• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor

    2021-11-30 08:29:20YingjieWANG王英杰JiaweiHUANG黃佳偉YuruZHANG張鈺如FeiGAO高飛andYounianWANG王友年
    Plasma Science and Technology 2021年11期
    關(guān)鍵詞:王友英杰

    Yingjie WANG (王英杰), Jiawei HUANG (黃佳偉), Yuru ZHANG (張鈺如),Fei GAO (高飛)and Younian WANG (王友年)

    Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract In the design of negative hydrogen ion sources, a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature, which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is6.7× 1017 m?3 in the case without the magnetic shield,and the value increases to9.4× 1017 m?3 when the magnetic shield is introduced.

    Keywords: radio-frequency negative hydrogen ion sources, three-dimensional fluid model,neutral beam injection

    1.Introduction

    A neutral beam injection (NBI) prototype is designed for the China Fusion Engineering Test Reactor (CFETR) in the Southwestern Institute of Physics.The neutral beam power of the CFETR NBI prototype is expected to be higher than 4 MW, and the hydrogen ion beam is expected to reach 20 A with an energy of up to 400 keV for 3600 s[1,2].Compared to positive ion sources, the neutralization efficiency of the negative ions is strikingly higher, especially when the ion energy is higher than 100 keV [3, 4].Therefore, the radiofrequency (RF) negative hydrogen ion source (NHIS) was chosen for the CFETR NBI prototype.

    In the NHIS,there are two main mechanisms of negative hydrogen ion production, i.e.surface production and volume production.When energetic hydrogen atoms and positive ions bombard low-work-function surfaces,negative hydrogen ions are formed in the surfaces, and this is the so-called surface production [5, 6].In the volume production process, lowenergy electrons collide with vibrationally excited hydrogen molecules, and dissociative attachment occurs [7]:

    In order to increase the density of negative hydrogen ions,a transverse magnetic field generated by a magnetic filter is applied downstream of the expansion region to create lowenergy electrons.The magnetic field in the expansion region is usually about a few tens of Gauss,and it is about 10 Gauss in the driver region[8].When the magnetic field in front of the electrode was stronger than 24 Gauss,the temperature decreased strikingly to 1 eV, and the plasma homogeneity downstream of the expansion region became much better at the magnetic field of 61 Gauss[9].Although the magnetic field(dozens of Gauss)effectively reduces the electron temperature, especially downstream of the expansion region,the electron density in the driver region also declines, and the plasma distribution becomes asymmetric [8, 10–12].Furthermore, the position of the magnetic filter field in the NHIS has also been proven to affect the plasma characteristics.As the magnetic filter moves towards the driver region,the penetration of the magnetic field into the driver region is enhanced, leading to significant plasma asymmetry[8, 10, 11, 13].

    Although the magnetic filter field is helpful for increasing the extraction probability of negative ions[14]and decreasing the electron temperature, the negative ion density is almost unchanged because of the decreased electron density [15].Furthermore,a higher value of plasma density near the plasma grid is helpful for the surface production[15–17].Hence,it is of significant importance to control the magnetic field topology to increase the plasma density.

    In this work, the distribution of the magnetic field topology is optimized by replacing the driver–expansion region interface of the reactor by magnetic shield materials with high relative permeability.In order to exactly take the magnetic field topology and the reactor geometry into account,a three-dimensional(3D)fluid model is employed to simulate the NHIS prototype for the CFETR NBI system.The work is organized as follows.Section 2 introduces the 3D fluid model.In section 3, we investigate the influence of the magnetic field topology on the plasma parameters, with the optimal solution proposed.Finally, a brief summary is given in section 4.

    2.Model description

    The single-driver NHIS prototype designed for CFETR NBI system is shown in figure 1(a).The NHIS consists of a cylindrical driver region and a cuboid expansion region.A 3D Cartesian coordinate system is employed in the fluid model,with the origin fixed at the driver–expansion interface, as shown in figure 1(a).The driver region has a diameter of 28 cm and height of 14 cm, with five turns of RF coils surrounding.The length, width and height of the expansion region are 60 cm, 50 cm and 25 cm, respectively.When the magnetic field is applied, five permanent magnets, with remanent magnetization of 2.1 T for each, are arranged in a row along the x-axis downstream of each xz-plane of the expansion region.The length, width and height of each magnet are 9 cm, 5 cm and 2 cm, and they are placed 2 cm apart from each other.The RF current is flowing through the coil and the frequency of RF power is 2 MHz.It is worth mentioning that the gas pressure is 0.6 Pa and the absorbed RF power is 40 kW.

