• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Voidage Measurement of Air-Water Two-phase Flow Based on ERT Sensor and Data Mining Technology*

    2012-10-31 03:35:14WANGBaoliang王保良MENGZhenzhen孟振振HUANGZhiyao黃志堯JIHaifeng冀海峰andLIHaiqing李海青
    關(guān)鍵詞:海峰

    WANG Baoliang (王保良)**, MENG Zhenzhen (孟振振), HUANG Zhiyao (黃志堯), JI Haifeng(冀海峰) and LI Haiqing (李海青)

    State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

    Voidage Measurement of Air-Water Two-phase Flow Based on ERT Sensor and Data Mining Technology*

    WANG Baoliang (王保良)**, MENG Zhenzhen (孟振振), HUANG Zhiyao (黃志堯), JI Haifeng(冀海峰) and LI Haiqing (李海青)

    State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

    Based on an electrical resistance tomography (ERT) sensor and the data mining technology, a new voidage measurement method is proposed for air-water two-phase flow. The data mining technology used in this work is a least squares support vector machine (LS-SVM) algorithm together with the feature extraction method, and three feature extraction methods are tested: principal component analysis (PCA), partial least squares (PLS) and independent component analysis (ICA). In the practical voidage measurement process, the flow pattern is firstly identified directly from the conductance values obtained by the ERT sensor. Then, the appropriate voidage measurement model is selected according to the flow pattern identification result. Finally, the voidage is calculated. Experimental results show that the proposed method can measure the voidage effectively, and the measurement accuracy and speed are satisfactory. Compared with the conventional voidage measurement methods based on ERT, the proposed method doesn’t need any image reconstruction process, so it has the advantage of good real-time performance. Due to the introduction of flow pattern identification, the influence of flow pattern on the voidage measurement is overcome. Besides, it is demonstrated that the LS-SVM method with PLS feature extraction presents the best measurement performance among the tested methods.

    two-phase flow, voidage measurement, electrical resistance tomography sensor, data mining, feature extraction

    1 INTRODUCTION

    Voidage, which is the ratio of gas area to the total area of pipeline cross section, is an important parameter in gas-liquid two-phase flow. Its measurement is significant for status monitoring, quality control,safety assurance and flowrate measurement of the two-phase flow system [1]. Although many voidage measurement methods have been proposed, few of them can meet the practical requirements because of the inherent complexity of two-phase flow.

    Electrical resistance tomography (ERT) technique has proved to be an attractive and promising method for voidage measurement of gas-liquid two-phase flow [2-4].However, most of the conventional voidage measurement methods based on ERT are to construct the phase distribution image of two-phase flow in the pipe and calculate the voidage value based on the image [2, 4].In these methods, the complex and time-consuming image reconstruction process will lead to bad real-time performance, and the measurement accuracy is not satisfactory because of the influence of “soft-field”characteristics of ERT. Therefore, their practical applications are limited, and more research work should be undertaken in this area.

    The conductance data measured by the ERT sensor reflects the information of the phase distribution and fraction of gas-liquid flow. It is possible to identify the flow pattern and measure the voidage directly from the conductance data. The aim of this work is to propose a new voidage measurement method for air-water two-phase flow based on a 16-electrode ERT sensor and the data mining technology. The data mining technology is used to implement the flow pattern identification using the least squares support vector machine(LS-SVM) classification algorithm [5], and the voidage determination from the conductance data using the LS-SVM regression algorithm [6]. Thus, the image reconstruction process in conventional voidage measurement methods is by-passed, and the real-time performance is improved. Meanwhile, flow pattern identification is introduced before voidage measurement and different measurement models are used for different flow patterns, so the influence of flow pattern on the voidage measurement is overcome. Three feature extraction methods are applied to pre-process the conductance data and reduce the input dimensionality of LS-SVM: principal component analysis (PCA), partial least squares (PLS) and independent component analysis (ICA). These three methods are tested and compared in their performance for the voidage measurement.

    Experiments showed that the proposed method could measure the voidage effectively for air-water two-phase flow and the LS-SVM method with PLS feature extraction presented the best measurement performance among the tested methods.

    2 VOIDAGE MEASUREMENT SYSTEM

    2.1 Structure of measurement system

    The voidage measurement system consists of anERT sensor, a data acquisition unit and a computer.The ERT sensor is made of a plexiglas pipe with 16 evenly spaced electrodes mounted around the inner surface. The data acquisition unit injects the bi-directional pulse current into the two neighbouring electrodes,and measures the voltage from other pairs of neighbouring electrodes. This procedure is repeated until all the independent measurements have been made, and then 104 independent voltage values which represent the conductance of the two-phase fluid are obtained and transferred to the computer [7]. The computer uses the conductance data to identify the current flow pattern and calculate the voidage.

