• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Progress and challenges in magnetic skyrmionics

    2022-08-31 09:59:18HaifengDu杜海峰andXiangrongWang王向榮
    Chinese Physics B 2022年8期
    關(guān)鍵詞:海峰

    Haifeng Du(杜海峰) and Xiangrong Wang(王向榮)

    1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,HFIPS,Anhui,Chinese Academy of Sciences,Hefei 230031,China

    2Physics Department,The Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China

    Keywords: magnetic skyrmions

    1. Introduction

    We have witnessed a fast development of spintronics in the past decades. The field was born from the discovery of giant magnetoresistance (GMR)[1,2]and its subsequent applications.[3–6]It was fueled and expanded by the prediction[7–9]and experimental confirmation[10,11]of spintransfer torque (STT) that allows direct control and manipulation of magnetization by an electric current. STT magnetoresistive random-access memory(MRAM),[12]spin–orbit torque magnetoresistive random-access memory (SOTMRAM),[13,14]spin-transfer-torque-oscillators,[15]racetrack memory,[16]magnonic STT[17,18]have been proposed and realized. The discovery of spin pumping[19]and spin-Seebeck[20,21]and confirmation of the spin-Hall effect[22]and inverse spin-Hall effect[23]made spin current an important concept in spintronics. The related studies contribute partially to the discovery of topological materials and topological states in all fields of physics, including magnetism.[24–27]Scientific research keeps generating new concepts and physics like ultrafast magnetization dynamics[28–30]and spin-caloritronics.[31]

    In the fertile land of spintronics, one particular fastgrowing subfield is magnetic skyrmion or skyrmionics.Skyrmion is a topological soliton initially proposed by British physicist Tony Skyme for describing the resonance states of baryons.[32]However, it was first unambiguously observed in magnetism,[33,34]although the notion was long used in superconductivity,[35]quantum Hall effect,[36]Bose–Einstein condensates,[37]nematic liquid crystal[38]as well as ferromagnets.[39–42]Magnetic skyrmions are believed to be potential information carriers and have potential device applications.[43]

    2. Magnetic skyrmion materials

    Magnetic skyrmions were first discovered in noncentrosymmetric crystals where the Dzyaloshinsky–Moriya(DM) interaction exists. The DM interaction, proposed in 1950–60s by Dzyaloshinsky and Moriya independently,[63,64]is induced by spin–orbit coupling in the absence of inversion symmetry.The interaction was initially used to explain the helimagnetism and abnormal weak ferromagnetism in materials such as MnF2, MnCo3,andα-Fe2O3.[65]Consider two spinsSiandSj,[66]an effective fieldEimposes on the spins due to the broken inversion symmetry when the spin flips/flops from siteito sitej. Following the spins, the fieldEmoves from sitejto sitei,generating a magnetic fieldB=E×?rij,where ?rijis the unit vector of displacement fromitoj. This magnetic fieldByields a spin procession and contributes an extra energy to the spin at sitejwithSi·(B×Sj)=B·(Si×Sj).This is the origin of DM interaction. When one defines the DM tensorDasD‖B,the DM interaction can be expressed in the conventional form[66]

    Spin helix(stripe)evolves into skyrmion crystals and subsequently into the ferromagnetic state as an external magnetic field increases.[67,68,70,71]The featured size of magnetic skyrmions is comparable toλ. According to the symmetry of crystal structure,four types of magnetic skyrmions are discovered in chiral magnets, including the Bloch (vortex-like)skyrmions, N′eel (hedgehog) skyrmions, antiskyrmions, and mixed-type skyrmions,[73]as shown in Fig.1. The first three types have been experimentally confirmed, but the mixedtype skyrmion is still missing experimentally. There are more than ten types of skyrmion-hosting chiral magnets(Fig.1),in which magnetic skyrmions show the features of uniform morphology, nanoscale size, and high mobility under current.[44]However,these advantages are not present in one system. For example, the chiral magnet MnGe has the smallest size of skyrmions down to a few nanometers,[74]which can meet the requirements of high storage density,while the stabilized temperature is below room temperature.

    One of the prerequisites for skyrmion-based devices is the stabilization of ultra-small individual skyrmions at or above room temperature. A high Curie temperature and small skyrmion size correspond to a largeJand a small ratio ofJ/D,respectively, which means a largeDin materials is needed.SinceDis proportional to the strength of spin–orbit coupling(SOC),the materials must have strong SOC.Commonly,DM interaction arises from the second or higher-order effect of SOC in non-centrosymmetric ferromagnets,with a usual value of|J/D|≈102. So, it is challenging to find materials with largeJandDand smallJ/Dto meet the device requirements.

    Fig.1. Summary of the featured size and Curie temperature of three types of skyrmion-hosting materials.

