paria,S.;Yuet,P.K.Ind.Eng.Chem.Res.,2007,46:108

    30 Liu,Y.J.Chem.Eng.Data,2009,54:1981

    31 Urbina-Villalba,G.;Reif,I.;Márquez,M.L.Colloids Surf.A, 1995,99:207

    32 Levitz,P.E.C.R.Geoscience,2002,334:665

    33 Muller,N.Langmuir,1993,9:96

    34 Kibbey,T.C.G.;Hayes,K.Environ.Sci.Technol.,1997,31:1171

    35 Wesemeyer,H.;Muller,B.W.;Muller,R.H.Int.J.Pharm.,1993, 89:33

    36 Ghiaci,M.;Kalbasi,R.J.;Abbaspour,A.Colloids Surf.A,2007, 297:105

    37 Lindheimer,M.;Keh,E.;Zaini,S.;Partyka,S.J.Colloid Interface Sci.,1990,138:83

    38 Winnik,M.A.;Bystryak,S.M.;Odrobina,E.Langmuir,2000,16: 6118

    39 Mishra,S.K.;Kanungo,S.B.;Rajeev.J.Colloid Interface Sci., 2003,267:42

    40 Gallardo-Moreno,A.M.;González-García,C.M.;González-Martín,M.L.;Bruque,J.M.Colloids Surf.A,2004,249:57

    超高交聯(lián)樹(shù)脂對(duì)壬基酚聚氧乙烯醚的吸附機(jī)理

    楊維本*任 麗

    (南京師范大學(xué)化學(xué)與環(huán)境科學(xué)學(xué)院,南京 210097)

    研究了壬基酚聚氧乙烯醚(NPEO-10)在3種具有不同比表面積和孔徑大小的超高交聯(lián)樹(shù)脂上的吸附行為與機(jī)理.3種超高交聯(lián)樹(shù)脂對(duì)壬基酚聚氧乙烯醚的吸附量受它們的比表面積和孔徑大小以及溶液溫度的影響.壬基酚聚氧乙烯醚在3種超高交聯(lián)樹(shù)脂上的吸附等溫線可以用Langmuir和雙Langmuir模型很好地?cái)M合,而用Freundlich模型擬合則效果不好,但這些擬合曲線都具有相似的形狀.熱力學(xué)分析表明吸附過(guò)程主要表現(xiàn)為吸附質(zhì)分子的疏水部分和吸附劑表面的作用以及吸附質(zhì)分子在其表面形成膠束狀的聚集體,即分散的、單層及雙層聚集體的混合分布.吸附動(dòng)力學(xué)曲線中的兩個(gè)平臺(tái)也證明了吸附過(guò)程存在單層和雙層聚集體.脫附研究為實(shí)現(xiàn)超高交聯(lián)樹(shù)脂吸附分離水溶液中的壬基酚聚氧乙烯醚提供了合適的操作條件.

    脫附;壬基酚聚氧乙烯醚;等溫線;樹(shù)脂;溫度

    O642

    Received:February 22,2010;Revised:April 1,2010;Published on Web:June 7,2010.

    *Corresponding author.Email:yangwb007@njnu.edu.cn;Tel:+86-25-85560233;Fax:+86-25-85572627.

    The project was supported by the National Natural Science Foundation of China(50978137)and Natural Science Foundation of Jiangsu Province,China(BK2008436).