    2.2 Voidage measurement scheme

    Flow patterns of two-phase flow influence the output signal of ERT sensor, then affect strongly the way of estimating the voidage. In order to overcome this influence, the flow pattern is identified first and different voidage measurement models are used for different flow patterns in this work.

    Various flow patterns appear in the horizontal air-water flow, such as bubble flow, stratified flow,slug flow and annular flow. However, voidage is a parameter defined over the cross section of pipe, and only three typical flow patterns appear at the cross section of ERT sensor: bubble flow, stratified flow and annular flow, so the voidage measurement models are constructed for these three cross-sectional flow patterns only.

    Due to the complexity of two-phase flow, it’s difficult to explore the accurate relationship between the conductance data and the flow pattern (or voidage).The data mining technology is applied here to implement this work, that is, the LS-SVM classification algorithm is used to develop the flow pattern classifier,and the LS-SVM regression algorithm is applied for the development of the voidage measurement models.

    Because the irrelevant features and correlated features in the input data could deteriorate the generalization performance of LS-SVM [8], feature extraction for LS-SVM is necessary. PCA (principal component analysis), PLS (partial least squares) and ICA(independent component analysis) are all well-known methods for feature extraction. PCA linearly transform the input data into the uncorrelated components [9],and PLS extracts the components which are uncorrelated among themselves and most correlated to the objective variable [9, 10]. ICA extracts mutually statistically independent components from input variables [11].

    The voidage measurement scheme is illustrated in Fig. 1. The left side of this figure shows the practical voidage measurement process and the right side gives the development process of flow pattern classifier and voidage measurement model.

    3 FEATURE EXTRACTION OF CONDUCTANCE DATA

    3.1 Three feature extraction methods

    PCA, PLS and ICA all linearly transform the 104-dimensional input conductance data into n-dimensional features (n<104). Given l input data rt(t 1, 2, ··, l and rt[rt1, rt2, ··, rt104] is the 104 conductance values measured in one time), the feature vector stis obtained as follows [9-11]:

    where U is 104×n transformation matrix which is different in different methods. st=[st1, st2,··, stn] is the vector with n extracted features.

    Figure 1 Voidage measurement flowsheet

    PCA transforms the original input data into uncorrelated features, which is very common used in the statistics analysis. The column vector of transformation matrix U is the eigenvector of the sample covariance matrix, whereThe 104-dimensional conductance data can be transformed into 104 features, namely there are 104 elements in st(st=[st1, st2,··, st104]). The first several features in stcontain the maximum variances of original conductance data, while the last ones in stare practically noise signals. Besides, because these features are uncorrelated with each other, the multicollinearity of original conductance data is eliminated,and this can improve the performance of LS-SVM models. In order to reduce the dimensionality of features, only the first n features which have the maximum variances are retained.

    ICA is famously used in blind source separation.It transforms the original mixing signal to the features which are statistically independent, i.e. the joint probability density of the components in stis equal to the product of the marginal densities of these components. The higher order information of the input variables is required to implement ICA, while the features extracted by PCA are merely uncorrelated, and only the second-order information of the sample covariance is used in PCA. Therefore, the ICA can also eliminate the multi-collinearity of conductance data, and can be expected to perform better than PCA. Many algorithms have been developed for performing ICA, the one used in this work is called fixed-point FastICA algorithm [12]. The first step of ICA is to make the input data orthonormal, which is realized by PCA in this work. The use of PCA also reduces the dimensionality of extracted features in st.

    The most difference of PLS to PCA and ICA is that PLS takes the objective variable (i.e. the flow pattern and the voidage in this paper) into consideration in the transformation process. The features extracted by PLS are uncorrelated to each other as that in PCA,and they are most correlated to the objective variable.PLS can be implemented by carrying out NIPALS(nonlinear iterative partial least squares) algorithm [9].The features are extracted one by one from the conductance data and the objective variable. Every extracted feature is uncorrelated to the others, and the covariance between the feature and the objective variable is maximized. After extraction, 104 uncorrelated features are obtained. Similarly, only the first n features which are the most correlated to the objective variable are retained, so the dimensionality is reduced.