    Aside from the broken inversion symmetry in crystals,DM interactions can also appear in ferromagnet/heavy metal heterostructures.[75]Recent advances in preparing perpendicularly magnetized multilayers from sputtering deposition have demonstrated the possibility of obtaining additive DM interactions at successive interfaces and magnetic skyrmions at room temperature.[76,77]Around the same time, the currentinduced creation and displacement of magnetic skyrmions have been demonstrated.[78–82]Since the heterostructures are compatible with common spintronic technologies, interfacial magnetic skyrmions are promising objects in practical applications. The main obstacle is the quality of magnetic films since the defects around the interface may lead to an inhomogeneous DM interaction and firmly pin the skyrmions. The current density required to drive skyrmion is comparable to that for domain wall motion.[52,83,84]

    Beside the DM interactions, other mechanisms such as dipolar–dipolar interactions,[85–87]frustrated exchange interactions,[88–91]as well as four-spin-exchange interactions,[92,93]can also stabilize magnetic skyrmions.The dipolar–dipolar interactions correspond to the uniaxial ferromagents.[86]One can easily write the total energy and/or free energy functional of this system and can derive solutions for the system by minimizing the energy functional.Garelet al.obtained two basic modulated solutions corresponding to the ground state of stripe andB-driven bubble solutions, respectively.[86]The physics shows that the dipole?dipole interaction aligns the spins in a coplanar way,while the uniaxial magnetic anisotropy makes the spins out of the plane. A type of bubble shares the same skyrmion number as the conventional magnetic skyrmions and is thus termed as a skyrmion bubble.

    In frustrated magnetic materials, magnetic skyrmions originate from the competition between the nearest and nextnearest exchange interactions.[94]The ground state is incommensurate, which will evolve into a triple-qstate (skyrmion state) when the external magnetic field turns on.[88]In experiments, two types of frustrated materials could host the magnetic skyrmions, i.e., Gd2PdSi3[89]and Gd3Ru4Al12.[90]The origin of the frustrated spin interactions comes from the Ruderman–Kittel–Kasuya–Yosida(RKKY)mechanism rather than the direct Heisenberg exchange interaction. This aspect makes them very different from other materials, for example, the giant Hall effect.[89,90]The four-spin-exchange model was first proposed to explain the experimental observation that an atomic-scale magnetic skyrmion lattice was observed on a hexagonal Fe film of one-atomic-layer thickness on Ir(111)surface.[92]Later,the skyrmion lattice observed in bulk GdRu2Si2is also interpreted with this model.[93]One of the outstanding properties of these skyrmions is that the size is much smaller than those generated by other mechanisms.Apart from the above-mentioned mechanisms, higher order magnetic anisotropic interactions are also possible to stabilize magnetic skyrmions,e.g.,MnSc2S4.[95]For the magnetic skyrmions induced by the non-DM interactions, the present investigations are only focused on the static magnetic configurations. Their dynamics,especially driven by current,is still at its infancy and should be explored in future.

    Another challenge is the stability of complex magnetic phases in skyrmion-hosting materials. For example,the magnetic phases of typical B20 chiral magnets[33]include spin helix,conical,skyrmions,and ferromagnetic states(Fig.2). The lack of more than one type of skyrmions complexes the design of the skyrmionic device.In comparison with the conventional hard disk driver(HDD)where magnetic moments have up and down states as bits “1” and “0”, one strategy in skyrmionsbased devices is to encode“1”and“0”by the presence and the absence of a magnetic skyrmion,or vice versa.The stability of data in a HDD is guaranteed by a high enough energy barrier of a strongly perpendicular magnetic anisotropy. However, a high energy barrier between skyrmion and other phases such as a ferromagnetic state is a challenging issue and an applied magnetic field is often used in practice. In this circumstance,a slight magnetic field variation from the external stimuli may destroy the skyrmion due to its narrow stable field window. At extremely sparse conditions, the skyrmions evolve into ramified stripe or stripe state.[67]All these lead to the loss of data bits. It is still a challenge to balance the requirement of the applied field to stabilize the magnetic skyrmion and the obstruction of the field to deform and even destroy the magnetic skyrmion in the devices.

    Fig. 2. A represented magnetic field vs. temperature phase diagram for a chiral magnet.

    3. Magnetic skyrmion dynamics

    The manipulation of the magnetic skyrmions lies at the heart of its application. Magnetic skyrmions can be driven using spin-polarized currents,[45,96–99]temperature gradients,[100–102]magnetic or electric field gradients,magnons, and even microwave fields.[103]From the viewpoint of applications, electrical manipulation is the most important choice because of its compatibility with contemporary electronics.[12,45,97,98]An ultralow critical current density (~106m/A2) is able to move the skyrmion lattice in MnSi[45]via STT,[12,104]whereas the typical current threshold of the current-driven domain wall dynamics is much larger (~1011m/A2) in ferromagnetic metals and semiconductors. However, from the technological point of view,the controllable creation,deletion,and motion of isolated skyrmions,[105–107]rather than skyrmion lattices,using nanosecond current pulses,are essential in practical applications.[75,106,108]An ultralow critical current density to move the isolated skyrmions has not reported yet.