    Figure 1.NHIS structures: (a) a single-driver NHIS prototype, (b)a single-driver NHIS prototype with magnetic shield, (c) the structure of the driver–expansion region interface.

    In this work,the magnetic field topology is optimized by the magnetic shield.The magnetic shield is realized by applying high relative permeability materials(i.e.103,such as iron, whose relative permeability is 4× 103) to the reactor walls to reduce the penetration of the magnetic field in the driver region.In order to clearly investigate the influence of the magnetic shield on the plasma generation and transport,a magnetic shield case is performed, i.e.the application of magnetic shield materials in the driver–expansion region interface.The case of the applied magnetic shield materials is shown in figures 1(b) and (c) (i.e.w = 40 cm, l = 48 cm).

    In the simulations,eight different species are considered,i.e.electrons, ground-state moleculesH2,ground-state atoms H,and excited-state atoms H (n= 2) and H (n= 3) ,as well as H+,ions.Although the generation of negative hydrogen ions plays an important role in the NHIS, the corresponding reactions are ignored in this work, as the emphasis has been put on the influence of the magnetic shield on the distribution of the magnetic field and the plasma properties.In our future work,the negative hydrogen ions will be taken into account for more accurate simulations.The reactions considered in the model, as well as the references where the cross-sections are adopted from, are listed in table 1.

    Table 1.Gas-phase reactions considered in this work.

    2.1.Fluid model

    A 3D fluid model for magnetized plasmas is developed within COMSOL Multiphysics.For electrons, the particle balance equation, momentum conservation equation and energy conservation equation are included.

    The particle balance equation for electrons is given by

    whereneand Γeare the electron density and electron flux,andGeandLerepresent the generation and loss due to collisions.

    For the momentum conservation equation, the temperature gradient, inertial and convection terms are omitted:

    Here,E is the electrostatic field,andare the electron mobility tensor and electron diffusion coefficient tensor

    whereμ0andD0are the electron mobility and electron diffusion coefficient without external magnetic field

    The electron energy conservation equation is

    wherePindis the absorbed power density,as will be discussed in subsection 2.2,andSenis the energy loss term.The flux of energy Qeis given by

    The boundary conditions of Γeand Qeat the walls are

    where n is the normal vector of the walls,vthis the thermal velocity of electrons, andθis the electron reflection coefficient [26].

    Since ions and neutral species are often assumed to be at room temperature, only the particle balance equation and momentum conservation equation for ions and neutrals are considered.In future work, the temperature of neutral particles and ions will be calculated self-consistently.

    We assume that ions are not magnetized, then the transport equations can be expressed as

    whereniand Γiare the ion density and ion flux,andGiandLiare the generation and loss terms of ions.The ion mobilityμiand diffusion coefficientDiare adopted from [27].

    For neutral particles, the transport equations are as follows

    wherennand Γnare the density and flux of speciesn,GnandLnare the generation and loss terms, andDnis the diffusion coefficient from gas kinetic theory [28, 29].The boundary conditions of Γiand Γnat the walls are [10]

    where Γi,and Γnare the flux of ions and neutrals,andvi,thandvn,thare the thermal velocity of ions and neutrals.

    The electrostatic field is obtained by solving the Poisson equation

    whereε0is the vacuum permittivity andφis the electric potential.At the walls, the electric potential is set to zero.

    2.2.Electromagnetic model

    In the electromagnetic model, the Maxwell equations are solved in the frequency domain, and then the electric field is described by

    whereJindis the inductive current density,Eindis the inductive electric field, andi andμ0are the imaginary unit and permeability of the vacuum.

    The absorbed power densityPindis given by

    indThe conductivity tensor of the magnetized plasma is

    where

    At the walls, the inductive electric field satisfies ?×Eind=0.