    3.2 Feature extraction of conductance data

    By using the above algorithms, the experimental data set of conductance values are processed to obtain the transformation matrix U. One important parameter in these feature extraction methods is the number n of retained features. In this work, this number is determined through five-fold cross-validation method [8].The experimental data set is divided into five parts,four parts are used to construct the measurement model, and the other one part is used to validate this model and give the measurement error. After five parts are used as the validation set in turn, the measurement errors are summed up as the cross-validation error.The number n which produces the smallest crossvalidation error is selected as the final number of retained features.

    4 FLOW PATTERN IDENTIFICATION

    4.1 Development of flow pattern classifier

    The cross-sectional flow pattern is identified as bubble flow, stratified flow and annular flow, so the flow pattern classification is a multiclassification problem. The LS-SVM multiclassification method used in this work is the “one-against-one” method [13].The binary classifier is constructed between every two flow patterns, so three binary classifiers are constructed between three flow patterns.

    For training data set with l samples {st, yt} (t1,2, ··, l, stis the extracted feature, yt∈{?1, 1} is the flow pattern label) from two flow patterns, the binary flow pattern classifier is constructed in the following form [5]:

    where y is the predicted flow pattern label, s is the feature vector transformed from the measured conductance values,is called the kernel function (σ is its parameter),tβ is the Lagrangian multiplier and d is the deviation item.tβ and d are determined by solving the following matrix equation [5]:

    Figure 2 Flowchart of flow pattern identification process

    Figure 3 Flowchart of voidage measurement process

    4.2 Flow pattern identification process

    Figure 2 illustrates the practical flow pattern identification process in which the voting and “max wins” strategy is used [13]. The conductance values measured by the ERT sensor are firstly transformed by the feature extraction, and the features are fed into the three binary classifiers. The three binary classifiers are constructed beforehand between every two flow patterns, and they are “annular flow vs. bubble flow”classifier, “annular flow vs. stratified flow” classifier and “bubble flow vs. stratified flow” classifier. All three classifiers identify the current flow pattern and“vote” for one pattern. For example, if one classifier identifies the flow as annular flow, then the vote for annular flow is added by one, so the maximum vote for a candidate pattern is two. After voting, one of the three flow patterns will get the largest vote, which is then identified as the current flow pattern.

    5 VOIDAGE MEASUREMENT

    5.1 Development of voidage measurement model The voidage measurement models are constructed for bubble flow, stratified flow and annular flow respectively. For the training data set with l samples {st, αt} (t=1, 2, ··, l, stis the extracted feature,which is defined by Eq. (1), αtis the voidage) from one flow pattern, the voidage measurement model is in the following form [6]:

    where α is the calculated voidage, s is the feature vector transformed from the measured conductance values, ψ (s,st) = e xp(?|s ? st|2/σ2) is the kernel function. The parameterstβ and d can be obtained by solving the following matrix equation [6]:

    where 1 = [ 1,1,···,1]T, the element in matrix ? is Ωij=The evolutionary strategy [(μ +λ) ? ES] was used to optimize the parameters γ and σ by minimizing the cross-validation errors [14, 15], which is similar to the parameter optimization in flow pattern identification.

    5.2 Voidage measurement process

    The practical voidage measurement process is shown in Fig. 3. Firstly, the conductance data are pre-processed by the feature extraction (i.e. PCA, ICA and PLS methods), as shown by Eq. (1). Secondly, the extracted features are inputted to the flow pattern classifiers as shown in Eq. (2), and to identify the current flow pattern according to the method in Fig. 2.Then, according to the flow pattern identification result, the appropriate voidage measurement model forthis flow pattern, Eq. (4), is selected to calculate the voidage value from the conductance data.

    Table 1 Comparison between different feature extraction methods

    6 EXPERIMENTAL RESULTS

    Because of the lack of dynamic measurement methods to effectively obtain precise reference voidage, static experiments were carried out to evaluate the performance of the voidage measurement method.Water and some glass pipes of different diameters were used to simulate the cross-sectional geometric structure of air-water flow, so that the actual voidage could be calculated. Two ERT sensors with inner diameters of 40 mm and 25 mm were tested, and three typical flow patterns are simulated: bubble flow,stratified flow and annular flow. Many small-sized glass tubes are used to act as bubbles, and put different numbers of pipes in the ERT sensor which is full of water to simulate the bubble flow; put different large glass tubes in the ERT sensor and fill the gap between them with water to simulate the annular flow;place the ERT sensor horizontally and adjust the water level in it to simulate the stratified flow.

