• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorptive Thermodynamic Properties and Kinetics of trans-1,2-Cyclohexandiol onto AB-8 Resin

    2012-10-31 03:35:24XIEYanxin謝艷新HOULili侯麗麗YANGQian楊倩andJIANGDenggao蔣登高CollegeofChemicalEngineeringandEnergyZhengzhouUniversityZhengzhou45000ChinaDepartmentofChemistryZhengzhouUniversityZhengzhou45000ChinaCommitteeofBaoshanCircularEconomyI
    關(guān)鍵詞:楊倩麗麗

    XIE Yanxin (謝艷新)*, HOU Lili (侯麗麗), YANG Qian (楊倩) and JIANG Denggao (蔣登高) College of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 45000 China Department of Chemistry, Zhengzhou University, Zhengzhou 45000 China Committee of Baoshan Circular Economy Industrial Agglomeration, Hebi 45800, China

    Adsorptive Thermodynamic Properties and Kinetics of trans-1,2-Cyclohexandiol onto AB-8 Resin

    XIE Yanxin (謝艷新)1,*, HOU Lili (侯麗麗)2, YANG Qian (楊倩)3and JIANG Denggao (蔣登高)11College of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China2Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China3Committee of Baoshan Circular Economy Industrial Agglomeration, Hebi 458030, China

    AB-8 resin was used as an adsorbent for the removal of trans-1,2-cyclohexandiol (CHD) from aqueous solutions. Batch experiments were carried out to investigate the effect of contact time and temperature on sorption efficiency. The adsorptive thermodynamic properties and kinetics of CHD from water onto AB-8 resin were studied.The Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. Thermodynamic parameters such as ?G?, ?H?and ?S?were calculated. The results indicate that the equilibrium data are perfectly represented by Langmuir isotherm model. Thermodynamic study reveals that it is an exothermic process in nature and mainly physical adsorption enhanced by chemisorption with a decrease of entropy process. The kinetics of CHD adsorption is well described by the pseudo second-order model. The adsorbed CHD can be eluted from AB-8 resin by 5% ethanol aqueous solution with 100% elution percentage.

    AB-8 resin, trans-1,2-cyclohexandiol, adsorption, isotherm, thermodynamics, kinetics

    1 INTRODUCTION

    Various processes have been employed for the removal of low concentration organic pollutants from aqueous solutions including advanced oxidation, membrane filtration, biological degradation, electrochemical oxidation, photocatalytic degradation, and adsorption [1, 2]. Compared to other methods, adsorption is receiving more attention in environmental treatment applications because it is simple, relatively low-cost and efficient [3, 4]. Active carbons are widely used adsorbents due to their adsorption abilities for many organic pollutants, but its low adsorption selectivity,difficult desorption, short operation life, high initial cost, and the need for a costly regeneration system make it less economically viable as an adsorbent. In recent years, non-ionic macroporous crosslinked polystyrene resins are considered as an alternative to active carbons for the removal of organic pollutants from waste streams [5]. Previous studies indicate that the macroporous resins have excellent adsorption ability for most organics, compared to active carbons. The wide variations in functionality, specific surface area and porosity make resins possible to remove specific organics selectively. Furthermore, the regeneration of resins can be easily accomplished with solvents, while a high temperature and/or steam is needed for regeneration of active carbon.

    The adsorption performance of macroporous resins for some adsorbates, including phenols, metal ions,low carbon alcohols and dyes, was reported [6, 7]. We developed a green process to oxidize cyclohexene synthesising epoxycyclohexane with hydrogen peroxide and self-made catalyst [8]. Since the epoxycyclohexane production wastewater contains low concentration trans-1,2-cyclohexandiol (CHD, epoxycyclohexane hydrolysis), it is necessary to find low-cost and effective method to resolve the pollution problem. In this work, the removal of CHD from aqueous solutions with macroporous AB-8 resin is investigated. Experiments for adsorption isotherms and kinetics are carried out. Thermodynamic parameters for adsorption of CHD onto AB-8 resin are calculated. The experimental results may provide a way for the removal and recovery of CHD from aqueous solutions for environmental protection.

    2 MATERIALS AND METHODS

    2.1 Materials and preparation of CHD solutions trans-1,2-Cyclohexanediol (C6H12O2, purity >99%)was purchased from Acros organics, USA. The stock solution of CHD was prepared by dissolving a required amount of CHD in distilled water. The experimental solutions were obtained by diluting stock solution of CHD with distilled water to the desired concentration.All the other reagents such as ethanol, acetone, pyridine used in this work were analytically pure grade.HPD-417, HPD-500, HPD-826, HPD-950 and polyamide resins were supplied by Cangzhou Bon Adsorber Technology Co., Ltd., Hebei Province, China.AB-8, NKA-9, ADS-12 and ADS-17 resins were supplied by Tianjin Nankai Hecheng Technology Co.,Ltd., Tianjin, China. Scanning electron microscope(JEOL JSM-7500F, Japan) was used to examine the resin surface.