    The mechanisms of the current-driven skyrmion motion in chiral magnets and heterostructures are different. In chiral magnets,the mechanism is the spin transfer torques(STT),[12]which results from the angular momentum transfer from itinerant electrons to the magnetization. The effect of STT can be included in the Landau–Lifshitz–Gilbert (LLG) equation by adding an adiabatic torque and nonadiabatic torque(β-term).From this extended LLG equation, a Thiele equation for describing the skyrmion dynamics can be obtained as[96,97,109]

    where the pinning forces due to disorders are ignored. Equation(3)shows that the skyrmion velocity is proportional tou,and other parameters such as Gilbert dampingαand nonadiabatic coefficientβhave little influence onvx, indicating a universal current–velocity relation.[97]Meanwhile, they-component velocityvyis sensitive to Gilbert dampingαand nonadiabatic coefficientβ. In general,vyis nonzero,showing the skyrmion Hall effect.[110,111]Clearly,the sign of skyrmion Hall effect depends on the value ofα ?βas well as the skyrmion numberQ. Note that in chiral magnets the skyrmion Hall effect is influenced strongly by disorders, and the skyrmion Hall angle is enhanced by disorders at a lower current density.[97]This enhancement of the skyrmion Hall angle has been observed experimentally[112](Fig.3).

    In the adiabatic limit in which the spins of itinerant electrons follow the local magnetization direction,[44]the itinerant electrons experience an emergent electromagnetic field. This emergent field can be expressed in terms of Berry curvatures in space–time[113]

    The emergent magnetic field [Eq. (4)] is directly associated with the skyrmion numberQ.Meanwhile,the spatial-temporal change of the magnetization induces an emergent electric field Eq. (5), also known as the spin motive force.[113]The spin motive force can also be considered as the inverse effect of the spin-transfer torque.[111]Equation(4)shows that both the spatial and temporal variations of magnetization are necessary for the emergent electric field. Therefore, a moving or oscillating skyrmion can induce such emergent electric fields,which have been observed experimentally.[114]Interestingly, the oscillating skyrmion also contributes to a DC voltage when its axial symmetry is broken by a tilted magnetic field.[115]

    Fig. 3. Schematic skyrmion Hall effect. The defects in materials may increase the Hall angle.

    Thermal fluctuation effects on skyrmion dynamics at the room-temperature are unavoidable. Thermal fluctuations were demonstrated to promote skyrmion motion, allowing for finite mobility even in the pinning regime.[116]The particle model shows that the skyrmion can exhibit avalanche dynamics,and the average avalanche shape is influenced by the nondissipative Magnus term.[117]The influence of disorders and temperatures requires more detailed experimental studies and theoretical development beyond the current model.

    The underlying skyrmion driving force in magnetic-insulator/heavy-metal heterostructures is the SOT.[75,108,110,118]Mathematically, the SOTs are different from the STTs. The difference shows in the Thiele equation.For the STT case, the currentuand the skyrmion velocityvare in the same position. However, the contribution of the spin–orbit torques is summed up to the total forceF. Therefore,the skyrmion dynamics induced by STT is relatively simple,especially in the presence of impurities or disorders. Unlike the STT case in which the skyrmion Hall angle decreases as the current density increases,[112]the skyrmion Hall angle in heterostructures shows a complicated relationship with the current density.[81,110,119]Moreover, in heterostructures, the skyrmion velocity is comparable to the magnetic domain wall velocity under the same current density, and thus the advantage of skyrmions is not fully realized. Therefore, searching for new systems with high current-driving efficiency is very important for future skyrmion application.

    Electric fields can also be used to manipulate magnetic skyrmions either through magnetoelectric coupling such as that for multiferroic insulators Cu2OSeO3,[120–122]or using voltage-controlled magnetic anisotropy (VCMA).[114,123,124]Interestingly,the frequency of driving fields is not close to the resonance frequency of the internal skyrmion magnon modes when the magnetoelectric coupling mechanism is used.[121]The advantage of VCMA is the tunability of the interfacial perpendicular magnetic anisotropy via a voltage (an electric field) without the flow of the charges. The extra potential from anisotropy change can achieve a designed skyrmion motion.[114]

    4. Magnetic skyrmion devices

    Magnetic skyrmions have a clear goal in spintronic devices. The fundamental functional operations are achieved by electric-induced and/or strain to creation, deletion, motion, and detection of isolated skyrmions.[62,125]The writing/erasing operations correspond to the creations/deletions of individual skyrmions in the ferromagnetic background.Such operations should also be reversible and reliable with a free error rate and low energy cost. Some progress has been made by using artificial notch-like defects in a chiral magnet Co8Zn10Mn2and pinning impurities in a magnetic multilayer of W/CoFeB/Ta with perpendicular magnetic anisotropy (PMA).[112,126,127]The controlled skyrmionbubble transformations using STT and Joule thermal effects have also been shown in the nanoblock of uniaxial ferromagnet Fe3Sn2.[128]The creation and deletion of skyrmions have been demonstrated in multiferroic heterostructures by inverting the voltage[129–131]with VCMA. Romminget al.have shown the mutual writing/deleting skyrmions using tunneling spin current from an atomic scanning tunneling microscopy(STM) tip, but only at a low temperature of 4 K.[105]However,some improvements are still needed for real applications,such as zero error rate for defect-dominated creation/deletion,single skyrmions operations for skyrmion-bubble transformation and voltage-controlled creation/deletion, and roomtemperature operations for tunneling spin current.

