• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      運(yùn)動(dòng)、阿爾茨海默病與突觸可塑性①

      2012-01-25 14:43:33劉慧莉趙剛
      關(guān)鍵詞:可塑性轉(zhuǎn)基因海馬

      劉慧莉,趙剛

      阿爾茨海默病(Alzheimer's disease,AD)是一種原發(fā)性神經(jīng)退行性疾病。早期主要的臨床表現(xiàn)為漸進(jìn)性學(xué)習(xí)和記憶能力減退。全球65歲以上人群中約有6%的人罹患此病[1]。由于AD起病隱匿、病因復(fù)雜,目前尚無(wú)特效的治療藥物和手段,因此尋找經(jīng)濟(jì)有效的防治方法日益成為人們關(guān)注的焦點(diǎn)。

      運(yùn)動(dòng)是中樞神經(jīng)系統(tǒng)有效的刺激形式。所有運(yùn)動(dòng)都可向中樞神經(jīng)系統(tǒng)提供感覺(jué)、運(yùn)動(dòng)和反射性傳入,運(yùn)動(dòng)對(duì)大腦的功能重組和代償起著重要作用。研究表明,運(yùn)動(dòng)不僅能提高普通人群的認(rèn)知能力,還能減緩AD的發(fā)病和進(jìn)展[2]。

      突觸(synapse)是神經(jīng)元間相互接觸部分的功能特化區(qū),是神經(jīng)元實(shí)現(xiàn)生理功能的關(guān)鍵部位。近年來(lái),突觸可塑性(synaptic plasticity)的研究引起人們關(guān)注。中樞神經(jīng)系統(tǒng)的突觸可塑性是研究學(xué)習(xí)和記憶神經(jīng)機(jī)制的核心問(wèn)題,突觸可塑性改變可能是運(yùn)動(dòng)防治AD的細(xì)胞機(jī)制。本文綜述運(yùn)動(dòng)對(duì)AD的防治作用、AD突觸可塑性的改變及運(yùn)動(dòng)對(duì)突觸可塑性的影響。

      1 運(yùn)動(dòng)對(duì)AD的防治作用

      1.1 流行病學(xué)調(diào)查 盡管在一項(xiàng)小樣本調(diào)查中發(fā)現(xiàn)每周體力活動(dòng)時(shí)間與AD發(fā)生的風(fēng)險(xiǎn)無(wú)關(guān)[3],但是,眾多的研究證明,運(yùn)動(dòng)對(duì)AD有預(yù)防或改善的作用[4-6]。一項(xiàng)追蹤調(diào)查表明,AD患者中年期很少活動(dòng),缺乏體力活動(dòng)可使AD發(fā)病風(fēng)險(xiǎn)增加250%[5]。前瞻性研究也顯示,體力活動(dòng)能夠?qū)拐J(rèn)知能力損害、AD和任何類型癡呆的進(jìn)展,其中體力活動(dòng)較多的人群,AD發(fā)生率下降60%[6]。

      1.2 動(dòng)物實(shí)驗(yàn)研究 在動(dòng)物實(shí)驗(yàn)研究中,運(yùn)動(dòng)的防治效果與運(yùn)動(dòng)類型、運(yùn)動(dòng)強(qiáng)度、運(yùn)動(dòng)開(kāi)始時(shí)間節(jié)點(diǎn)和運(yùn)動(dòng)持續(xù)時(shí)間有關(guān)。跑輪運(yùn)動(dòng)和跑臺(tái)運(yùn)動(dòng)是干預(yù)嚙齒類動(dòng)物的兩種最好的運(yùn)動(dòng)類型。

      跑輪運(yùn)動(dòng)被認(rèn)為是一種自愿運(yùn)動(dòng)方式,研究表明,與跑臺(tái)運(yùn)動(dòng)相比,跑輪運(yùn)動(dòng)改善AD行為學(xué)和神經(jīng)病理學(xué)損害更為有效[7]。跑輪運(yùn)動(dòng)對(duì)AD轉(zhuǎn)基因小鼠的認(rèn)知功能和病理過(guò)程的作用仍存在爭(zhēng)議。跑輪運(yùn)動(dòng)減輕TgCRND8轉(zhuǎn)基因小鼠β淀粉樣蛋白(β-amyloid protein,Aβ)斑塊沉積并且改善水迷宮學(xué)習(xí)能力[8];卻沒(méi)能改善APP23轉(zhuǎn)基因小鼠空間學(xué)習(xí)能力、減少Aβ斑塊沉積和增加海馬神經(jīng)再生[9]。這些矛盾的研究結(jié)果可能與轉(zhuǎn)基因小鼠種類、跑輪運(yùn)動(dòng)開(kāi)始的時(shí)間和運(yùn)動(dòng)持續(xù)時(shí)間有關(guān)。Richter等的研究表明,跑輪運(yùn)動(dòng)可能是轉(zhuǎn)基因小鼠的一種固定行為[10]。