    2.3.Magnetostatic model

    The external transverse magnetic field is calculated by the magnetostatic model.In this model, the electric currents are not included, implying that the magnetic field is generated in a current-free region where ?× H= 0 (H is the magnetic field intensity).By introducing the magnetic scalar potentialVm,the magnetic field intensity is expressed as H = -?Vm.Since it is difficult to set the boundary conditions for the static magnetic field in the plasma region, the simulated region is expanded, i.e.the length, width and height of the region are 300 cm,300 cm and 200 cm.The NHIS is placed at the center of the region to maintain the symmetry of the original magnetic field.In the whole region, the static magnetic field can be obtained by solving -? (μ0?Vm+μ0M) =0,with the boundary conditions of ?Vm=0,whereM is the magnetization intensity.

    3.Results and discussion

    In order to optimize the magnetic field topology to increase the plasma density, the magnetic shield material is applied at the side walls of the expansion region and at the driver–expansion region interface.By comparisons, it is concluded that the plasma density can be enhanced efficiently when the magnetic shield is only applied at part of the driver–expansion region interface (indicated by the dark color in figure 1(c)),i.e.the length and width of the magnetic shield region are 48 cm and 40 cm.In order to illustrate the influence of the magnetic shield, the spatial distributions of the plasma parameters in three different cases are presented; i.e.case I: an NHIS without magnetic filter field and magnetic shield; case II: an NHIS with magnetic filter field and without magnetic shield; case III: an NHIS with magnetic filter field and magnetic shield at part of the driver–expansion region interface (l = 48 cm and w = 40 cm).

    First, the influence of the magnetic field topology is illustrated by comparing the axial distributions of the electron density and the electron temperature along the reactor centerline (i.e.x = 30 cm and y = 25 cm) obtained in cases I, II and III, as shown in figure 2.In case I, the electron density first increases and then decreases along the z-direction, with the maximum appearing at the driver–expansion region interface.When the magnetic filter field is introduced in the NHIS (case II), the maximum of the electron density significantly decreases and shifts towards the driver region.From figure 2(a),it is clear that when the magnetic shield is applied(case III), the axial distribution of the electron density is similar to that of case II,but the absolute value is much higher[9],and is comparable to case I.This is because the magnetic shield reduces the magnetic field in the upper expansion region and in the lower driver region (figure 2(c)).With the application of a weak magnetic field, electrons tend to spiral around the magnetic field lines, which increases the collision probability with neutral particles, and thus the plasma generation is enhanced.Similar results were observed in [9].

    Figure 2.Axial distributions of the electron density (a), the electron temperature (b) and the magnetic field in case I, case II and case III.

    In addition, the electron temperature in case I exhibits a slight increase at the top of the driver region, and then it decreases gradually along the axial direction, whereas the electron temperature in case II reduces monotonically from the driver region to the expansion region.In contrast to case I,the decline of the electron temperature in case II becomes more obvious,i.e.the electron temperature downstream of the expansion region decreases from 4–5 eV in case I to about 1–2 eV in case II [13].Moreover, the electron temperature downstream of the expansion region in case III becomes slightly lower than that in case II, due to the greater energy loss at higher electron density.

    Figure 3 exhibits the distributions of Byand Bxin the 40 cm × 32 cm region of the xy-plane at a distance of 1 cm downstream of the expansion region in case II.By applying the high relative permeability material at the driver–expansion region interface (case III, not shown here), both Byand Bxdownstream of the expansion region are almost the same as those in the case without the magnetic shield (case II).In addition,Byis symmetric with respect to the lines x = 30 cm and y = 25 cm, whereas Bxis symmetric with respect to the center point (i.e.x = 30 cm and y = 25 cm).

    Figure 3.Distributions of By (a) and Bx (b) in the xy-plane at a distance of 1 cm downstream of the expansion region in case II.

    Figure 4.Distributions of the electron density (first column) and the electron temperature (second column) in the xz-plane (y = 25 cm) in case I (first row), case II (second row) and case III (third row).