    All the data were divided into two parts for different pipe diameters and flow patterns: training data set and testing data set. The numbers of training data(Ntrain) and testing data (Ntest) for each flow pattern are shown in Table 1. The feature extraction methods PCA, PLS and ICA are tested and compared for every flow pattern in the experiment. The root mean squares error (ERMS) and the number of features used (n) are utilized as the evaluation criterion. ERMSis defined as

    in which αcalcis the calculated voidage, and αrefis the reference voidage value.

    The experiment shows that the proposed method can measure the voidage effectively, and the experimental comparison result is given in Table 1. Besides,the validation of the flow pattern identification method in Section 4 can be found in Ref. [16], which is used in the dynamic flow experiment.

    It can be seen that the voidage measurement models with PCA give similar and sometimes smaller error than that without feature extraction. The number of features is dramatically decreased compared with the original number 104. The higher order information of the input variables is extracted by ICA, and this makes ICA perform better than PCA. The ICA +LS-SVM method presents smaller measurement error and less extracted features (n). Overall, the PLS method presents the best performance for two pipe diameters and all flow patterns, even though sometimes ICA gives better ERMS(i.e. stratified flow 40 mm). Because the PLS method extracts the conductance features that are most correlated to the voidage,so it can give the smallest error and the lowest feature number most of the time.

    Figure 4 shows the voidage measurement results with PLS feature extraction. The maximum error for bubble flow, stratified flow and annular flow is less than 6.0%, 4.9% and 3.9% respectively, and the measurement time is less than 0.1 s.

    Figure 4 Voidage measurement results of LS-SVM model with PLS feature extraction

    7 CONCLUSIONS

    A new voidage measurement method for air-water two-phase flow is proposed based on an ERT sensor and the data mining technology. The data mining technology used for flow pattern identification and voidage measurement is the LS-SVM algorithm.Static experimental results demonstrate that the proposed method can achieve effective and rapid voidage measurement. Compared with the conventional voidage measurement methods based on ERT, the proposed method doesn’t need any image reconstruction process and has the advantage of good real-time performance.Meanwhile, the flow pattern identification is introduced to the voidage measurement, so the influence of flow pattern on the voidage measurement is overcome.

    Three feature extraction methods, PCA, PLS and ICA, were used for pre-processing the conductance data from ERT sensor. Experimental results show that PLS feature extraction presents better overall performance of dimensionality reduction and measurement accuracy than PCA, ICA and that without feature extraction. With the PLS method and the LS-SVM algorithm, the maximum error of voidage measurement for bubble flow, stratified flow and annular flow is less than 6.0%, 4.9% and 3.9% respectively, and the measurement time is less than 0.1 s.

    1 Li, H.Q., Two-phase Flow Parameter Measurement and Applications,Zhejiang University Press, Hangzhou (1991). (in Chinese)

    2 Giguere, R., Fradette, L., Mignon, D., Tanguy, P.A., “ERT algorithm for quantitative concentration measurement of multiphase flows”,Chem. Eng. J., 141, 305-317 (2008).

    3 Dong, F., Jiang, Z.X., Qiao, X.T., Xu, L.A., “Application of electrical resistance tomography to two-phase pipe flow parameter measurement”, Flow Meas. Instrum., 14 (4-5), 183-192 (2003).

    4 Dickin, F., Wang, M., “Electrical resistance tomography for process applications”, Meas. Sci. Technol., 7, 247-260 (1996).

    5 Suykens, J.A.K., Vandewalle, J., “Least squares support vector machine classifiers”, Neural Process. Lett., 9 (3), 293-300 (1999).

    6 Suykens, J.A.K., Vandewalle, J., “Recurrent least squares support vector machines”, IEEE Trans. Circuits Syst. I Fundam. Theor. Appl.,47 (7), 1109-1114 (2000).

    7 Wang, B.L., Huang, Z.Y., Li, H.Q., “Design of high-speed ECT and ERT system”, In: the 6th International Symposium on Measurement Techniques for Multiphase Flows, J. Phys. Conf. Ser., 147 (1),012035 (2009).

    8 Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M., “A comparison of PCA, KPCA, and ICA for dimensionality reduction in support vector machine”, Neurocomputing, 55, 321-336 (2003).

    9 Chen, D.Z., Multivariate Data Processing, Chemical Industry Press,Beijing (1998). (in Chinese)

    10 Wang, H.W., Partial Least Square Regression Method and Applications, National Defence Industry Press, Beijing (1999). (in Chinese)

    11 Hyvarinen, A., Oja, E., “Independent component analysis: Algorithms and applications”, Neural Networks, 13, 411-430 (2000).