    2.2 Experimental methods

    The adsorption experiments were carried out by

    adding 1 g treated resin into each 250 ml stoppered conical flask containing 80 ml CHD solution with certain concentration. The flasks were completely sealed and placed in a thermostat shaker at a pre-set temperature with shaking speed of 140 r·min?1. The adsorption equilibrium experiments were carried out at 293.15, 298.15 and 303.15 K with initial CHD concentration of 3-40 mg·ml?1, separately. The concentrations of CHD in the solutions before and after adsorption were determined by gas chromatography. The adsorption capacity is calculated by following equation

    where Qe(mg·g?1) is the adsorption capacity, C0(mg·ml?1) and Ce(mg·ml?1) are the initial and equilibrium CHD concentrations, respectively, V (ml) is the volume of the solution and m (g) is the mass of dry adsorbent.

    3 RESULTS AND DISCUSSION

    3.1 Selection of resins

    Typical properties and adsorption capacity of CHD on different resins are shown in Table 1. It is well known that pore diameter and specific surface area of resin affect its adsorption capacity. As shown in Table 1, AB-8 resin has excellent selective adsorption capacity for CHD, since it has larger specific surface area and smaller average pore size. Thus AB-8 resin was chosen in the following study.

    3.2 Characteristics of AB-8 resin

    Figures 1 and 2 show the surface morphological characteristic of AB-8 resin before and after the adsorption of CHD using scanning electron microscope(SEM) technology, indicating that the AB-8 resin adsorbs CHD effectively.

    3.3 Effect of contact time and temperature

    Figure 3 shows the adsorption capacity versus contact time at different temperatures. The adsorption equilibrium is established at 120 min, which was taken as the adsorption equilibrium time for all other experiments. The adsorption process can be divided into three stages. The first stage is the rapid initial adsorption within 40 min. The second stage is a slow adsorption process in 40-100 min, in which the increase of adsorption capacity becomes much slower.After 100 min, the adsorption capacity does not vary significantly, so the adsorption may be in a dynamic equilibrium. The reason is that during the adsorption of CHD, initially the CHD molecules rapidly reach the surface by external diffusion, then they have to diffuse slowly into the porous structure of the adsorbentbecause many of the available external sites are occupied. Fig. 3 also shows that at lower temperature,more CHD is adsorbed onto AB-8 resin, probably because that the bonds between CHD molecules and active sites of adsorbent are strengthened at low temperature. It suggests that the adsorption of CHD is exothermic in nature.

    Table 1 Typical properties and adsorption capacity of resins (CHD concentration 7.823 mg·ml?1, 298.15 K)

    Figure 1 SEM image of raw AB-8 resin

    Figure 2 SEM image of AB-8 resin after adsorption CHD

    Figure 3 Effect of contact time on CHD adsorption onto AB-8 at initial concentration of 25 mg·ml?1 at 293.15,298.15 and 303.15 KT/K: ■ 293.15; ● 298.15; ▲ 303.15

    3.4 Adsorption isotherms

    For solid-liquid adsorption system, adsorption isotherm is important to describe adsorption behavior.When the adsorption reaches equilibrium state, the adsorption isotherm can be used to indicate the distribution of adsorbate molecules in solid and liquid phases. In this paper, Langmuir and Freundlich plural are employed to investigate the adsorption behavior.

    Figure 4 shows the CHD uptake, Qe(mg·g?1), on AB-8 resin versus initial concentration at different temperatures after adsorption for 120 min. The CHD uptake decreases as temperature increases, which confirms the exothermic adsorption process.

    Figure 4 Adsorption isotherm of CHD on AB-8 resin T/K: ■ 293.15; ● 298.15; ▲ 303.15

    3.4.1 Langmuir isotherm

    The Langmuir adsorption isotherm is most widely used for the adsorption of solute from liquid solutions. It plays an important role in determining the maximum capacity of adsorbent. The Langmuir isotherm is based on the assumptions that adsorption takes place at homogeneous sites, the interactions among adsorbate molecules are negligible, and the adsorbent surface is saturated with monolayer. The Langmuir isotherm equation is expressed as [9]

    where Qe(mg·g?1) is the equilibrium adsorption capacity per unit mass adsorbent, Ce(mg·ml?1) is the equilibrium concentration of solution, Qm(mg·g?1) is the theoretical maximum adsorption capacity per unit mass adsorbent, and KL(L·g?1) is the Langmuir isotherm constant.

    The plot of 1/Qeversus 1/Cefor the adsorption of CHD on AB-8 resin at 293.15, 298.15 and 303.15 K is shown in Fig. 5. The parameters calculated from linear regressive analysis are given in Table 2. The values of R2>0.996 indicate that the Langmuir isotherm model is suitable to describe the adsorption equilibrium of CHD on AB-8 resin in 293.15-303.15 K. Moreover,Qmand KLdecrease as temperature increases. KLrelates to adsorption heat, so higher value of KLindicates a favorable adsorption process. These results further verify that the adsorption of CHD on AB-8 resin is an exothermic process.