    國(guó)家自然科學(xué)基金(50978137)和江蘇省自然科學(xué)基金(BK2008436)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    壬基聚氧乙烯醚聚集體
    銅納米簇聚集體的合成、發(fā)光與胞內(nèi)溫度傳感
    一種新型聚集誘導(dǎo)發(fā)光的片狀銀納米簇聚集體的合成
    類胡蘿卜素聚集體的研究進(jìn)展
    抗氧劑壬基二苯胺的合成及其熱穩(wěn)定性
    內(nèi)墻涂料中烷基酚聚氧乙烯醚的高效液相色譜-質(zhì)譜測(cè)定
    壬基酚聚氧乙烯醚在反相液相色譜上的保留行為
    歐盟將在可洗滌紡織品中限制使用壬基酚聚氧乙烯醚
    高效液相色譜法測(cè)定羽絨制品中烷基粉聚氧乙烯醚
    水合物聚集體受力分析及臨界聚集體粒徑的計(jì)算
    石油化工(2014年1期)2014-06-07 05:57:08
    化學(xué)分析計(jì)量(2013年5期)2013-04-10 09:31:53
    国产在线男女| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 秋霞伦理黄片| 人妻制服诱惑在线中文字幕| 精品国产露脸久久av麻豆 | 成人午夜精彩视频在线观看| 97超碰精品成人国产| 亚洲在久久综合| h日本视频在线播放| 中文资源天堂在线| 国产探花极品一区二区| 亚洲成人av在线免费| 91午夜精品亚洲一区二区三区| 国产免费一级a男人的天堂| 午夜日本视频在线| 日本wwww免费看| 国产精品日韩av在线免费观看| 观看美女的网站| 国产人妻一区二区三区在| 亚洲av电影不卡..在线观看| 免费黄频网站在线观看国产| 成人欧美大片| 搞女人的毛片| 欧美最新免费一区二区三区| 纵有疾风起免费观看全集完整版 | 日韩三级伦理在线观看| 2021天堂中文幕一二区在线观| 男人狂女人下面高潮的视频| a级毛色黄片| 一级av片app| 亚洲人成网站高清观看| 一级黄片播放器| 亚洲精品日韩av片在线观看| 亚洲伊人久久精品综合| 高清日韩中文字幕在线| 黄片wwwwww| 免费观看a级毛片全部| 久久精品久久久久久噜噜老黄| 国产成人91sexporn| 高清av免费在线| 美女xxoo啪啪120秒动态图| 91精品伊人久久大香线蕉| 亚洲精品日本国产第一区| 久久精品国产亚洲网站| 中文字幕亚洲精品专区| 十八禁国产超污无遮挡网站| av专区在线播放| 免费看不卡的av| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 简卡轻食公司| 欧美日本视频| 国产av在哪里看| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 青春草视频在线免费观看| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 亚洲av电影不卡..在线观看| 插逼视频在线观看| 久久久国产一区二区| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 欧美日韩精品成人综合77777| 观看美女的网站| 免费看av在线观看网站| h日本视频在线播放| 99久久精品热视频| 六月丁香七月| 国产成人精品一,二区| 亚洲第一区二区三区不卡| 亚州av有码| 国产淫片久久久久久久久| 日韩电影二区| 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 日本黄色片子视频| 亚洲成色77777| 26uuu在线亚洲综合色| 久久6这里有精品| 99热这里只有精品一区| 亚洲欧美一区二区三区黑人 | 久久99热6这里只有精品| 亚洲av中文字字幕乱码综合| 国产精品99久久久久久久久| 国产毛片a区久久久久| 国产精品久久久久久av不卡| 亚洲av成人av| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜爱| 亚洲av免费高清在线观看| 男人狂女人下面高潮的视频| 国产淫语在线视频| 女人久久www免费人成看片| av网站免费在线观看视频 | 国产成年人精品一区二区| 在线观看美女被高潮喷水网站| 性色avwww在线观看| 亚洲人与动物交配视频| 国产精品久久久久久久久免| 可以在线观看毛片的网站| 日本免费在线观看一区| 精品一区二区免费观看| 午夜精品在线福利| 一级毛片aaaaaa免费看小| 国产永久视频网站| 一夜夜www| 亚洲精品国产av蜜桃| 色网站视频免费| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 黄色欧美视频在线观看| 久久99蜜桃精品久久| 免费观看性生交大片5| 中文字幕免费在线视频6| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 老司机影院成人| 亚洲av中文字字幕乱码综合| 日韩伦理黄色片| 大片免费播放器 马上看| 老女人水多毛片| 寂寞人妻少妇视频99o| 日本猛色少妇xxxxx猛交久久| 