    Skyrmionic devices achieve key functions such as addressing and logic computing using current-controlled skyrmion motions due to the high mobility of skyrmions.The current-driven coherent motion of isolated skyrmions was experimentally observed in CoFeB and Pt/Co/Ta films in 2016.[75,110]Because of the topological nature of magnetic skyrmions,skyrmion Hall effect appears[96]and has been observed in CoFeB,[110,111]Co/Pt,[80]GdFeCo,[132]FeGe,[133]CoZnMn,[112]etc. The skyrmion Hall angle shows a complex relationship with external stimuli and is tunable with respect to the field,[110]current density,[80,82,110,132]and skyrmion diameter,[111]as stated in Section 3. The current density threshold required to drive isolated skyrmions to move is typical of 109–1012A·m?2, depending on the materials and current pulse width.[75,110,112,132,133]The transverse velocity of skyrmion motion increases as the current increases and could reach~120 m/s at the current density of~1011A·m?2.[75]As stated in Section 3,some issues are still needed to be overcome despite this experimental progress on skyrmion motion, such as defect induced skyrmion pinning,[133]the instability due to the skyrmion Hall effect,[110]the inexact dynamics response to each current stimuli,[112]and the relatively high energycost.[75,110,112,132,133]

    The transformation from the skyrmion strucutres to electrical signals is related to data reading.[134]Yeet al.predicted the quantum topological Hall and Nernst effects of skyrmions,[135,136]which have been experimentally identified in MnGe,[137,138]FeGe,[139]MnSi,[140]Gd2PdSi3,[141]etc. We observed quantized changes in magnetoresistance in MnSi nanowires.[142,143]Contaminant Hall measurements and real-space magnetic imaging demonstrate that a skyrmion contributes to~22–25 n?·cm Hall resistance.[144,145]In 2019, Penthornet al.realized the electrical detection of single skyrmions in magnetic tunnel junctions, where a single skyrmion could contribute to a 10%change of resistance.[146]However,the longitudinal magnetoresistance and Hall effects are too small for applications. The tunneling magnetoresistance could be a more promising technique for reading skyrmions but is only sensitive to the out-of-plane magnetization component. Skyrmions have a smaller fraction of outof-plane magnetization components than the traditional perpendicularly magnetized domains. The reading efficiency of skyrmions using tunneling magnetoresistance is lower than that of magnetic domains. Highly efficient electrical detection of skyrmions is yet to be found.

    Fig. 4. Schematic skyrmion-based racetrack memory device. The binary bits“1”and“0”are encoded in skyrmions and ferromagnetic gaps,respectively. The data addressing is realized by the current-driven motion of a chain of ordered isolated skyrmions.

    Based on the above-mentioned electrical manipulation of magnetic skyrmions, various skyrmion-based spintronics devices have been proposed and partially been experimentally demonstrated. The most famous one is the racetrack memory originating from the bubble memory (Fig. 4). The information bits in the skyrmion-based racetrack memory are encoded by a single skyrmion–ferromagnet chain, where skyrmions and ferromagnetic gaps represent bits “1” and “0”, respectively. The bit addressing in the racetrack memory is realized by the current-driven motion of a chain of ordered isolated skyrmions. Despite the realization of the current-driven motion of a single skyrmion and skyrmion cluster,[79,110,112,133]the feasibility and the reliability of the steady motion of a bitstream in an ultra-narrow nanostripe remain a challenge.

    The other challenge for skyrmionic memory devices is the high mobility of skyrmions in the uniform ferromagnetic magnetization background. The skyrmions could easily occupy the bit space of ferromagnetic gaps because of skyrmion interactions and thermal fluctuations,resulting in interruption of the data bitstream. To improve data bitstream’s stability, it is desirable to replace the ferromagnetic gaps by other more stable localized magnetic solitons.[133,147–149]It has been shown that bobbers, bubbles, and antiskyrmions can coexist with skyrmions. The skyrmion-based racetrack memories can thus be expanded as skyrmion–bobber,skyrmion–bubble,and skyrmion–antiskyrmion racetrack memories. However, the collective motion of these skyrmionic textures remains to be demonstrated.

    Besides racetrack memory,other current-driven skyrmion devices are possible. Topology-sign dependent skyrmion Hall effect can be used to make signal multiplexing of interconnecting devices.[150]Skyrmions in the nanostructured unit can be applied for write/delete operations in RAM.[151,152]Zhanget al.have numerically demonstrated the logic operations such as AND and OR gates using the current-induced two skyrmions merge, duplication, and conversion.[153]Luoet al.have proposed reconfigurable skyrmion logic gates using the skyrmion Hall effect.[154]Pinnaet al.have proposed stochastic computing using random reshuffle operations on a skyrmion assembly before reading them.[155]Neural network devices include neurons for computing and synapses for memory.[156]The “l(fā)eaky-integratefire” neurons have been proposed by using skyrmion-based nano-oscillators and coherent motions.[156–158]The weight of synapses can be represented by the skyrmion number dependent multi-resistance states.[159]However, most of these skyrmionic devices are still at the conceptual level. Only a few basic functional operations have been demonstrated so far,such as the topology-related skyrmion Hall effects of bundles for interconnecting devices,[62,133]thermal skyrmion diffusion for reshuffling operations of stochastic computing,[160]and the potentiation/depression of the synapses using the currentcontrolled skyrmion numbers in GdFeCo films.[161]The challenges in experiments are the rough and random dynamic responses of skyrmions to current stimuli due to the multiple complexities in realistic devices, including defects, inhomogeneity, and three-dimensional spin twists of magnetic configurations. It would be important to greatly improve device quality for realizing reliable and deterministic manipulations of skyrmions.