    12 Hyvarinen, A., “Fast and robust fixed-point algorithm for independent component analysis”, IEEE Trans. Neural Networks, 10 (3),626-634 (1999).

    13 Hsu, C.W., Lin, C.J., “A comparison of methods for multiclass support vector machines”, IEEE Trans. Neural Networks, 13 (2),415-425 (2002).

    14 Friedrichs, F., Igel, C., “Evolutionary tuning of multiple SVM parameters”, Neurocomput., 64, 107-117 (2005).

    15 B?ck, T., Schwefel, H.P., “An overview of evolutionary algorithms for parameter optimization”, Evol. Comput., 1 (1), 1-23 (1993).

    16 Meng, Z., Huang, Z., Wang, B., Ji, H., Li, H., Yan, Y., “Air-water two-phase flow measurement using a venturi meter and an electrical resistance tomography sensor”, Flow Meas. Instrum., 21 (3),268-276 (2010).

    2011-11-17, accepted 2012-01-17.

    * Supported by the National Natural Science Foundation of China (60972138).

    ** To whom correspondence should be addressed. E-mail: blwang@iipc.zju.edu.cn

    猜你喜歡
    海峰
    以牙還牙
    春風(fēng)又渡太行山
    《璀璨雄安》創(chuàng)作小稿
    Progress and challenges in magnetic skyrmionics
    活著
    歌海(2022年1期)2022-03-29 21:39:55
    倪海峰
    兒童大世界(2019年3期)2019-04-11 03:33:38
    安海峰水印作品
    歌海(2019年6期)2019-02-22 12:23:31
    黃梅新星 周海峰
    My School
    Empirical Analysis of Binary Logistic Model for the Influencing Factors of the Chinese Urban and Rural Residents'Woolen Products Consumption—Based on Questionnaires of 513 Urban and Rural Residents in 16 Provinces
    ponron亚洲| 草草在线视频免费看| 日韩欧美国产一区二区入口| 午夜成年电影在线免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲九九香蕉| 天天躁狠狠躁夜夜躁狠狠躁| 三级男女做爰猛烈吃奶摸视频| 欧美高清成人免费视频www| 天堂av国产一区二区熟女人妻| 亚洲中文日韩欧美视频| 搡老熟女国产l中国老女人| 国语自产精品视频在线第100页| 老熟妇乱子伦视频在线观看| 悠悠久久av| 在线a可以看的网站| 999久久久精品免费观看国产| 亚洲国产精品合色在线| 白带黄色成豆腐渣| 一区二区三区激情视频| 欧美+亚洲+日韩+国产| 日韩人妻高清精品专区| 欧美三级亚洲精品| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 精品久久蜜臀av无| 欧洲精品卡2卡3卡4卡5卡区| 久久天堂一区二区三区四区| 国产乱人视频| av中文乱码字幕在线| 精品久久久久久,| 婷婷六月久久综合丁香| 日本精品一区二区三区蜜桃| 视频区欧美日本亚洲| 免费大片18禁| cao死你这个sao货| 香蕉国产在线看| aaaaa片日本免费| 亚洲精品456在线播放app | 国内久久婷婷六月综合欲色啪| 国产成人av激情在线播放| 成人一区二区视频在线观看| svipshipincom国产片| 偷拍熟女少妇极品色| 免费搜索国产男女视频| 成人av在线播放网站| 在线播放国产精品三级| 搡老熟女国产l中国老女人| 三级男女做爰猛烈吃奶摸视频| 亚洲国产看品久久| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 禁无遮挡网站| 最新在线观看一区二区三区| 日韩欧美国产在线观看| 久久久久免费精品人妻一区二区| 熟女电影av网| 男人舔女人的私密视频| 成人三级黄色视频| 国产又色又爽无遮挡免费看| 丰满的人妻完整版| 欧美成人性av电影在线观看| 一个人观看的视频www高清免费观看 | 色老头精品视频在线观看| 国产亚洲av高清不卡| 午夜福利高清视频| av天堂在线播放| 在线视频色国产色| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜一区二区| 村上凉子中文字幕在线| av天堂在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲精品在线观看二区| 亚洲真实伦在线观看| 99国产极品粉嫩在线观看| 99精品欧美一区二区三区四区| 最近最新免费中文字幕在线| 成人无遮挡网站| 日本一二三区视频观看| 久9热在线精品视频| 亚洲成人久久爱视频| 国产日本99.