    Figure 5 Adsorption isotherm fitted with Langmuir model T/K: ■ 293.15; ● 298.15; ▲ 303.15

    3.4.2 Freundlich isotherm

    The Freundlich isotherm is an empirical equation based on the assumption that the adsorption takes place on heterogeneous surfaces of solids and in multilayer sorption manner. The Freundlich isotherm equation is expressed as [10]

    where KF(L·g?1) and 1/n are Freundlich constants.

    The plot of lnQeversus lnCeat different temperatures is presented in Fig. 6. The Freundlich parameters and correlation coefficients (R2) evaluated

    Table 2 Fitting results of adsorption isotherm equation at different temperatures

    Figure 6 Adsorption isotherm fitted with Freundlich model T/K: ■ 293.15; ● 298.15; ▲ 303.15

    from the linear plot are listed in Table 2. The Freundlich parameter 1/n relates to the surface heterogeneity.When 0<1/n<1, the adsorption is favorable; when 1/n=1, the adsorption is homogeneous and there is no interaction among the adsorbed species; when 1/n>1,the adsorption is unfavorable [11]. The value of KFrelates to adsorption capacity, so these values of KFand 1/n indicate that the adsorption occurs easily.Table 2 shows that Langmuir isotherm presents higher regression coefficient R2than Freundlich isotherm, so the surface of AB-8 resin is homogeneous with monolayer adsorption.

    3.5 Adsorption thermodynamics

    Based on fundamental thermodynamic concept, it is assumed that in an isolated system, energy cannot be gained or lost and the entropy change is the only driving force [12]. In applications, both energy and entropy are considered in order to determine which process will occur spontaneously. The thermodynamic parameters that must be considered in adsorption processes are the changes in standard enthalpy (?H?),standard entropy (?S?), and standard free energy(?G?)due to transfer of unit mole of solute from solution to solid-liquid interface. The thermodynamic parameters?G?, ?H?and ?S?can be determined by [13]

    The ?H?and ?S?values are calculated from the slope and intercept from the plot of lnKLversus 1/T by linear regression analysis. The thermodynamic parameters are listed in Table 3. The ?G?values are negative,revealing the spontaneous nature of adsorption. The negative value of ?H?indicates the exothermic nature of adsorption, in agreement with the experimental observation. Generally, the magnitude of ?H?value is in the range of 2.1-20.9 and 80-200 kJ·mol?1for physical and chemical adsorptions, respectively [14]. In this work, the absolute value of ?H?is 38.371 kJ·mol?1,indicating that the adsorption is mainly physical in nature enhanced by chemisorption. Negative ?S?value suggests that the adsorbate molecules at the solid/solution interface are less random. It is also supposed [15] that the change of ?S?value is related to the displacement of the adsorbed water molecules by the adsorbate. In this study, the negative ?S?value may reveal that the AB-8 resin surface does not prefer CHD molecules over adsorbed water molecules. Thus,the adsorption of CHD on AB-8 resin under the condition is considered as an enthalpy driven process.

    Table 3 Thermodynamic parameters for the adsorption of CHD on AB-8

    3.6 Adsorption kinetics

    The kinetics describes the adsorption rate of adsorbate on adsorbent and controls the equilibrium time[16], which gives important information for designing and modeling the processes. In this study, the adsorption data is analyzed using two kinetic models: the pseudo first-order and pseudo second-order model,which are extensively used in kinetic study. The intraparticle diffusion model is also used to determinethe diffusion mechanism of the adsorption system.

    Table 4 Fitting results of adsorption kinetic equation

    3.6.1 Pseudo first-order model

    The pseudo first-order kinetic model is based on the assumption that the rate of change of adsorbed solute with time is proportional to the difference in equilibrium adsorption capacity and the adsorbed amount, which can be expressed as [17]

    With the boundary condition Qt=0 at t=0, the integration of Eq. (7) is [18]

    where Qt(mg·g?1) is the adsorption capacity per unit mass of adsorbent at time t (min) and K1(min?1) is the pseudo first-order rate constant.

    The plot of ln(1?Qt/Qe) against t is shown in Fig. 7.The kinetic parameters in the pseudo first-order model(Eq. 8) are tabulated in Table 4. Low R2values and notable variances between the experimental and theoretical uptakes indicate the poor fitting of the model.

    Figure 7 Adsorption kinetics fitted by pseudo first-order modelT/K: ■ 293.15; ● 298.15; ▲ 303.15

    3.6.2 Pseudo second-order model

    The pseudo second-order model is based on the assumption that the rate-limiting step involves chemisorption. The equation can be expressed as [19]

    With the initial condition Qt=0 at t=0, the integration can be rewritten as [20]

    where K2(g·mg?1·min?1) is the pseudo second-order rate constant.