      具有電刺激的跑臺(tái)運(yùn)動(dòng)因?yàn)樵黾泳駢毫?,?duì)健康造成負(fù)面影響,被認(rèn)為是一種強(qiáng)制運(yùn)動(dòng)。但也有研究發(fā)現(xiàn),強(qiáng)制運(yùn)動(dòng)同樣改善神經(jīng)退行性疾病動(dòng)物模型的認(rèn)知功能[11-12];長(zhǎng)期規(guī)律的跑臺(tái)運(yùn)動(dòng)提高野生型小鼠和轉(zhuǎn)基因小鼠水迷宮任務(wù)的學(xué)習(xí)和記憶能力[13-14]。此外,與單純跑輪運(yùn)動(dòng)相比,豐富環(huán)境訓(xùn)練能更有效地改善AD轉(zhuǎn)基因小鼠的認(rèn)知功能損害,提示多種方式相結(jié)合的運(yùn)動(dòng)訓(xùn)練對(duì)AD的防治更有效[15]。

      2 AD的突觸可塑性改變

      所謂突觸可塑性是指突觸在一定條件下,調(diào)整功能、改變形態(tài)及增減數(shù)目的能力;它既包括傳遞效能的變化,也包括形態(tài)結(jié)構(gòu)的變化。中樞神經(jīng)系統(tǒng)的突觸可塑性是研究中樞神經(jīng)系統(tǒng)生長(zhǎng)、發(fā)育、蛻變、損傷修復(fù)以及在學(xué)習(xí)和記憶過(guò)程中神經(jīng)機(jī)制的核心問(wèn)題。研究表明,海馬神經(jīng)元的突觸缺失和突觸可塑性變化在老年性癡呆的病理過(guò)程中占據(jù)重要地位,可能是老年性癡呆學(xué)習(xí)和記憶功能障礙的神經(jīng)生物學(xué)基礎(chǔ)[16]。

      長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP)是表現(xiàn)突觸可塑性的重要電生理指標(biāo)。已經(jīng)證實(shí),不同類型的AD轉(zhuǎn)基因模型出現(xiàn)海馬LTP減弱[17-18];AD轉(zhuǎn)基因小鼠海馬環(huán)路的突觸傳遞異常早于Aβ沉積和神經(jīng)細(xì)胞變性[19]。攜帶有突變APP695 SWE和PS1ΔE9基因的轉(zhuǎn)基因小鼠,盡管空間學(xué)習(xí)能力下降,但離體海馬腦片誘導(dǎo)的LTP卻未發(fā)生變化[20]。先前的研究發(fā)現(xiàn),突變基因APP695 SWE和PS1A246E過(guò)表達(dá)的17~18月齡的老年轉(zhuǎn)基因小鼠,在體海馬DG區(qū)LTP減弱,但離體海馬腦片CA1區(qū)LTP不變[21]。此外,不同月齡(2、6、9和14月齡)的野生型小鼠和轉(zhuǎn)基因小鼠離體腦片誘導(dǎo)的LTP未見(jiàn)不同[22]。這些研究的不同結(jié)論可能與實(shí)驗(yàn)方法(在體或離體)和研究通路不同有關(guān)。

      突觸蛋白(synapsin)可作為突觸前終末的特異性標(biāo)記物,用來(lái)檢測(cè)突觸的密度和分布。已發(fā)現(xiàn)AD患者腦海馬結(jié)構(gòu)內(nèi)突觸蛋白含量比正常人明顯減少,提示AD患者的海馬神經(jīng)元突觸密度下降[23-24]。Bertoni-Freddari早期研究發(fā)現(xiàn),皮質(zhì)和海馬突觸聯(lián)系缺失的嚴(yán)重程度與AD的癡呆程度呈正相關(guān)[25]。Masliah等也發(fā)現(xiàn),與AD臨床癥狀的嚴(yán)重性關(guān)系最密切的是新皮質(zhì)和海馬中突觸的缺失,而不是斑塊負(fù)荷[26]。突觸聯(lián)系缺失在AD早期即可出現(xiàn),以海馬的齒狀回分子層最嚴(yán)重[27],而在海馬的其他區(qū)域和新皮質(zhì)區(qū)程度較輕[28]。