    5. Summary and outlook

    In summary, recent progress in skyrmion materials, dynamics,and devices is reviewed. The main stabilizing mechanisms of magnetic skyrmion are discussed,and skyrmion materials are listed. The current-driven dynamics is reviewed,followed by the recent progress of various types of skyrmion devices. However, the implementation of skyrmion devices in practice faces many challenges, and more endeavors are needed to overcome these obstacles.

    Despite the challenges described in the previous sections,implementing a demo device of the skyrmion-based racetrack memory is still very far away.The research along this direction is one of the most important ones. Besides the typical systems of chiral magnets and multilayers, searching other systems such as the synthetic antiferromagnetic systems,ferrimagnetic systems,[132]or van der Waals ferromagnets[162]could also bring us surprises. Moreover, the CMOS compatibility[57]is a necessity for integrating with other on-chip semiconductor components.

    The particle nature of skyrmions enables its potential application as information carriers, and thus, a direct application is to use them in logic computing.[153]The skyrmions can also be used in non-von Neumann computing.[57]For example, magnetic skyrmion gas is proposed for probabilistic computing[155]and demonstrated experimentally as a reshuffle device.[160]By using nonlinear response,skyrmions can be used in reservoir computing networks.[163,164]Therefore, exploring its application in non-von Neumann computing is an important direction.

    Magnetic skyrmions are proposed as information entropy carriers.[165]The nature of skyrmion entropy is also an interesting issue.[165,166]Moreover, skyrmion qubits can be constructed by using the energy-level quantization of the helicity degree of freedom.[167]Quantum computing using chiral spin textures is worth of exploring further.

    Acknowledgments

    H. D. acknowledges the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33030100) and the Equipment Development Project of Chinese Academy of Sciences (Grant No. YJKYYQ20180012). X. R. W. is supported by the National Natural Science Foundation of China(Grant No. 11974296) and Hong Kong RGC, China (Grant Nos.16301518,16301619,and 6302321).