    The linear plot of t/Qtversus t (Fig. 8) is analyzed by linear regression to obtain parameters Qeand K2. The results are given in Table 4. The calculated Qevalues are close to the experimental values, so the pseudo second-order model fits the experimental data quite well. The correlation coefficients (R2) are higher than 0.997, indicating that the adsorption of CHD on AB-8 follows the pseudo second-order model. According to this model, boundary layer resistance is not the rate-limiting step, the external resistance model cannot adequately describe the adsorption, and the rate-controlling step is chemical adsorption involving valency forces through exchange or sharing of electrons between CHD molecules and adsorbent.3.6.3 Intraparticle diffusion model

    Figure 8 Adsorption kinetics fitted by pseudo second-order modelT/K: ■ 293.15; ● 298.15; ▲ 303.15

    Determination of rate-limiting step is important for an adsorption process. The adsorption of adsorbate molecules from the bulk liquid phase onto adsorbent surface is presumed to involve three stages: (1) mass transfer of adsorbate molecules across the external boundary layer; (2) intraparticle diffusion within the pores of adsorbent; (3) adsorption at a site on the surface. The intraparticle diffusion model can be described as [21]

    where Kt(g·mg?1·min?0.5) is the intraparticle diffusion rate constant and C is associated to the boundary layer thickness.

    If the adsorption follows the intraparticle diffusion model, the plot of Qtagainst t0.5should show linear relationship and the line passes through the origin,then the rate limiting step is due to the internal diffusion only. Otherwise, some other effects are also involved. Fig. 9 indicates that the intraparticle diffusion model is not appropriate, since the lines of Qtversus t0.5do not pass through the origin and coefficients R2are poor (Table 4). Thus the internal diffusion is not the only rate-controlling step, and other effects such as boundary layer may control the adsorption process to some extent, indicating that CHD molecules adsorb on the sites in a thin region adjacent to the external surface of AB-8 resin rather than diffuse deeply into the pores.

    Figure 9 Adsorption kinetics fitted by intraparticle diffusion modelT/K: ■ 293.15; ● 298.15; ▲ 303.15

    3.7 Desorption

    Figure 10 The effect of desorption

    In this work, desorption of CHD was carried out using ethanol aqueous eluent solutions with various concentrations, and the result is shown in Fig. 10. The elution ratio was different at various eluent concentrations, CHD desorption ratio was 100.0%, 98.9%,91.6% and 88.9% with 5%, 10%, 20% and 30% ethanol aqueous solutions, respectively. Therefore, 5%ethanol aqueous solution is more effective for the desorption of CHD from AB-8 resin. The CHD adsorbed on the resin are desorbed easily, so the resin can be used repeatedly in CHD adsorption.

    4 CONCLUSIONS

    The present work showed that AB-8 resin can be used as a low cost, efficient adsorbent for the removal of CHD from its aqueous solutions. The equilibrium data were better described by Langnuir isotherm model at 293.15, 298.15 and 303.15 K. Based on the thermodynamic parameters, the adsorption of CHD on AB-8 resin is an exothermic and primarily physical process in nature enhanced by chemisorption with a decrease of entropy. The adsorption kinetics follows the pseudo second-order model and the intraparticle diffusion is not the only rate-controlling step in the CHD adsorption . The CHD adsorption capacity decreases as temperature increases in the range of 293.15-303.15 K. 5% ethanol aqueous solution provides effective desorption of CHD from AB-8 resin.

    NOMENCLATURE

    Ceequilibrium concentration of CHD, mg·ml?1

    C0initial concentration of CHD, mg·ml?1

    ?G?standard free energy, kJ·mol?1

    ?H?standard enthalpy, kJ·mol?1

    KFFreundlich isotherm constant, L·g?1

    KLLangmuir isotherm constant, L·g?1

    Ktintraparticle diffusion rate constant, g·mg?1·min?0.5

    K1pseudo first-order adsorption rate constant, mg·g?1·min?1

    K2pseudo second-order adsorption rate constant, g·mg?1·min?1

    m amount of adsorbent, g

    n degree of nonlinearity between solution concentration and adsorption

    Qeadsorption capacity at equilibrium, mg·g?1

    Qmmaximum adsorption capacity of adsorbent, mg·g?1

    Qtadsorption capacity at time t, mg·g?1

    R universal gas constant, J·mol?1·K?1

    ?S?standard entropy, J·mol?1·K?1

    T absolute temperature, K

    V volume of solution, ml

    1 Van Hulle, S.W. H., Audenaert, W., Decostere, B., Hogie, J., Dejans,P., “Sustainable wastewater treatment of temporary events: the Dranouter Music Festival case study”, Water Sci. Technol., 8 (8),1653-1657 (2008).

    2 Wongsarivej, P., Tongprem, P., Swasdisevi, T., Charinpanitkul, T.,“Adsorption and ozonation kinetic model for phenolic wastewater treatment ”, Chin. J. Chem. Eng., 19 (1), 76-82 (2011).

    3 Polaert, I., Wilhelm, A.M., Delmas, H., “Phenol wastewater treatment by a two-step adsorption-oxidation process on activated carbon”, Chem. Eng. Sci., 57, 1585-1590 (2002).

    4 Yousef, R., EI-Eswed, B., AI-Muhtaseb, A., “Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism and thermodynamics studies”, Chem. Eng. J., 171, 1143-1149 (2011).