      3 運(yùn)動(dòng)對(duì)突觸可塑性的作用

      神經(jīng)可塑性改變是神經(jīng)損傷后恢復(fù)的基礎(chǔ)。突觸是神經(jīng)可塑性變化的敏感部位,運(yùn)動(dòng)作為一種條件刺激,可引起突觸形態(tài)結(jié)構(gòu)和功能的重塑。

      3.1 功能可塑性 電生理學(xué)研究發(fā)現(xiàn),跑輪運(yùn)動(dòng)和跑臺(tái)運(yùn)動(dòng)都能增強(qiáng)海馬DG區(qū)的LTP[29-30]。4月齡Wistar大鼠連續(xù)跑臺(tái)運(yùn)動(dòng)7 d后,在體記錄海馬DG區(qū)的LTP顯著增強(qiáng)[31]。

      運(yùn)動(dòng)對(duì)神經(jīng)系統(tǒng)疾病的有益作用可能與突觸傳遞效能的增強(qiáng)有關(guān)。運(yùn)動(dòng)訓(xùn)練使大腦中動(dòng)脈缺血大鼠海馬CA3區(qū)突觸效應(yīng)的習(xí)得性LTP形成速度明顯快于安靜對(duì)照組[32]。離體腦片電生理記錄發(fā)現(xiàn),匹魯卡品所致的癲癇大鼠出現(xiàn)海馬CA1區(qū)遲發(fā)型LTP減弱,運(yùn)動(dòng)訓(xùn)練可增強(qiáng)LTP[33]。馬強(qiáng)等發(fā)現(xiàn),8周跑輪運(yùn)動(dòng)明顯減緩隨后21 d慢性束縛應(yīng)激對(duì)大鼠海馬齒狀回LTP的抑制,認(rèn)為長(zhǎng)期體力運(yùn)動(dòng)對(duì)海馬有神經(jīng)保護(hù)作用,可減緩慢性應(yīng)激引起的損傷[34]。我們?cè)谙惹暗难芯恐幸舶l(fā)現(xiàn),長(zhǎng)期規(guī)律的跑臺(tái)運(yùn)動(dòng)改善8月齡AD轉(zhuǎn)基因模型小鼠學(xué)習(xí)和記憶功能,同時(shí)伴有LTP增強(qiáng)[14]。

      3.2 形態(tài)可塑性 突觸的形態(tài)結(jié)構(gòu)對(duì)突觸功能狀態(tài)和神經(jīng)信息傳遞有重要影響,是學(xué)習(xí)和記憶能力的結(jié)構(gòu)基礎(chǔ);促進(jìn)突觸形態(tài)可塑性的發(fā)揮,對(duì)AD的學(xué)習(xí)和記憶能力的改善具有重要意義。關(guān)于運(yùn)動(dòng)對(duì)突觸形態(tài)可塑性影響的研究較少。大鼠進(jìn)行8周游泳訓(xùn)練后,其大腦皮質(zhì)運(yùn)動(dòng)區(qū)V層的大椎體細(xì)胞的胞體、核仁、樹(shù)突棘密度均顯著高于安靜對(duì)照組,說(shuō)明適宜運(yùn)動(dòng)對(duì)大腦皮質(zhì)神經(jīng)元的形態(tài)結(jié)構(gòu)可能產(chǎn)生良好的影響,提高大腦對(duì)信息的處理能力[35]。關(guān)于運(yùn)動(dòng)影響突觸形態(tài)可塑性的研究多集中于腦缺血康復(fù)治療的實(shí)驗(yàn)研究中。Briones等發(fā)現(xiàn),腦缺血損傷大鼠經(jīng)過(guò)運(yùn)動(dòng)訓(xùn)練后,不僅增加海馬齒狀回的神經(jīng)發(fā)生[36],同時(shí)促進(jìn)齒狀回突觸形態(tài)可塑性的改變,表現(xiàn)為突觸密度增加、多樣性突觸出現(xiàn)以及穿孔突觸數(shù)量增加等[37-38]。右側(cè)大腦中動(dòng)脈缺血梗死模型大鼠進(jìn)行多種方式運(yùn)動(dòng)訓(xùn)練,5周后透射電鏡觀察健側(cè)大腦感覺(jué)運(yùn)動(dòng)皮質(zhì)和海馬CA3區(qū)突觸結(jié)構(gòu)發(fā)生可塑性變化,突觸界面曲率、突觸后致密物厚度和穿孔突觸數(shù)量明顯增加,改善了腦缺血大鼠學(xué)習(xí)和記憶功能[39]。