    The electron density and the electron temperature in the xz-plane (y = 25 cm) in cases I, II and III are presented in figure 4.It can be seen that the electron density in case I is symmetric with respect to x = 30 cm, and the distributions become asymmetric when the magnetic filter field is taken into account (case II and case III).This is because of the E × B drift along the x-direction, i.e.the electric field is mainly in the z-direction and the magnetic field is mainly in the y-direction.The evolution of the electron temperature is similar.For instance, the maximum of the electron temperature in case I appears at the side wall of the driver region,and the value is 13.5 eV (figure 4(b)).In case II, the electron temperature at the right side wall of the driver region is almost unchanged, whereas the value at the left side wall increases dramatically to about 25 eV (figure 4(d)).This is because when the magnetic field is applied, the electron mobility tensor and the electron diffusion coefficient tensor become asymmetric, and this gives rise to asymmetric power deposition [10].When the magnetic shield is considered, the magnetic field at the top of the driver region becomes stronger(see figure 2(c) above), which enhances the asymmetry.Therefore, the maximum of the electron temperature appears at the top left side wall of the driver region, with a much lower value (case III, figure 4(f)).

    Figure 5 illustrates the distribution of the electron density and the electron temperature in the yz-plane (x = 30 cm) in cases I, II and III.It is clear that the electrons drift in the ydirection when the magnetic field is introduced (figures 5(c)and (e)), due to the existence of Bx, and the maximum of the electron density shifts to the driver region, as we mentioned above.In addition, the electron density distribution in the yzplane is always symmetric whether the magnetic filter field is applied or not, which is different from the results in the xzplane.In the case without magnetic field, the electron temperature distribution in the yz-plane is the same as that in the xz-plane, and the minimum value in the expansion region is 3.4 eV(figure 5(b)).When the magnetic field is included,the distribution of the electron temperature becomes strikingly different, and the minimum in the expansion region declines to 1.65 eV (figure 5(d)).In case III, the application of the magnetic shield decreases the minimum of the electron temperature, but the spatial distribution is almost the same.

    Figure 5.Distributions of the electron density (first column) and the electron temperature (second column) in the yz-plane (x = 30 cm) in case I (first row), case II (second row) and case III (third row).

    Figures 6(a), (c) and (e) represent the distribution of the electron density in the xy-plane (z = 24 cm).Again, the electron density is asymmetric with respect to x = 30 cm in case II and case III,but it is always symmetric with respect to y = 25 cm in the three cases.Compared with case I, the maximum of the electron density moves to the negative x-direction when the magnetic field is applied, again because of the drift caused by By.The influence of the magnetic field on the spatial distribution of the electron temperature in the xy-plane is more obvious.For instance, when the magnetic field is applied,the electron temperature at the center declines significantly (i.e.from 3.8 eV to 2 eV), and the maximum moves from the center to y = 0 cm and y = 50 cm(figure 6(d)).This may be because the magnetic field Byis weaker at the center (i.e.y = 25 cm, see figure 3(a) above),thus only the low-energy electrons can be constrained to rotate around the magnetic field lines there.When the magnetic shield is introduced, the electron temperature exhibits a similar distribution, but the value drops, i.e.the maximum varies from 3.7 eV to 3 eV (figure 6(f)).

    Figure 6.Distributions of the electron density (first column) and the electron temperature (second column) in the xy-plane (z = 24 cm) in case I (first row), case II (second row) and case III (third row).

    4.Conclusions

    In this work,a 3D fluid model is developed to investigate the effect of the magnetic field topology on the plasma properties.The magnetic field topology varies by introducing the magnetic shield, which is realized by applying magnetic shield material to the driver–expansion region interface.

    The results indicate that when the magnetic field is applied,both the electron temperature in the expansion region and the electron density decrease rapidly.By introducing the magnetic shield at the driver–expansion region interface, the magnetic field topology is affected, and thus the plasma properties are modulated.Although the electron temperature downstream of the expansion region stays low, the plasma generation is enhanced effectively.For instance, the maximum of the electron density downstream of the expansion region rises from4.3× 1016m?3in case II to7.4× 1016m?3in case III.It is concluded that by applying the magnetic shield at the driver–expansion region interface, the electron temperature remains low and the plasma density increases significantly,which is important for enhancing the generation of negative hydrogen ions in the NHIS.

    Acknowledgments

    This work was supported by the National Key R&D Program of China (No.2017YFE0300106), National Natural Science Foundation of China (No.12075049) and the Fundamental Research Funds for the Central Universities (Nos.DUT20LAB201 and DUT21LAB110).