    5 Zhang, Q.X., Chen, J.L., Xu, Z.Y., “Application of polymeric resin adsorbent in organic chemical wastewater treatment and resources reuse”, Polymer Bulletin, (4), 116-121 (2005).

    6 Yu, Y., Zhuang, Y.Y., Wang, Z.H., Qiu, M.Q., “Adsorption of water-soluble dyes onto modified resin”, Chemosphere., 54 (3),425-430 (2004).

    7 Li, A.M., Zhang, Q.X., Wu, H.S., Zhai, Z.C., “A new amine-modified hyper-cross-linked polymeric adsorbent for removing phenolic compounds from aqueous solutions”, Adsorpt. Sci. Technol., 22 (10),807-819 (2004).

    8 Fu, L.L., Jiang, D.G., Xie, Y.X., “Synthesis of immobilized quaternary ammonium heteropolyphosphatotungstate catalysts and their activity in the epoxidation of cyclohexene”, Sci. T. J., (4), 52-55(2010). (in Chinese)

    9 Langmuir, I., “The adsorption of gases on plane surfaces of glass,mica and platinum”, J. Am. Chem. Soc., 40, 1361-1403 (1918).

    10 Freundlich, H.M.F., “Over the adsorption in solution”, J. Phys.Chem., 57, 385-470 (1906).

    11 Han, X.L., Wang, W., Ma, X.J., “Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf”, Chem. Eng.J., 171, 1-8 (2011).

    12 Kumar, K.V., Kumaran, A., “Removal of methylene blue by mango seed kernel powder”, Biochem. Eng. J., 27, 83-93 (2005).

    13 Liu, Q.S., Zheng, T., Wang, P., Jiang, J.P., “Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated fibers”, Chem. Eng. J., 157, 348-356 (2010).

    14 Liu, Y., “Is the free energy change of adsorption correctly calculated?” J. Chem. Eng. Data, 54, 1981-1985 (2009).

    15 Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y., “Adsorption thermodynamic, kinetic and desorption studies of Pb2+on carbon nanotubes”, Water Res., 39, 605-609 (2005).

    16 Tan, I.A.W., Ahmad, A.L., Hameed, B.H., “Biosorption isotherms,kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon”, J. Hazard. Mater., 164, 473-482 (2009).

    17 Ho, Y.S., McKay, G., “Sorption of dye from aqueous solution by peat”, Chem. Eng. J., 70, 115-124 (1998).

    18 Tutem, E., Apak, R., Unal, C.F., “Adsorption removal of chlorophenols from water by bituminous shale”, Water. Res., 32, 2315-2324(1998).

    19 McKay, G., Ho, Y.S., “Pseudo second-order model for sorption processes”, Process. Biochem., 34, 451-465 (1999).

    20 Yang, X., Al-Duri, B., “Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon”, J. Colloid Interface Sci., 287,25-34 (2005).

    21 Weber, W.J., Morris, J.C., “Kinetics of adsorption on carbon from solution”, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31-59 (1963).

    2011-11-03, accepted 2012-03-15.