三级毛片av免费| 色5月婷婷丁香| 精品人妻视频免费看| 久久6这里有精品| 天堂影院成人在线观看| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 国产伦一二天堂av在线观看| 99热网站在线观看| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 少妇的逼好多水| 麻豆av噜噜一区二区三区| 色综合色国产| 麻豆国产97在线/欧美| 国产69精品久久久久777片| 国产成人精品福利久久| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 伊人久久精品亚洲午夜| 亚洲综合色惰| 久久精品国产亚洲网站| 亚洲av二区三区四区| 又粗又硬又长又爽又黄的视频| 在线免费观看不下载黄p国产| 欧美+日韩+精品| 精品久久久久久电影网| 亚洲av免费高清在线观看| 日韩在线高清观看一区二区三区| 免费av毛片视频| 成人性生交大片免费视频hd| 大香蕉久久网| 国产一区二区亚洲精品在线观看| 午夜精品国产一区二区电影 | 亚洲精品,欧美精品| 欧美zozozo另类| 十八禁国产超污无遮挡网站| 97人妻精品一区二区三区麻豆| 97热精品久久久久久| 日韩欧美一区视频在线观看 | 国产亚洲av片在线观看秒播厂 | 国语对白做爰xxxⅹ性视频网站| 啦啦啦韩国在线观看视频| 自拍偷自拍亚洲精品老妇| 大片免费播放器 马上看| 国产色婷婷99| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 成人高潮视频无遮挡免费网站| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的 | 国产国拍精品亚洲av在线观看| 欧美丝袜亚洲另类| 三级男女做爰猛烈吃奶摸视频| 高清av免费在线| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 久久久精品94久久精品| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 嫩草影院入口| 国产精品人妻久久久久久| 亚洲美女视频黄频| 国产精品一二三区在线看| 欧美日韩综合久久久久久| 少妇的逼好多水| 久热久热在线精品观看| 国产乱人视频| 亚洲va在线va天堂va国产| 国产精品不卡视频一区二区| 亚洲av成人av| 高清在线视频一区二区三区| 亚洲精品日韩av片在线观看| 亚洲最大成人手机在线| 九草在线视频观看| 舔av片在线| 久久精品国产鲁丝片午夜精品| 一区二区三区高清视频在线| 一区二区三区免费毛片| 亚洲最大成人中文| 久久精品综合一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| 国产成人a∨麻豆精品| 国产淫语在线视频| 国产成人免费观看mmmm| 亚洲av不卡在线观看| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 人妻制服诱惑在线中文字幕| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| 国产精品人妻久久久久久| 男女边摸边吃奶| 国产黄a三级三级三级人| 久久久久网色| 夜夜爽夜夜爽视频| av在线观看视频网站免费| 一区二区三区四区激情视频| 国产v大片淫在线免费观看| 久久亚洲国产成人精品v| 国产乱人视频| 久久久久久国产a免费观看| 国产黄色视频一区二区在线观看| 欧美潮喷喷水| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| 国产精品一区www在线观看| 美女被艹到高潮喷水动态| 午夜日本视频在线| 成人漫画全彩无遮挡| 韩国高清视频一区二区三区| 麻豆成人av视频| 久久99蜜桃精品久久| 99久久精品国产国产毛片| 日本熟妇午夜| 乱人视频在线观看| 亚洲在线自拍视频| 美女国产视频在线观看| 久久久久久久国产电影| 91av网一区二区| 亚洲国产精品成人久久小说| 免费观看在线日韩| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 99久国产av精品国产电影| 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看 | 国产淫语在线视频| 日韩三级伦理在线观看| 亚洲天堂国产精品一区在线| 又大又黄又爽视频免费| 女的被弄到高潮叫床怎么办| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 美女脱内裤让男人舔精品视频| 国产综合精华液| 啦啦啦韩国在线观看视频| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 国产av在哪里看| 亚洲国产色片| 国产免费福利视频在线观看| 禁无遮挡网站| 夫妻性生交免费视频一级片| 色播亚洲综合网| 色5月婷婷丁香| 亚洲欧洲日产国产| 欧美潮喷喷水| 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 