免费观看| 国产视频内射| 国产视频内射| 欧美黄色淫秽网站| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 91字幕亚洲| 18禁国产床啪视频网站| 在线观看午夜福利视频| 国产激情久久老熟女| 国产亚洲精品av在线| 女同久久另类99精品国产91| 小说图片视频综合网站| 日韩中文字幕欧美一区二区| 一区二区三区激情视频| 久久久国产欧美日韩av| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 久久久久国产一级毛片高清牌| 美女被艹到高潮喷水动态| 欧美不卡视频在线免费观看| 亚洲真实伦在线观看| 久久久久久久午夜电影| 天天添夜夜摸| 高清毛片免费观看视频网站| 欧美成人免费av一区二区三区| 脱女人内裤的视频| 老熟妇乱子伦视频在线观看| 神马国产精品三级电影在线观看| 久久99热这里只有精品18| 天天添夜夜摸| 又大又爽又粗| 嫁个100分男人电影在线观看| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 天天一区二区日本电影三级| 国产亚洲av高清不卡| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 国产成人福利小说| 久久精品影院6| 成在线人永久免费视频| 69av精品久久久久久| 操出白浆在线播放| 欧美国产日韩亚洲一区| 在线国产一区二区在线| 国产伦在线观看视频一区| 亚洲av成人不卡在线观看播放网| 国产一区二区激情短视频| 1024手机看黄色片| 伦理电影免费视频| 好看av亚洲va欧美ⅴa在| 两个人的视频大全免费| 最新中文字幕久久久久 | 中文字幕人妻丝袜一区二区| 免费大片18禁| 久久这里只有精品19| 国产成人av激情在线播放| 亚洲专区国产一区二区| 一区二区三区激情视频| 巨乳人妻的诱惑在线观看| 欧美黑人欧美精品刺激| 露出奶头的视频| 日韩高清综合在线| 欧美日韩福利视频一区二区| 久久这里只有精品19| 一级毛片高清免费大全| 97碰自拍视频| 美女高潮喷水抽搐中文字幕| 美女cb高潮喷水在线观看 | 欧美av亚洲av综合av国产av| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 精品福利观看| 99久久精品热视频| а√天堂www在线а√下载| 亚洲第一欧美日韩一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 美女大奶头视频| 免费大片18禁| 99在线视频只有这里精品首页| 蜜桃久久精品国产亚洲av| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 18禁观看日本| 亚洲成人中文字幕在线播放| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 欧美中文综合在线视频| 99国产精品99久久久久| 国产伦一二天堂av在线观看| 成年版毛片免费区| 欧美不卡视频在线免费观看| 女同久久另类99精品国产91| 欧美一区二区精品小视频在线| 又粗又爽又猛毛片免费看| 美女大奶头视频| 欧美av亚洲av综合av国产av| 午夜影院日韩av| 国产野战对白在线观看| 最好的美女福利视频网| www.自偷自拍.com| 此物有八面人人有两片| 波多野结衣高清无吗| 亚洲乱码一区二区免费版| 国产野战对白在线观看| 啦啦啦免费观看视频1| 亚洲av免费在线观看| 成人无遮挡网站| 成熟少妇高潮喷水视频| 不卡av一区二区三区| 国产一区二区三区视频了| 女人高潮潮喷娇喘18禁视频| 色综合站精品国产| 99在线视频只有这里精品首页| 高潮久久久久久久久久久不卡| 老鸭窝网址在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲九九香蕉| 毛片女人毛片| 精品无人区乱码1区二区| 免费看日本二区| 亚洲欧洲精品一区二区精品久久久| 国产在线精品亚洲第一网站| 国产激情偷乱视频一区二区| h日本视频在线播放| 国内揄拍国产精品人妻在线| 亚洲国产欧美一区二区综合| 欧美色视频一区免费| 两个人看的免费小视频| 激情在线观看视频在线高清| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久久久99蜜臀| cao死你这个sao货| 18禁黄网站禁片午夜丰满| 亚洲av成人精品一区久久| 亚洲一区二区三区色噜噜| avwww免费| 波多野结衣高清作品| 一边摸一边抽搐一进一小说| 久久久国产成人精品二区| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 一二三四社区在线视频社区8| 一边摸一边抽搐一进一小说| av黄色大香蕉| 女同久久另类99精品国产91| 91av网一区二区| 欧美日韩乱码在线| 一个人观看的视频www高清免费观看 | 1000部很黄的大片| 99国产极品粉嫩在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av香蕉五月| 久久久久久国产a免费观看| 在线观看午夜福利视频| 女人被狂操c到高潮| 日日干狠狠操夜夜爽| cao死你这个sao货| 国产淫片久久久久久久久 | 高潮久久久久久久久久久不卡| 看黄色毛片网站| 少妇的逼水好多| 一个人看视频在线观看www免费 | 亚洲自偷自拍图片 自拍| 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 