    * To whom correspondence should be addressed. E-mail: xyx19830110@yeah.net

    猜你喜歡
    楊倩麗麗
    快點 快點
    楊倩小黃鴨發(fā)卡半天賣上萬件
    楊倩:00后清華學(xué)子問鼎世界冠軍
    太tài陽yánɡ感ɡǎn冒mào了le
    提前的年夜飯
    百花(2020年2期)2020-09-10 11:24:00
    畫一畫
    How can we use the perspective of praxeology to explore and analyze the relationship among neighbors in the public space of the community?
    東方藏品(2018年9期)2018-09-10 00:20:07
    Green product development
    西江文藝(2017年15期)2017-09-10 06:11:38
    I love my family
    賴麗麗
    中國篆刻(2016年3期)2016-09-26 12:19:28
    97碰自拍视频| 18禁裸乳无遮挡免费网站照片| 最近在线观看免费完整版| 性欧美人与动物交配| 日日摸夜夜添夜夜添小说| 变态另类成人亚洲欧美熟女| 18禁黄网站禁片免费观看直播| 亚洲av成人av| 亚洲黑人精品在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线观看片| 国内精品一区二区在线观看| 午夜免费成人在线视频| 亚洲国产欧美人成| 久久久国产成人免费| 国产aⅴ精品一区二区三区波| 又黄又爽又免费观看的视频| 男人舔女人下体高潮全视频| 偷拍熟女少妇极品色| 青草久久国产| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 国产不卡一卡二| 叶爱在线成人免费视频播放| 久久久国产成人精品二区| 欧美最黄视频在线播放免费| 亚洲精品在线美女| 国产av不卡久久| 欧美激情在线99| 国产美女午夜福利| 免费一级毛片在线播放高清视频| 麻豆久久精品国产亚洲av| 午夜a级毛片| 一个人免费在线观看电影 | 不卡一级毛片| 免费高清视频大片| 精品熟女少妇八av免费久了| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 在线看三级毛片| 成人一区二区视频在线观看| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 日本五十路高清| 噜噜噜噜噜久久久久久91| 99在线视频只有这里精品首页| 日本一本二区三区精品| 成年女人看的毛片在线观看| 99热只有精品国产| 亚洲色图 男人天堂 中文字幕| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看 | 午夜精品在线福利| 久久久精品大字幕| 我的老师免费观看完整版| 丰满的人妻完整版| 香蕉国产在线看| 给我免费播放毛片高清在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人一区二区三| netflix在线观看网站| 男人的好看免费观看在线视频| 天天添夜夜摸| 久久中文字幕一级| 99久久无色码亚洲精品果冻| 亚洲aⅴ乱码一区二区在线播放| 十八禁人妻一区二区| 一本一本综合久久| 18禁黄网站禁片午夜丰满| 久久精品国产99精品国产亚洲性色| 午夜福利成人在线免费观看| 国产 一区 欧美 日韩| 天堂网av新在线| 欧美高清成人免费视频www| 国产精品亚洲美女久久久| 日韩精品中文字幕看吧| 国内少妇人妻偷人精品xxx网站 | 禁无遮挡网站| 欧美成人一区二区免费高清观看 | 日本免费a在线| 国产精品av久久久久免费| 亚洲国产精品成人综合色| 亚洲七黄色美女视频| 中国美女看黄片| 可以在线观看的亚洲视频| 最新在线观看一区二区三区| 亚洲天堂国产精品一区在线| 亚洲在线观看片| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 国产午夜福利久久久久久| 国产乱人视频| 在线视频色国产色| 丰满人妻一区二区三区视频av | 亚洲精品一区av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 免费在线观看视频国产中文字幕亚洲| 免费av毛片视频| 国产亚洲精品久久久com| 国产精品一区二区免费欧美| 亚洲av成人不卡在线观看播放网| 观看美女的网站| 精品久久蜜臀av无| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 哪里可以看免费的av片| 国产成人一区二区三区免费视频网站| 色老头精品视频在线观看| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片| 中文字幕最新亚洲高清| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| av福利片在线观看| 天堂动漫精品| 少妇的丰满在线观看| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 操出白浆在线播放| 国产精品一区二区三区四区免费观看 | 国产精品,欧美在线| 久久久久九九精品影院| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 亚洲国产精品成人综合色| 成人18禁在线播放| 午夜福利在线在线| 夜夜爽天天搞| 九色国产91popny在线| 色哟哟哟哟哟哟| 国产一区二区在线av高清观看| 久久久久性生活片| 又黄又爽又免费观看的视频| 国产成人福利小说| 少妇的丰满在线观看| av天堂中文字幕网| 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 久久国产精品影院| 欧美性猛交黑人性爽| 99久久精品国产亚洲精品| 亚洲最大成人中文| 88av欧美| 特大巨黑吊av在线直播| 一区二区三区激情视频| 俄罗斯特黄特色一大片| 真实男女啪啪啪动态图| 日本五十路高清| 欧美黑人巨大hd| 天堂影院成人在线观看| 亚洲精品一区av在线观看| 天天躁日日操中文字幕| 脱女人内裤的视频| 日本 av在线| 后天国语完整版免费观看| 在线国产一区二区在线| 亚洲激情在线av| 在线观看免费午夜福利视频| av天堂中文字幕网| 露出奶头的视频| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| netflix在线观看网站| 99久久精品热视频| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 天天一区二区日本电影三级| 不卡一级毛片| 男女下面进入的视频免费午夜| 久久精品影院6| 亚洲精品久久国产高清桃花| 97超级碰碰碰精品色视频在线观看| 