日本-黄色视频高清免费观看| 两个人视频免费观看高清| 午夜免费男女啪啪视频观看| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 欧美97在线视频| 亚洲综合色惰| 久久久久精品性色| 国产免费福利视频在线观看| 久久国内精品自在自线图片| 九九在线视频观看精品| 午夜福利视频精品| 国产黄片美女视频| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 高清日韩中文字幕在线| 老师上课跳d突然被开到最大视频| 久久精品国产自在天天线| 国产69精品久久久久777片| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 国产高清不卡午夜福利| 午夜老司机福利剧场| 成年版毛片免费区| 91精品伊人久久大香线蕉| 特级一级黄色大片| 亚洲av一区综合| 免费av观看视频| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 精品一区在线观看国产| 18+在线观看网站| 床上黄色一级片| 国产日韩欧美在线精品| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 精品一区二区免费观看| 国产在视频线在精品| 久久这里只有精品中国| 日日啪夜夜爽| 我的女老师完整版在线观看| 男女那种视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产综合懂色| 七月丁香在线播放| 乱码一卡2卡4卡精品| 日韩不卡一区二区三区视频在线| 日本三级黄在线观看| 日韩伦理黄色片| 如何舔出高潮| 日韩伦理黄色片| 欧美成人精品欧美一级黄| 亚洲欧美日韩无卡精品| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 成人二区视频| 久久精品国产自在天天线| 免费看日本二区| 亚洲精品,欧美精品| 韩国av在线不卡| 日韩精品青青久久久久久| 乱系列少妇在线播放| 国产精品综合久久久久久久免费| av免费观看日本| 亚洲aⅴ乱码一区二区在线播放| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 美女内射精品一级片tv| 国产精品女同一区二区软件| 日韩成人伦理影院| 18禁在线播放成人免费| 伦精品一区二区三区| 一级二级三级毛片免费看| 中文资源天堂在线| 国产黄片视频在线免费观看| 免费大片黄手机在线观看| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 久久综合国产亚洲精品| 人妻一区二区av| 免费大片18禁| 亚洲最大成人中文| 六月丁香七月| 免费观看av网站的网址| 成年人午夜在线观看视频 | 18禁在线无遮挡免费观看视频| 人人妻人人澡人人爽人人夜夜 | 国产在线男女| 精品久久久久久电影网| 亚洲四区av| 亚洲欧美精品自产自拍| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 欧美bdsm另类| 久久精品夜色国产| 欧美区成人在线视频| 日本av手机在线免费观看| 青春草视频在线免费观看| 亚洲怡红院男人天堂| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 日韩大片免费观看网站| 午夜精品国产一区二区电影 | 老师上课跳d突然被开到最大视频| 男女边摸边吃奶| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 日韩中字成人| 99热全是精品| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 我的老师免费观看完整版| 天天躁日日操中文字幕| 国产亚洲精品av在线| 久久人人爽人人爽人人片va| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 成人av在线播放网站| 欧美最新免费一区二区三区| 日本免费a在线| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 你懂的网址亚洲精品在线观看| 两个人视频免费观看高清| 午夜免费观看性视频| 亚洲精品乱久久久久久| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| 一个人看的www免费观看视频| 欧美一区二区亚洲| 18+在线观看网站| 免费av毛片视频| 国产精品熟女久久久久浪| 欧美人与善性xxx| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 深爱激情五月婷婷| 亚洲在线自拍视频| 欧美日韩在线观看h| 在线 av 中文字幕| 99re6热这里在线精品视频| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app| 午夜福利在线观看免费完整高清在| 