一区福利在线观看| 长腿黑丝高跟| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 欧美乱色亚洲激情| 亚洲精品在线美女| 男女做爰动态图高潮gif福利片| 在线观看美女被高潮喷水网站 | 在线a可以看的网站| 国产精品久久久久久亚洲av鲁大| 欧美一区二区国产精品久久精品| 1024手机看黄色片| 真人做人爱边吃奶动态| 少妇人妻一区二区三区视频| 69av精品久久久久久| 成年女人毛片免费观看观看9| 国产aⅴ精品一区二区三区波| 一级毛片高清免费大全| av福利片在线观看| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 黑人巨大精品欧美一区二区mp4| 此物有八面人人有两片| 变态另类丝袜制服| 在线观看午夜福利视频| 欧美大码av| 亚洲专区国产一区二区| 久久久成人免费电影| 99国产精品一区二区蜜桃av| 精品无人区乱码1区二区| 在线观看舔阴道视频| 午夜福利在线观看免费完整高清在 | 国产人伦9x9x在线观看| 九色国产91popny在线| 国产又黄又爽又无遮挡在线| 特级一级黄色大片| av在线蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 90打野战视频偷拍视频| 久久久国产成人免费| 久久这里只有精品19| av黄色大香蕉| 国产亚洲精品综合一区在线观看| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 久久精品综合一区二区三区| 日韩高清综合在线| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 麻豆成人av在线观看| 91av网一区二区| 亚洲精品乱码久久久v下载方式 | 黑人操中国人逼视频| 91av网一区二区| 国产亚洲欧美在线一区二区| 51午夜福利影视在线观看| 麻豆av在线久日| 成人三级做爰电影| 韩国av一区二区三区四区| 亚洲自拍偷在线| 成年女人永久免费观看视频| 在线免费观看不下载黄p国产 | 国产精品一区二区免费欧美| 白带黄色成豆腐渣| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 日韩精品青青久久久久久| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 这个男人来自地球电影免费观看| 91老司机精品| 小说图片视频综合网站| 国产av不卡久久| 国产视频内射| 国产午夜福利久久久久久| 亚洲av电影在线进入| 欧美3d第一页| 国产精品一区二区精品视频观看| 男女下面进入的视频免费午夜| 亚洲五月天丁香| 国产久久久一区二区三区| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 久久精品91无色码中文字幕| 久久热在线av| 成年女人看的毛片在线观看| 男女下面进入的视频免费午夜| 日韩欧美免费精品| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 久久久水蜜桃国产精品网| 日本黄色片子视频| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 又粗又爽又猛毛片免费看| 欧美性猛交黑人性爽| 国产成人aa在线观看| 久久精品亚洲精品国产色婷小说| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 亚洲国产精品sss在线观看| 狠狠狠狠99中文字幕| 婷婷丁香在线五月| 91九色精品人成在线观看| 精品国产美女av久久久久小说| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品一区二区三区| 国产成人系列免费观看| 久久亚洲真实| 看片在线看免费视频| av欧美777| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 中文字幕人成人乱码亚洲影| 男人的好看免费观看在线视频| 国产av一区在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 香蕉av资源在线| 欧美日韩一级在线毛片| 欧美日本视频| 国产精品av视频在线免费观看| 1024手机看黄色片| 久久精品国产综合久久久| 一区福利在线观看| 后天国语完整版免费观看| 亚洲国产欧美网| 欧美日本亚洲视频在线播放| 国产黄色小视频在线观看| 男女那种视频在线观看| 18禁观看日本| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕| 午夜福利高清视频| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 黄色成人免费大全| 国产三级黄色录像| 色视频www国产| 欧美日韩综合久久久久久 | 精品国产超薄肉色丝袜足j| 露出奶头的视频| 老司机福利观看| 久久国产精品影院| 舔av片在线| 淫妇啪啪啪对白视频| www日本黄色视频网| 禁无遮挡网站| 欧美高清成人免费视频www| 日韩免费av在线播放| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 999久久久国产精品视频| 久久中文字幕人妻熟女| 婷婷丁香在线五月| www.