    猜你喜歡
    海峰
    以牙還牙
    太行新貌
    春風(fēng)又渡太行山
    《璀璨雄安》創(chuàng)作小稿
    活著
    歌海(2022年1期)2022-03-29 21:39:55
    倪海峰
    兒童大世界(2019年3期)2019-04-11 03:33:38
    安海峰水印作品
    歌海(2019年6期)2019-02-22 12:23:31
    黃梅新星 周海峰
    My School
    Empirical Analysis of Binary Logistic Model for the Influencing Factors of the Chinese Urban and Rural Residents'Woolen Products Consumption—Based on Questionnaires of 513 Urban and Rural Residents in 16 Provinces
    99riav亚洲国产免费| 夜夜爽天天搞| 久久人人精品亚洲av| 2022亚洲国产成人精品| 2022亚洲国产成人精品| 精品人妻视频免费看| 亚洲精品久久久久久婷婷小说 | 中文在线观看免费www的网站| 国产亚洲av片在线观看秒播厂 | 日韩中字成人| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品亚洲一区二区| 国产免费一级a男人的天堂| 亚洲精华国产精华液的使用体验 | 亚洲av中文av极速乱| 成人特级黄色片久久久久久久| videossex国产| 日韩成人伦理影院| 久久久久性生活片| 亚洲内射少妇av| 国产免费一级a男人的天堂| 国产白丝娇喘喷水9色精品| kizo精华| 亚洲国产色片| 久久韩国三级中文字幕| 色综合站精品国产| 日韩制服骚丝袜av| 精华霜和精华液先用哪个| 草草在线视频免费看| 亚洲一级一片aⅴ在线观看| 日日撸夜夜添| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 欧美色欧美亚洲另类二区| 久久精品国产鲁丝片午夜精品| 蜜桃亚洲精品一区二区三区| 久久九九热精品免费| 中文精品一卡2卡3卡4更新| 又粗又爽又猛毛片免费看| 亚洲av成人av| 国产亚洲5aaaaa淫片| 大香蕉久久网| 97超碰精品成人国产| 精品久久久久久久久久免费视频| 日韩一区二区三区影片| av视频在线观看入口| 偷拍熟女少妇极品色| 亚洲精品粉嫩美女一区| 精品一区二区免费观看| 日韩精品青青久久久久久| 日韩在线高清观看一区二区三区| 美女高潮的动态| 亚洲四区av| 免费人成视频x8x8入口观看| 青青草视频在线视频观看| 国产一区亚洲一区在线观看| 亚洲欧美精品专区久久| 国产午夜精品久久久久久一区二区三区| 亚洲第一区二区三区不卡| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av天美| 婷婷色av中文字幕| 桃色一区二区三区在线观看| 麻豆乱淫一区二区| 午夜精品在线福利| 伦精品一区二区三区| 啦啦啦韩国在线观看视频| 国产精品久久电影中文字幕| 国内久久婷婷六月综合欲色啪| 尤物成人国产欧美一区二区三区| 青春草国产在线视频 | 亚洲av一区综合| 深夜a级毛片| 国产真实伦视频高清在线观看| 亚洲欧美日韩无卡精品| 亚洲乱码一区二区免费版| 中文欧美无线码| 欧美日韩综合久久久久久| 欧美日韩综合久久久久久| 黄色日韩在线| 中文资源天堂在线| 精品欧美国产一区二区三| 色播亚洲综合网| 综合色丁香网| 有码 亚洲区| 亚洲av免费在线观看| 婷婷六月久久综合丁香| 深夜a级毛片| 国产精品一区二区性色av| 日本成人三级电影网站| 少妇高潮的动态图| 成年版毛片免费区| 国产av麻豆久久久久久久| 国产高清三级在线| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 日韩欧美国产在线观看| 久久久久久久久中文| 国产午夜福利久久久久久| 欧美区成人在线视频| 日韩强制内射视频| 亚洲成人精品中文字幕电影| 亚洲经典国产精华液单| 日本一本二区三区精品| 一区二区三区四区激情视频 | 69人妻影院| 国产黄片视频在线免费观看| 欧美激情在线99| 男女视频在线观看网站免费| 禁无遮挡网站| 久99久视频精品免费| 欧美色视频一区免费| 亚洲七黄色美女视频| 日韩制服骚丝袜av| 日本五十路高清| 中文亚洲av片在线观看爽| 波野结衣二区三区在线| 精品一区二区三区人妻视频| 日韩人妻高清精品专区| 日韩欧美精品v在线| 成人国产麻豆网| 成人毛片a级毛片在线播放| 少妇熟女aⅴ在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产单亲对白刺激| 亚洲七黄色美女视频| 亚洲av第一区精品v没综合| 岛国在线免费视频观看| 国产男人的电影天堂91| 少妇人妻精品综合一区二区 | 亚洲第一区二区三区不卡| 日本-黄色视频高清免费观看| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 亚洲一区二区三区色噜噜| 天堂中文最新版在线下载 | 国内精品美女久久久久久| 精品人妻视频免费看| 亚洲精品成人久久久久久| 日韩三级伦理在线观看| 精品久久国产蜜桃| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品久久男人天堂| 欧美丝袜亚洲另类| 国产一区二区三区在线臀色熟女| 丰满乱子伦码专区| 色综合亚洲欧美另类图片| 久久精品国产自在天天线| 久久久久久久久久黄片| 国产一区二区在线av高清观看| 国产精品爽爽va在线观看网站| 91在线精品国自产拍蜜月| 久久中文看片网| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区在线观看99 | 久久精品久久久久久久性| 嘟嘟电影网在线观看| 精品久久久久久久久久免费视频| 亚洲人成网站在线播| 国产色爽女视频免费观看| 亚洲国产日韩欧美精品在线观看| 人妻制服诱惑在线中文字幕| av天堂中文字幕网| 国产精品一区二区在线观看99 | 欧美激情在线99| 免费看美女性在线毛片视频| 嫩草影院新地址| 亚洲国产精品成人综合色| 日日干狠狠操夜夜爽| 97热精品久久久久久| 欧美色视频一区免费| 最近手机中文字幕大全| 精品久久久久久久末码| 性插视频无遮挡在线免费观看| 好男人在线观看高清免费视频| 最后的刺客免费高清国语| 在现免费观看毛片| 简卡轻食公司| 久久午夜亚洲精品久久| 欧美色视频一区免费| 免费在线观看成人毛片| 特大巨黑吊av在线直播| 亚洲国产精品久久男人天堂| 国内精品久久久久精免费| 啦啦啦观看免费观看视频高清| 亚洲精华国产精华液的使用体验 | 欧美高清成人免费视频www| 小蜜桃在线观看免费完整版高清| 亚洲久久久久久中文字幕| av黄色大香蕉| 