嫩草影院精品99| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 久久国内精品自在自线图片| 一级a做视频免费观看| 日韩成人av中文字幕在线观看| 秋霞伦理黄片| 亚洲精品成人久久久久久| 婷婷色综合www| 老司机影院毛片| 免费观看性生交大片5| 97超碰精品成人国产| 亚洲国产欧美人成| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区 | 好男人视频免费观看在线| 搞女人的毛片| 嫩草影院精品99| 波多野结衣巨乳人妻| 九色成人免费人妻av| 在线观看人妻少妇| 日韩制服骚丝袜av| 成人亚洲精品av一区二区| 亚洲精品自拍成人| 国产成人aa在线观看| 欧美精品一区二区大全| 亚洲最大成人手机在线| 插逼视频在线观看| 六月丁香七月| 大香蕉久久网| 亚洲精品久久午夜乱码| 国产伦一二天堂av在线观看| 青春草亚洲视频在线观看| 18+在线观看网站| 精品一区在线观看国产| a级一级毛片免费在线观看| 久久久国产一区二区| 精品一区二区三卡| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区视频9| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 五月天丁香电影| 一区二区三区高清视频在线| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 久久精品综合一区二区三区| 亚洲丝袜综合中文字幕| 七月丁香在线播放| av黄色大香蕉| 一级毛片 在线播放| videos熟女内射| 日日撸夜夜添| 国产色爽女视频免费观看| 日韩大片免费观看网站| 天堂影院成人在线观看| 国产成人免费观看mmmm| av线在线观看网站| 亚洲美女视频黄频| 亚洲av在线观看美女高潮| 国产不卡一卡二| 狠狠精品人妻久久久久久综合| 国产 一区精品| 免费看av在线观看网站| 日韩欧美精品v在线| 天堂俺去俺来也www色官网 | 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 色吧在线观看| 乱码一卡2卡4卡精品| 精品一区二区免费观看| 色尼玛亚洲综合影院| 亚洲av.av天堂| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 亚洲怡红院男人天堂| 日韩欧美国产在线观看| 国产精品国产三级国产av玫瑰| 免费黄频网站在线观看国产| www.色视频.com| 亚洲天堂国产精品一区在线| 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| 免费av毛片视频| 国产精品麻豆人妻色哟哟久久 | 久久久a久久爽久久v久久| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 国产精品一及| 精品久久久噜噜| 一边亲一边摸免费视频| 成年女人在线观看亚洲视频 | 色综合站精品国产| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 在线播放无遮挡| 国产综合精华液| 女人久久www免费人成看片| 久久午夜福利片| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 身体一侧抽搐| 能在线免费观看的黄片| 1000部很黄的大片| 午夜爱爱视频在线播放| 在线观看av片永久免费下载| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 成人av在线播放网站| 午夜福利在线在线| 久久99热6这里只有精品| 亚洲成人中文字幕在线播放| 欧美极品一区二区三区四区| 国产成人91sexporn| 免费少妇av软件| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 免费观看性生交大片5| 亚洲成色77777| 大香蕉97超碰在线| 中文天堂在线官网| 日韩 亚洲 欧美在线| 汤姆久久久久久久影院中文字幕 | 国产精品人妻久久久久久| 国产综合精华液| .国产精品久久| 亚洲综合精品二区| 国产免费一级a男人的天堂| 亚洲最大成人手机在线| 男女边摸边吃奶| 国产亚洲一区二区精品| 欧美bdsm另类| 观看免费一级毛片| 一级片'在线观看视频| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 国产黄片美女视频| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 成人二区视频| 久久久成人免费电影| 欧美97在线视频| a级毛片免费高清观看在线播放| 久久久久免费精品人妻一区二区| 久久6这里有精品| 免费观看在线日韩| 欧美xxxx性猛交bbbb| 91av网一区二区| 天堂影院成人在线观看| 国产成人精品婷婷| 亚洲性久久影院| 国产免费视频播放在线视频 | 最近手机中文字幕大全| 中文天堂在线官网| 一级av片app| av免费在线看不卡| 久久这里有精品视频免费| 免费看美女性在线毛片视频| 女人久久www免费人成看片|