    猜你喜歡
    王友英杰
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    急性子的媽媽
    Multi-layer structure formation of relativistic electron beams in plasmas
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
    Observe modern design works and taste traditional Chinese culture
    Special Property of Group Velocity for Temporal Dark Soliton?
    高清av免费在线| 日韩一本色道免费dvd| 久久精品熟女亚洲av麻豆精品| 免费观看性生交大片5| 大香蕉久久成人网| 在线观看一区二区三区激情| 欧美激情 高清一区二区三区| 一二三四中文在线观看免费高清| 一区在线观看完整版| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 精品免费久久久久久久清纯 | 在线亚洲精品国产二区图片欧美| 大片电影免费在线观看免费| 在线看a的网站| 精品一区二区三卡| 一区二区三区四区激情视频| 中文天堂在线官网| 无遮挡黄片免费观看| 狂野欧美激情性bbbbbb| 免费av中文字幕在线| 天天操日日干夜夜撸| 国产在线一区二区三区精| 国产精品亚洲av一区麻豆 | 最近中文字幕2019免费版| 国产爽快片一区二区三区| 黄色毛片三级朝国网站| 午夜老司机福利片| 黑丝袜美女国产一区| 亚洲专区中文字幕在线 | 超碰成人久久| 日韩av在线免费看完整版不卡| 丁香六月天网| 男女高潮啪啪啪动态图| 久久久亚洲精品成人影院| 久久久久久人人人人人| 亚洲精品久久午夜乱码| 街头女战士在线观看网站| 19禁男女啪啪无遮挡网站| 久久久久久久国产电影| 两个人看的免费小视频| 在线观看免费日韩欧美大片| 国产又爽黄色视频| av国产精品久久久久影院| 国产熟女欧美一区二区| 亚洲综合精品二区| 国产一区二区三区av在线| 两个人免费观看高清视频| 最近手机中文字幕大全| 国产麻豆69| 国产免费福利视频在线观看| 国产野战对白在线观看| xxxhd国产人妻xxx| 51午夜福利影视在线观看| av在线老鸭窝| 亚洲综合精品二区| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 9热在线视频观看99| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品999| 久久久久精品性色| 七月丁香在线播放| a级毛片在线看网站| 亚洲成色77777| 另类亚洲欧美激情| 乱人伦中国视频| xxxhd国产人妻xxx| 国产精品 国内视频| 亚洲伊人色综图| 美国免费a级毛片| 国产麻豆69| 老汉色av国产亚洲站长工具| 精品少妇一区二区三区视频日本电影 | 青春草视频在线免费观看| av在线app专区| 午夜激情av网站| 精品一区二区三区av网在线观看 | 欧美老熟妇乱子伦牲交| 啦啦啦啦在线视频资源| 老司机影院成人| xxxhd国产人妻xxx| 中文字幕最新亚洲高清| 一级片'在线观看视频| 欧美中文综合在线视频| 午夜久久久在线观看| 各种免费的搞黄视频| 亚洲国产欧美在线一区| 亚洲精品乱久久久久久| 国产成人欧美在线观看 | 黄网站色视频无遮挡免费观看| 免费在线观看视频国产中文字幕亚洲 | 一二三四在线观看免费中文在| 亚洲欧美一区二区三区久久| 亚洲av电影在线观看一区二区三区| 夫妻午夜视频| 一级片'在线观看视频| 夫妻午夜视频| 一边亲一边摸免费视频| 一边亲一边摸免费视频| 丰满迷人的少妇在线观看| 久久午夜综合久久蜜桃| 制服人妻中文乱码| 成人18禁高潮啪啪吃奶动态图| 亚洲av男天堂| 亚洲精品,欧美精品| 欧美精品一区二区免费开放| 日韩不卡一区二区三区视频在线| 亚洲美女视频黄频| 色婷婷av一区二区三区视频| 色婷婷av一区二区三区视频| 十分钟在线观看高清视频www| 在线观看三级黄色| 夫妻午夜视频| 激情五月婷婷亚洲| 国产片内射在线| 国产男女内射视频| 国产精品免费大片| xxx大片免费视频| 日日撸夜夜添| 精品国产乱码久久久久久小说| 中文欧美无线码| 免费高清在线观看视频在线观看| 伊人亚洲综合成人网| 天堂中文最新版在线下载| 人体艺术视频欧美日本| 黄色视频不卡| 国产精品二区激情视频| 久久毛片免费看一区二区三区| 久久久欧美国产精品| 男女无遮挡免费网站观看| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| www.