久久精品国产亚洲av天美| 性欧美人与动物交配| 又爽又黄无遮挡网站| 国产精品久久久久久久久免| 夜夜夜夜夜久久久久| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮的动态| 99久久精品国产国产毛片| 男插女下体视频免费在线播放| 男人舔女人下体高潮全视频| 国语自产精品视频在线第100页| 国产精品国产高清国产av| 啦啦啦观看免费观看视频高清| 欧美潮喷喷水| 麻豆一二三区av精品| 欧美变态另类bdsm刘玥| 欧美高清成人免费视频www| 日韩成人伦理影院| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线| 特级一级黄色大片| www.av在线官网国产| 成年版毛片免费区| 国产精品久久久久久亚洲av鲁大| 中文欧美无线码| 国产精品国产三级国产av玫瑰| 亚洲综合色惰| 国产黄a三级三级三级人| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 亚洲三级黄色毛片| 国产成人精品一,二区 | 最近手机中文字幕大全| 久久6这里有精品| 性色avwww在线观看| 麻豆成人午夜福利视频| 老司机福利观看| 亚洲不卡免费看| 成人美女网站在线观看视频| 国产精品99久久久久久久久| av福利片在线观看| 日韩精品青青久久久久久| 久久99蜜桃精品久久| 日韩欧美一区二区三区在线观看| 欧美一区二区国产精品久久精品| 久久精品综合一区二区三区| 好男人视频免费观看在线| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 久久久久性生活片| 男女边吃奶边做爰视频| 两个人视频免费观看高清| 日日干狠狠操夜夜爽| 日产精品乱码卡一卡2卡三| 2021天堂中文幕一二区在线观| 国产精品av视频在线免费观看| 亚洲熟妇中文字幕五十中出| 18禁在线无遮挡免费观看视频| a级毛色黄片| 乱系列少妇在线播放| 国产片特级美女逼逼视频| 欧美成人免费av一区二区三区| 亚洲精品乱码久久久v下载方式| 可以在线观看毛片的网站| 国内精品一区二区在线观看| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 女人十人毛片免费观看3o分钟| av女优亚洲男人天堂| 成人综合一区亚洲| 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 午夜福利高清视频| 91麻豆精品激情在线观看国产| 欧美在线一区亚洲| 非洲黑人性xxxx精品又粗又长| 黄色欧美视频在线观看| 国产精品1区2区在线观看.| 午夜福利在线在线| 国产精品久久久久久精品电影| 国产高清视频在线观看网站| 女人十人毛片免费观看3o分钟| 成人性生交大片免费视频hd| 久久九九热精品免费| 日本在线视频免费播放| 久久鲁丝午夜福利片| 国内少妇人妻偷人精品xxx网站| 日产精品乱码卡一卡2卡三| av又黄又爽大尺度在线免费看 | 亚洲av男天堂| 欧美性猛交黑人性爽| 老女人水多毛片| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 99久久中文字幕三级久久日本| 夜夜看夜夜爽夜夜摸| 久久精品久久久久久噜噜老黄 | 最近手机中文字幕大全| 尤物成人国产欧美一区二区三区| 白带黄色成豆腐渣| 99热网站在线观看| 老司机影院成人| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 亚洲七黄色美女视频| 免费看日本二区| 少妇高潮的动态图| 欧美精品国产亚洲| 国产一级毛片在线| 免费av不卡在线播放| 精品午夜福利在线看| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| 国产成人一区二区在线| 日韩欧美一区二区三区在线观看| 99久久精品国产国产毛片| a级一级毛片免费在线观看| 少妇人妻一区二区三区视频| 日韩欧美精品免费久久| 国产探花在线观看一区二区| av在线观看视频网站免费| 一夜夜www| av在线老鸭窝| 亚洲精品日韩在线中文字幕 | 高清在线视频一区二区三区 | 欧美激情久久久久久爽电影| 国产视频首页在线观看| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 日韩成人av中文字幕在线观看| 国产色婷婷99| 国产精品国产三级国产av玫瑰| 欧美3d第一页| 国产极品天堂在线| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 国产免费男女视频| 激情 狠狠 欧美| 欧美一级a爱片免费观看看| 亚洲欧美成人综合另类久久久 | 国产久久久一区二区三区| 国产精品一区二区性色av| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 国内少妇人妻偷人精品xxx网站| 日韩成人av中文字幕在线观看| 天堂网av新在线| 国产 一区精品| 给我免费播放毛片高清在线观看| kizo精华| 精品一区二区免费观看| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区 | 国国产精品蜜臀av免费| 欧美xxxx性猛交bbbb| 99热全是精品| 久久久精品大字幕| kizo精华| 老熟妇乱子伦视频在线观看| 亚洲电影在线观看av| 在线a可以看的网站| 欧美区成人在线视频| 午夜福利成人在线免费观看| 内地一区二区视频在线| 国产在线男女| 在线观看免费视频日本深夜| 亚洲乱码一区二区免费版| 波多野结衣高清作品| 毛片一级片免费看久久久久| 麻豆av噜噜一区二区三区| 99热精品在线国产| 国产毛片a区久久久久| 六月丁香七月| 亚洲人成网站在线观看播放| 免费av毛片视频| 韩国av在线不卡| 在线观看66精品国产| 草草在线视频免费看| 中文字幕熟女人妻在线| 国内精品宾馆在线| 欧美极品一区二区三区四区| 久久久精品大字幕| 99热全是精品| 给我免费播放毛片高清在线观看| 久久久精品大字幕| 国产成人精品久久久久久| av在线观看视频网站免费| 欧美日韩乱码在线| 国产淫片久久久久久久久| 亚洲天堂国产精品一区在线| 国产精品.久久久| 免费看a级黄色片| 日日干狠狠操夜夜爽| 午夜福利成人在线免费观看| 99久久九九国产精品国产免费| 欧美又色又爽又黄视频| 99久久中文字幕三级久久日本| 99久久精品国产国产毛片| 成人综合一区亚洲| 国产精品1区2区在线观看.