黑人欧美特级aaaaaa片| 黄色日韩在线| 欧美又色又爽又黄视频| 亚洲av免费在线观看| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 天堂av国产一区二区熟女人妻| 国内少妇人妻偷人精品xxx网站 | 久久精品人妻少妇| 99久久无色码亚洲精品果冻| 亚洲av成人精品一区久久| 午夜福利高清视频| 色播亚洲综合网| 国产高清三级在线| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 麻豆av在线久日| 欧美国产日韩亚洲一区| 免费一级毛片在线播放高清视频| 一个人看的www免费观看视频| 婷婷精品国产亚洲av在线| 综合色av麻豆| 无人区码免费观看不卡| 中文字幕高清在线视频| 色哟哟哟哟哟哟| 亚洲精品美女久久av网站| 精品欧美国产一区二区三| 长腿黑丝高跟| 久久久国产成人免费| 国产 一区 欧美 日韩| 国产一区二区三区视频了| 性色av乱码一区二区三区2| 真实男女啪啪啪动态图| 国产真人三级小视频在线观看| 香蕉国产在线看| 亚洲欧美日韩东京热| 亚洲av免费在线观看| 在线看三级毛片| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清| 高清在线国产一区| 午夜福利欧美成人| 两人在一起打扑克的视频| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕一二三四区| 看免费av毛片| 久久中文看片网| 欧美3d第一页| 午夜视频精品福利| 又大又爽又粗| 成年版毛片免费区| 亚洲欧美一区二区三区黑人| 黑人操中国人逼视频| 亚洲av美国av| 亚洲avbb在线观看| 色在线成人网| 很黄的视频免费| 欧美三级亚洲精品| 狠狠狠狠99中文字幕| 一级毛片精品| www.999成人在线观看| 色综合欧美亚洲国产小说| 一进一出抽搐gif免费好疼| 成人午夜高清在线视频| 中文字幕高清在线视频| 国产av不卡久久| 成人三级做爰电影| 午夜福利在线在线| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久国产a免费观看| 女人被狂操c到高潮| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 国产日本99.免费观看| 99久久精品一区二区三区| www.自偷自拍.com| 成人无遮挡网站| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 精品一区二区三区四区五区乱码| 国产爱豆传媒在线观看| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 麻豆国产97在线/欧美| 色av中文字幕| 女人高潮潮喷娇喘18禁视频| 在线免费观看不下载黄p国产 | 三级毛片av免费| 日本黄色视频三级网站网址| 国产精品久久视频播放| 成人永久免费在线观看视频| 亚洲av成人av| 久久久精品大字幕| 久久天堂一区二区三区四区| 亚洲一区高清亚洲精品| 午夜影院日韩av| 亚洲国产色片| 小说图片视频综合网站| 国产成人精品久久二区二区91| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 久久热在线av| 亚洲激情在线av| 熟女少妇亚洲综合色aaa.| 久久久久亚洲av毛片大全| 久久久色成人| 黄色日韩在线| 91在线精品国自产拍蜜月 | 精品人妻1区二区| 国产真实乱freesex| 一二三四在线观看免费中文在| 久久中文字幕一级| 好看av亚洲va欧美ⅴa在| 19禁男女啪啪无遮挡网站| 日韩欧美国产在线观看| av欧美777| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 国产成人av教育| 色哟哟哟哟哟哟| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| cao死你这个sao货| 成人国产综合亚洲| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看的高清视频| 日韩欧美在线乱码| 国产成人福利小说| 夜夜躁狠狠躁天天躁| 99久久精品热视频| 亚洲男人的天堂狠狠| 久久国产乱子伦精品免费另类| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 九色成人免费人妻av| 两人在一起打扑克的视频| 国产亚洲精品综合一区在线观看| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 久久久久久久精品吃奶| 久久久精品大字幕| 日韩欧美国产一区二区入口| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| 日韩欧美精品v在线| 夜夜爽天天搞| 国产伦精品一区二区三区四那| av中文乱码字幕在线| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 久久午夜综合久久蜜桃| 欧美+亚洲+日韩+国产| 99精品久久久久人妻精品| 欧美日韩黄片免| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 俺也久久电影网| 成年版毛片免费区| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 午夜亚洲福利在线播放| 久久久久国产精品人妻aⅴ院| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 性色av乱码一区二区三区2| 久久精品亚洲精品国产色婷小说| 观看美女的网站| 亚洲午夜理论影院| 国产精品女同一区二区软件 | 欧美在线黄色| 岛国在线免费视频观看| 19禁男女啪啪无遮挡网站| 日本黄色片子视频| 国产精品99久久99久久久不卡| 亚洲18禁久久av| 欧美黄色淫秽网站| 国产极品精品免费视频能看的| 视频区欧美日本亚洲| 国产av一区在线观看免费| av中文乱码字幕在线| 禁无遮挡网站| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 国产97色在线日韩免费| 国产99白浆流出| 岛国在线免费视频观看| 99热精品在线国产| 巨乳人妻的诱惑在线观看| 日韩有码中文字幕| 国产乱人视频| 精品无人区乱码1区二区| 波多野结衣高清无吗| x7x7x7水蜜桃| 在线视频色国产色| 日韩欧美在线二视频| 国产蜜桃级精品一区二区三区| 亚洲第一电影网av| 国产91精品成人一区二区三区| 国产综合懂色| 国产成年人精品一区二区| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 99在线人妻在线中文字幕| 成人18禁在线播放| 中文字幕人妻丝袜一区二区| 一区二区三区国产精品乱码| 香蕉丝袜av| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品无人区| 