自偷自拍.com| 亚洲少妇的诱惑av| 男人舔女人的私密视频| 久久久久久久大尺度免费视频| 免费看av在线观看网站| 丝袜在线中文字幕| 曰老女人黄片| 婷婷色综合www| 亚洲欧美一区二区三区久久| 午夜福利视频精品| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 成年av动漫网址| 欧美精品高潮呻吟av久久| 在线观看免费视频网站a站| 不卡视频在线观看欧美| 国产男女超爽视频在线观看| 欧美日韩综合久久久久久| 亚洲第一区二区三区不卡| 女性生殖器流出的白浆| 九草在线视频观看| 久久久久久久久久久免费av| 人人妻人人澡人人爽人人夜夜| 免费高清在线观看日韩| 在线天堂最新版资源| 成年人免费黄色播放视频| 国产男女超爽视频在线观看| 这个男人来自地球电影免费观看 | 一级片'在线观看视频| 日韩大片免费观看网站| 成人国语在线视频| 精品久久久久久电影网| 中国三级夫妇交换| 精品久久久久久电影网| 大片电影免费在线观看免费| bbb黄色大片| 亚洲国产av新网站| 国产精品人妻久久久影院| www.熟女人妻精品国产| 欧美日韩视频高清一区二区三区二| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| 亚洲伊人色综图| 少妇被粗大的猛进出69影院| av有码第一页| 久久天躁狠狠躁夜夜2o2o | 最新的欧美精品一区二区| 色吧在线观看| 看免费av毛片| 丰满少妇做爰视频| 欧美精品亚洲一区二区| 少妇 在线观看| 如何舔出高潮| 极品少妇高潮喷水抽搐| 成年动漫av网址| 欧美日韩一区二区视频在线观看视频在线| 国产黄色免费在线视频| 人人妻人人澡人人看| 各种免费的搞黄视频| 久久久久精品国产欧美久久久 | 亚洲欧美日韩另类电影网站| 热re99久久精品国产66热6| 伊人久久大香线蕉亚洲五| 丁香六月天网| 亚洲人成网站在线观看播放| 精品人妻熟女毛片av久久网站| 国产成人精品福利久久| 免费观看人在逋| 国产精品 国内视频| 成人手机av| 七月丁香在线播放| 亚洲 欧美一区二区三区| 老司机影院成人| 欧美日韩亚洲高清精品| 精品视频人人做人人爽| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 亚洲天堂av无毛| 爱豆传媒免费全集在线观看| 亚洲 欧美一区二区三区| 国产免费一区二区三区四区乱码| 一级a爱视频在线免费观看| 婷婷成人精品国产| 国产精品香港三级国产av潘金莲 | 丝瓜视频免费看黄片| 国产淫语在线视频| 亚洲av日韩精品久久久久久密 | 亚洲熟女毛片儿| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 久久久久久久久久久免费av| 午夜日本视频在线| 国产国语露脸激情在线看| xxx大片免费视频| 日日摸夜夜添夜夜爱| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产区一区二| 日韩视频在线欧美| 午夜福利免费观看在线| 国产成人精品久久二区二区91 | 亚洲美女黄色视频免费看| 性少妇av在线| av天堂久久9| 欧美国产精品va在线观看不卡| 女性被躁到高潮视频| 999久久久国产精品视频| 两个人免费观看高清视频| 人体艺术视频欧美日本| 欧美日韩视频精品一区| 亚洲综合色网址| 嫩草影院入口| 国产精品蜜桃在线观看| 欧美黄色片欧美黄色片| 天堂中文最新版在线下载| 一区在线观看完整版| 亚洲综合色网址| 人妻人人澡人人爽人人| 天堂俺去俺来也www色官网| 亚洲成人免费av在线播放| 亚洲久久久国产精品| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 久久久久国产一级毛片高清牌| xxxhd国产人妻xxx| 女性被躁到高潮视频| 老司机靠b影院| avwww免费| 午夜福利网站1000一区二区三区| 大码成人一级视频| 男男h啪啪无遮挡| 亚洲精品在线美女| 精品一品国产午夜福利视频| 久久精品国产亚洲av涩爱| 天天添夜夜摸| 街头女战士在线观看网站| 桃花免费在线播放| 久久久久精品国产欧美久久久 | 天堂俺去俺来也www色官网| 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费| 观看av在线不卡| 91精品国产国语对白视频| av在线老鸭窝| 色网站视频免费| 国产男女超爽视频在线观看| 成人国产av品久久久| 一级片免费观看大全| 9色porny在线观看| 免费在线观看黄色视频的| 精品久久久久久电影网| 毛片一级片免费看久久久久| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| 国产福利在线免费观看视频| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 少妇 在线观看| 欧美在线黄色| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 热99国产精品久久久久久7| 国产色婷婷99| 日韩av不卡免费在线播放| 美女扒开内裤让男人捅视频| 欧美日韩国产mv在线观看视频| 中文字幕亚洲精品专区| 亚洲国产精品999| 最近最新中文字幕大全免费视频 | 欧美激情高清一区二区三区 | 亚洲五月色婷婷综合| 亚洲国产看品久久| 久久免费观看电影| 久久ye,这里只有精品| 国产精品99久久99久久久不卡 | 91aial.com中文字幕在线观看| 