| 少妇人妻一区二区三区视频| 午夜亚洲福利在线播放| 一本久久中文字幕| 欧美3d第一页| 99精品在免费线老司机午夜| www.av在线官网国产| 国产三级在线视频| 性色avwww在线观看| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 欧美高清性xxxxhd video| 亚洲精品自拍成人| 一级毛片我不卡| 欧美日本视频| 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看| 最近手机中文字幕大全| 大香蕉久久网| 国产精品女同一区二区软件| 99热精品在线国产| 亚州av有码| 如何舔出高潮| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲18禁久久av| 成人亚洲精品av一区二区| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 亚洲精品国产成人久久av| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 在线免费观看不下载黄p国产| 国产激情偷乱视频一区二区| 国产精品爽爽va在线观看网站| 哪里可以看免费的av片| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| 久久久久久九九精品二区国产| 搡女人真爽免费视频火全软件| av在线天堂中文字幕| 国产人妻一区二区三区在| 午夜精品一区二区三区免费看| 成人毛片a级毛片在线播放| 久久这里只有精品中国| а√天堂www在线а√下载| 蜜桃久久精品国产亚洲av| 午夜久久久久精精品| 天天一区二区日本电影三级| 精品久久久久久久久亚洲| 丰满乱子伦码专区| 老司机影院成人| 国产综合懂色| .国产精品久久| 欧美bdsm另类| 国产精华一区二区三区| 国产精品电影一区二区三区| 亚洲第一区二区三区不卡| 国产蜜桃级精品一区二区三区| 欧美xxxx性猛交bbbb| 色5月婷婷丁香| 国产av不卡久久| 看黄色毛片网站| 国产视频首页在线观看| 欧美潮喷喷水| 国产成人福利小说| 亚洲不卡免费看| 一本一本综合久久| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 国产一区二区三区av在线 | 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 国产成年人精品一区二区| 别揉我奶头 嗯啊视频| 看非洲黑人一级黄片| 极品教师在线视频| 中文欧美无线码| 99热这里只有精品一区| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 22中文网久久字幕| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 精品无人区乱码1区二区| 亚洲国产精品sss在线观看| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 99久国产av精品| 国产伦精品一区二区三区视频9| 亚洲精品456在线播放app| 亚洲精品乱码久久久久久按摩| 精品无人区乱码1区二区| 99久久久亚洲精品蜜臀av| 日韩 亚洲 欧美在线| 日本黄大片高清| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 精品一区二区三区视频在线| 少妇人妻一区二区三区视频| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 内地一区二区视频在线| 精华霜和精华液先用哪个| 卡戴珊不雅视频在线播放| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 久久这里只有精品中国| 中国美女看黄片| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 在线观看美女被高潮喷水网站| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频 | 春色校园在线视频观看| 欧美一级a爱片免费观看看| 99国产极品粉嫩在线观看| 麻豆国产97在线/欧美| 国产黄色视频一区二区在线观看 | 国产av在哪里看| 免费看美女性在线毛片视频| 久久精品国产亚洲av天美| 人人妻人人澡欧美一区二区| 亚洲四区av| 国产精品.久久久| 美女大奶头视频| 欧美一区二区亚洲| 中文字幕制服av| 亚洲国产高清在线一区二区三| 亚洲无线在线观看| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 热99在线观看视频| 老司机影院成人| 久久久久国产网址| 精品一区二区免费观看| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 免费看a级黄色片| 91在线精品国自产拍蜜月| 国产精品麻豆人妻色哟哟久久 | 国产欧美日韩精品一区二区| 12—13女人毛片做爰片一| 国产伦精品一区二区三区视频9| 亚洲av熟女| 亚洲av二区三区四区| 51国产日韩欧美| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲网站| 久久99热这里只有精品18| 午夜视频国产福利| 久久午夜福利片| 不卡一级毛片| 中文字幕制服av| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 熟女电影av网| 一区二区三区四区激情视频 | 欧美日本亚洲视频在线播放| 精品人妻熟女av久视频| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 国产在视频线在精品| 国产精品久久久久久亚洲av鲁大| 久久久久九九精品影院| 中文资源天堂在线| 久久精品影院6| 中文字幕免费在线视频6| 深夜a级毛片| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 日本免费a在线| 精品人妻一区二区三区麻豆| 中文欧美无线码| 给我免费播放毛片高清在线观看| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 观看美女的网站| 日韩欧美在线乱码| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 熟女人妻精品中文字幕| 在线观看66精品国产| 久久6这里有精品| 日韩成人伦理影院| 在现免费观看毛片| 国内精品美女久久久久久| 少妇熟女欧美另类| 深夜精品福利| 级片在线观看| 欧美日韩精品成人综合77777| 久久99热6这里只有精品| 日本-黄色视频高清免费观看| 六月丁香七月| 欧美高清成人免费视频www| 久久中文看片网| 高清毛片免费看| 亚洲乱码一区二区免费版| 欧美色视频一区免费| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 校园春色视频在线观看| 亚洲精品亚洲一区二区| 亚洲国产色片| 波野结衣二区三区在线| 国产视频首页在线观看| 老女人水多毛片| 黄片无遮挡物在线观看| 老司机影院成人| 国产精品野战在线观看| 亚洲欧美成人综合另类久久久 |