自偷自拍.com| 99国产精品一区二区蜜桃av| 看免费av毛片| 日韩欧美精品v在线| 1024手机看黄色片| 搡老熟女国产l中国老女人| 亚洲精品美女久久久久99蜜臀| 桃色一区二区三区在线观看| av福利片在线观看| 舔av片在线| 观看免费一级毛片| 国产午夜福利久久久久久| 中文字幕熟女人妻在线| 久久精品国产99精品国产亚洲性色| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| av女优亚洲男人天堂 | 男人舔奶头视频| 美女扒开内裤让男人捅视频| 好看av亚洲va欧美ⅴa在| 国产不卡一卡二| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 欧美日韩国产亚洲二区| 久久久久亚洲av毛片大全| 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 国产精品99久久久久久久久| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清| 欧美国产日韩亚洲一区| 两个人的视频大全免费| 精品免费久久久久久久清纯| 免费在线观看日本一区| 亚洲片人在线观看| 真人一进一出gif抽搐免费| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 老汉色av国产亚洲站长工具| 亚洲成人久久爱视频| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 久久天堂一区二区三区四区| 国内精品久久久久久久电影| 老汉色∧v一级毛片| 91久久精品国产一区二区成人 | 久久久久久久精品吃奶| 亚洲自偷自拍图片 自拍| 亚洲无线在线观看| 色尼玛亚洲综合影院| 日本 av在线| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 久9热在线精品视频| 熟女电影av网| 日本 欧美在线| 国产1区2区3区精品| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 成年女人看的毛片在线观看| 欧美在线一区亚洲| 9191精品国产免费久久| 变态另类丝袜制服| 欧美国产日韩亚洲一区| 少妇丰满av| 美女高潮的动态| 国产成人一区二区三区免费视频网站| 小说图片视频综合网站| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 90打野战视频偷拍视频| 国产成人av激情在线播放| 久久久成人免费电影| 老司机午夜福利在线观看视频| 在线a可以看的网站| 天天添夜夜摸| 欧美最黄视频在线播放免费| 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| 国产熟女xx| 国产黄a三级三级三级人| 99热这里只有精品一区 | 又粗又爽又猛毛片免费看| 亚洲色图 男人天堂 中文字幕| 中文字幕av在线有码专区| 国产不卡一卡二| 欧美国产日韩亚洲一区| 国产高清激情床上av| 亚洲欧美激情综合另类| 久久精品亚洲精品国产色婷小说| 久久久水蜜桃国产精品网| 久久热在线av| 国产不卡一卡二| 国产69精品久久久久777片 | 欧美日韩乱码在线| 99久久成人亚洲精品观看| 波多野结衣高清无吗| 久久亚洲真实| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 久9热在线精品视频| 欧美日韩综合久久久久久 | 日韩成人在线观看一区二区三区| 国产成人影院久久av| 成人国产综合亚洲| 99在线人妻在线中文字幕| 亚洲国产中文字幕在线视频| 亚洲精品一区av在线观看| 久99久视频精品免费| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| 国产精品永久免费网站| 国产精品香港三级国产av潘金莲| 精品日产1卡2卡| 国产精品综合久久久久久久免费| 中国美女看黄片| 99久久精品一区二区三区| 国产主播在线观看一区二区| www.精华液| 日韩欧美精品v在线| 无人区码免费观看不卡| 久久香蕉精品热| 中亚洲国语对白在线视频| 亚洲av中文字字幕乱码综合| 一二三四社区在线视频社区8| 很黄的视频免费| 亚洲成人久久性| 午夜免费激情av| h日本视频在线播放| 90打野战视频偷拍视频| 99热精品在线国产| 他把我摸到了高潮在线观看| 国产成人啪精品午夜网站| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | aaaaa片日本免费| 久久久久久九九精品二区国产| 欧美成人性av电影在线观看| 精品久久久久久久久久免费视频| 亚洲 国产 在线| 精品一区二区三区视频在线 | 欧美3d第一页| 日韩精品青青久久久久久| 国产成人aa在线观看| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 久久久久国内视频| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 香蕉久久夜色| 久久中文字幕一级| 国产成+人综合+亚洲专区| 成在线人永久免费视频| 国产伦精品一区二区三区四那| 国产一区二区激情短视频| 99久久99久久久精品蜜桃| 亚洲九九香蕉| 国产伦在线观看视频一区| 亚洲精品中文字幕一二三四区| www日本在线高清视频| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 成年女人永久免费观看视频| 精品久久久久久久人妻蜜臀av| 欧美一区二区国产精品久久精品| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 两个人视频免费观看高清| 国产精品一区二区三区四区免费观看 | 欧美色欧美亚洲另类二区| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 色视频www国产| 国产精品久久久av美女十八| 老司机午夜福利在线观看视频|