日韩中文字幕视频在线看片| 高清不卡的av网站| 青春草国产在线视频| 巨乳人妻的诱惑在线观看| 性高湖久久久久久久久免费观看| 日本色播在线视频| 高清不卡的av网站| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 在线天堂最新版资源| 性少妇av在线| 精品国产国语对白av| 日日啪夜夜爽| 精品免费久久久久久久清纯 | 纯流量卡能插随身wifi吗| 人妻一区二区av| 国产黄色免费在线视频| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 岛国毛片在线播放| 69精品国产乱码久久久| av国产精品久久久久影院| 午夜精品国产一区二区电影| 中文字幕人妻丝袜一区二区 | 久久久久网色| 亚洲成人免费av在线播放| 成年人免费黄色播放视频| 亚洲人成电影观看| 欧美中文综合在线视频| 老司机深夜福利视频在线观看 | 亚洲美女黄色视频免费看| 欧美久久黑人一区二区| 国产亚洲一区二区精品| 人妻一区二区av| 哪个播放器可以免费观看大片| 精品少妇久久久久久888优播| 另类精品久久| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 久久精品国产综合久久久| 亚洲美女搞黄在线观看| 90打野战视频偷拍视频| 亚洲美女视频黄频| 精品国产国语对白av| 伊人久久国产一区二区| 久久国产精品大桥未久av| av又黄又爽大尺度在线免费看| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 国产精品.久久久| 只有这里有精品99| 高清不卡的av网站| 亚洲图色成人| 欧美xxⅹ黑人| av在线播放精品| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花| 99热国产这里只有精品6| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 国产伦理片在线播放av一区| 最新的欧美精品一区二区| 多毛熟女@视频| 亚洲国产精品成人久久小说| 国产xxxxx性猛交| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 韩国高清视频一区二区三区| 亚洲久久久国产精品| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 免费黄频网站在线观看国产| 成年美女黄网站色视频大全免费| 国产男人的电影天堂91| 久久精品久久久久久久性| 伦理电影大哥的女人| 日韩不卡一区二区三区视频在线| 色播在线永久视频| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 欧美激情极品国产一区二区三区| 99热国产这里只有精品6| 久久精品国产综合久久久| 国产一区有黄有色的免费视频| 永久免费av网站大全| 黑人猛操日本美女一级片| 激情视频va一区二区三区| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 国产欧美亚洲国产| 免费不卡黄色视频| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 午夜日本视频在线| xxxhd国产人妻xxx| 99久久人妻综合| 51午夜福利影视在线观看| 欧美另类一区| 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆| 9色porny在线观看| 久久久久久久大尺度免费视频| 午夜福利免费观看在线| 十分钟在线观看高清视频www| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲日本最大视频资源| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 久热爱精品视频在线9| 亚洲中文av在线| 午夜激情久久久久久久| 婷婷色av中文字幕| 男女边摸边吃奶| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 日韩一区二区三区影片| 女人久久www免费人成看片| 国产精品免费大片| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 亚洲精品第二区| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 99九九在线精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 成人漫画全彩无遮挡| 亚洲少妇的诱惑av| 久久99一区二区三区| av在线播放精品| 日韩视频在线欧美| 亚洲精品,欧美精品| 一本久久精品| 久久鲁丝午夜福利片| 亚洲成国产人片在线观看| 久久久精品区二区三区| 在线观看人妻少妇| 久久鲁丝午夜福利片| 亚洲伊人久久精品综合| 国产亚洲av高清不卡| 欧美最新免费一区二区三区| 伦理电影免费视频| 999久久久国产精品视频| 