欧美不卡视频在线免费观看| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 后天国语完整版免费观看| 午夜视频精品福利| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 久久久国产成人精品二区| 亚洲乱码一区二区免费版| 老司机午夜十八禁免费视频| www日本黄色视频网| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 亚洲天堂国产精品一区在线| 99精品欧美一区二区三区四区| 美女被艹到高潮喷水动态| 国产精品九九99| 国产亚洲精品av在线| 天天添夜夜摸| 老熟妇乱子伦视频在线观看| 久久性视频一级片| 好男人电影高清在线观看| 国内精品久久久久久久电影| 亚洲乱码一区二区免费版| 欧美黄色淫秽网站| 黄色女人牲交| 日日夜夜操网爽| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| a级毛片在线看网站| 亚洲人成网站在线播放欧美日韩| 日韩有码中文字幕| 97人妻精品一区二区三区麻豆| 老司机午夜福利在线观看视频| 日韩 欧美 亚洲 中文字幕| www.熟女人妻精品国产| 国产av不卡久久| 99久久精品一区二区三区| 久久久国产精品麻豆| 国产精品99久久久久久久久| 亚洲欧美日韩卡通动漫| 在线观看免费视频日本深夜| 国产成人aa在线观看| 国产三级中文精品| 国产单亲对白刺激| 香蕉av资源在线| 最近最新中文字幕大全电影3| 色吧在线观看| 怎么达到女性高潮| 久久久久久久午夜电影| 国产伦在线观看视频一区| 51午夜福利影视在线观看| 亚洲精品一卡2卡三卡4卡5卡| 69av精品久久久久久| 国产精品98久久久久久宅男小说| 1024手机看黄色片| 久久欧美精品欧美久久欧美| 亚洲avbb在线观看| 长腿黑丝高跟| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 身体一侧抽搐| 女人被狂操c到高潮| 久久久成人免费电影| 国产在线精品亚洲第一网站| 淫秽高清视频在线观看| 成年版毛片免费区| 一级作爱视频免费观看| 美女免费视频网站| 国产精品 欧美亚洲| 久久精品影院6| 国产伦一二天堂av在线观看| 又大又爽又粗| 欧美又色又爽又黄视频| 精品午夜福利视频在线观看一区| 国产精品,欧美在线| 一级毛片女人18水好多| 性色av乱码一区二区三区2| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 亚洲美女视频黄频| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 国产高清视频在线播放一区| 91麻豆av在线| 五月玫瑰六月丁香| netflix在线观看网站| 男女视频在线观看网站免费| 国产一区二区三区视频了| 国产亚洲欧美98| 精品国产美女av久久久久小说| 亚洲av中文字字幕乱码综合| 51午夜福利影视在线观看| 日本黄色视频三级网站网址| 日本黄色片子视频| 久久婷婷人人爽人人干人人爱| 亚洲人成网站高清观看| 国产三级黄色录像| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 每晚都被弄得嗷嗷叫到高潮| 成人性生交大片免费视频hd| 亚洲av中文字字幕乱码综合| 黑人巨大精品欧美一区二区mp4| 亚洲欧美日韩卡通动漫| 少妇熟女aⅴ在线视频| 亚洲九九香蕉| 国产精品亚洲美女久久久| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 免费高清视频大片| 午夜精品一区二区三区免费看| 美女黄网站色视频| av黄色大香蕉| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式 | 少妇人妻一区二区三区视频| 国产视频内射| 国产乱人视频| 久99久视频精品免费| 成人国产一区最新在线观看| 99热6这里只有精品| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| 又爽又黄无遮挡网站| 国产精品香港三级国产av潘金莲| 99久久精品一区二区三区| 亚洲精品中文字幕一二三四区| av在线蜜桃| 色视频www国产| 久久精品aⅴ一区二区三区四区| 波多野结衣巨乳人妻| 欧美zozozo另类| 国产99白浆流出| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇中文字幕五十中出| 欧美乱色亚洲激情| 欧美成狂野欧美在线观看| 18禁黄网站禁片免费观看直播| 日本一本二区三区精品| 99国产综合亚洲精品| 欧美三级亚洲精品| 美女高潮的动态| 91麻豆精品激情在线观看国产| 国产成人精品久久二区二区免费| 欧美xxxx黑人xx丫x性爽| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 91字幕亚洲| 免费在线观看成人毛片| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 少妇熟女aⅴ在线视频| 欧美成人性av电影在线观看| 国产毛片a区久久久久| 亚洲av熟女| 国产毛片a区久久久久| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 国产欧美日韩精品亚洲av| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 9191精品国产免费久久| 嫩草影院精品99| 岛国在线观看网站| 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 99久久国产精品久久久| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 亚洲av免费在线观看| 国产探花在线观看一区二区| 日韩三级视频一区二区三区| 成人永久免费在线观看视频| 久久久国产成人免费| 久久婷婷人人爽人人干人人爱| 真人做人爱边吃奶动态| 嫁个100分男人电影在线观看| 五月伊人婷婷丁香| 可以在线观看毛片的网站| 嫩草影院入口| 久久久久亚洲av毛片大全| 淫妇啪啪啪对白视频| 欧美zozozo另类| 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| 极品教师在线免费播放| 三级国产精品欧美在线观看 | 变态另类丝袜制服| 欧美不卡视频在线免费观看| 一进一出抽搐动态| 欧美黄色片欧美黄色片| 成年版毛片免费区| 国产97色在线日韩免费| 亚洲精品粉嫩美女一区| 在线观看66精品国产| 精品久久蜜臀av无| 淫秽高清视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 又粗又爽又猛毛片免费看| 日韩欧美在线二视频| 我要搜黄色片| 国产一级毛片七仙女欲春2| 精品日产1卡2卡|