成人毛片60女人毛片免费| 啦啦啦在线免费观看视频4| 午夜影院在线不卡| 久久性视频一级片| 老司机亚洲免费影院| www.av在线官网国产| 国产亚洲欧美精品永久| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 午夜福利一区二区在线看| 各种免费的搞黄视频| 女的被弄到高潮叫床怎么办| 美女大奶头黄色视频| 丝袜美足系列| 国产色婷婷99| 街头女战士在线观看网站| 欧美乱码精品一区二区三区| 日韩一区二区视频免费看| 又大又黄又爽视频免费| 在现免费观看毛片| 中文字幕人妻丝袜一区二区 | 国产精品一区二区精品视频观看| 国产在线免费精品| 人人澡人人妻人| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 在现免费观看毛片| 五月开心婷婷网| 亚洲国产精品一区三区| 国产又爽黄色视频| 国产国语露脸激情在线看| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 香蕉丝袜av| 午夜免费鲁丝| 日韩视频在线欧美| 少妇人妻久久综合中文| 蜜桃国产av成人99| 亚洲精品aⅴ在线观看| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 多毛熟女@视频| 成年av动漫网址| 国产精品 国内视频| 91精品国产国语对白视频| 久久精品aⅴ一区二区三区四区| 成人国产麻豆网| 亚洲精品第二区| 国产av码专区亚洲av| 国产成人av激情在线播放| 美女午夜性视频免费| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 欧美最新免费一区二区三区| 一级毛片电影观看| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| 在现免费观看毛片| www.av在线官网国产| 精品一区在线观看国产| 在线观看人妻少妇| 日韩精品有码人妻一区| 久久久久精品性色| 黄频高清免费视频| 国精品久久久久久国模美| 18禁国产床啪视频网站| 黄网站色视频无遮挡免费观看| 亚洲av欧美aⅴ国产| av电影中文网址| 伦理电影大哥的女人| 久久久久久久久免费视频了| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产a三级三级三级| 日本色播在线视频| a 毛片基地| 最近最新中文字幕大全免费视频 | 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 国产成人免费观看mmmm| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| a级毛片在线看网站| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 国产一区有黄有色的免费视频| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 人妻人人澡人人爽人人| 国产免费现黄频在线看| 综合色丁香网| 亚洲精华国产精华液的使用体验| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人看| 晚上一个人看的免费电影| 波多野结衣一区麻豆| 国产成人欧美| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 中文天堂在线官网| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 人妻一区二区av| 中文字幕最新亚洲高清| 午夜免费观看性视频| √禁漫天堂资源中文www| 免费少妇av软件| av又黄又爽大尺度在线免费看| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 日韩一区二区视频免费看| 美女扒开内裤让男人捅视频| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 日本91视频免费播放| 成年女人毛片免费观看观看9 | 亚洲av日韩精品久久久久久密 | 在线观看免费日韩欧美大片| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 老鸭窝网址在线观看| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 久久久久网色| 国产成人精品久久二区二区91 | 午夜影院在线不卡| 亚洲综合色网址| 欧美变态另类bdsm刘玥| 欧美精品av麻豆av| 黄片小视频在线播放| 综合色丁香网| 欧美激情极品国产一区二区三区| 在线观看免费高清a一片| 波野结衣二区三区在线| 又黄又粗又硬又大视频| 狠狠婷婷综合久久久久久88av| 午夜福利影视在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 丝袜脚勾引网站| 亚洲av中文av极速乱| 青春草国产在线视频| 中文字幕人妻熟女乱码| 日日啪夜夜爽|