      4 小結(jié)

      突觸的病理性重構(gòu)是AD學(xué)習(xí)和記憶能力下降的病理基礎(chǔ)之一;運(yùn)動(dòng)作為中樞神經(jīng)系統(tǒng)最有效的刺激形式,對(duì)突觸結(jié)構(gòu)和功能的重組具有重要作用。采用不同運(yùn)動(dòng)方式、運(yùn)動(dòng)強(qiáng)度及運(yùn)動(dòng)開(kāi)始干預(yù)的時(shí)間節(jié)點(diǎn),研究運(yùn)動(dòng)對(duì)AD的防治效果以及運(yùn)動(dòng)防治AD的細(xì)胞機(jī)制具有重要意義。

      運(yùn)動(dòng)對(duì)AD的干預(yù)是一個(gè)多機(jī)制的復(fù)雜過(guò)程,需要從行為學(xué)、電生理學(xué)、神經(jīng)病理學(xué)、分子生物學(xué)等多個(gè)角度全面、深入地闡釋運(yùn)動(dòng)防治AD的細(xì)胞和分子機(jī)制,為AD治療的臨床實(shí)踐提供理論基礎(chǔ)。

      [1]Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia:a Delphi consensus study[J].Lancet,2005,366(9503):2112-2117.

      [2]Um HS,Kang EB,Leem YH,et al.Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model[J].Int J Mol Med,2008,22(4):529-539.

      [3]Wilson RS,Mendes De Leon CF,Barnes LL,et al.Participation in cognitively stimulating activities and risk of incident Alzheimer disease[J].JAMA,2002,287(6):742-748.

      [4]Teri L,McCurry SM,Buchner DM,et al.Exercise and activity level in Alzheimer's disease:a potential treatment focus[J].J Rehabil Res Dev,1998,35(4):411-419.

      [5]Friedland RP,Fritsch T,Smyth KA,et al.Patients with Alzheimer's disease have reduced activities in midlife compared with healthy control-group members[J].Proc Natl Acad Sci USA,2001,98:3440-3445.

      [6]Laurin D,Verreault R,Lindsay J,et al.Physical activity and risk of cognitive impairment and dementia in elderly persons[J].Arch Neurol,2001,58:498-504.

      [7]Yuede CM,Zimmerman SD,Dong H,et al.Effects of voluntary and forced exercise on plaque deposition,hippocampal volume,and behavior in the Tg2576 mouse model of Alzheimer's disease[J].Neurobiol Dis,2009,35(3):426-432.

      [8]Adlard PA,Perreau VM,Pop V,et al.Voluntary exercise decreases amyloid load in a transgenic mouse model of Alzheimer's disease[J].J Neurosci,2005,25(17):4217-4221.

      [9]Wolf SA,Kronenberg G,Lehmann K,et al.Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein(APP)-23 model of Alzheimer's Disease[J].Biol Psychiatry,2006,60(12):1314-1323.

      [10]Richter H,Ambrée O,Lewejohann L,et al.Wheel-running in a transgenic mouse model of Alzheimer's disease:protection or symptom?[J].Behav Brain Res,2008,190(1):74-84.

      [11]Albeck DS,Sano K,Prewitt GE,et al.Mild forced treadmill exercise enhances spatial learning in the aged rat[J].Behav Brain Res,2006,168(2):345-348.

      [12]Ang ET,Dawe GS,Wong PT,et al.Alterations in spatial learning and memory after forced exercise[J].Brain Res,2006,1113(1):186-193.

      [13]Hoveida R,Alaei H,Oryan S,et al.Treadmill running improves spatial memory in an animal model of Alzheimer's disease[J].Behav Brain Res,2011,216(1):270-274.

      [14]Liu HL,Zhao G,Cai K,et al.Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation[J].Behav Brain Res,2011,218(2):308-314.

      [15]Mirochnic S,Wolf S,Staufenbiel M,et al.Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model ofAlzheimerDisease [J].Hippocampus,2009,19(10):1008-1018.

      [16]Redman S.The hippocampus,long-term potentiation and memory[J].Clin Exp Pharmacol Phychol,1996,23(10-11):961-964.

      [17]Gengler S,Hamilton A,Holscher C.Synaptic plasticity in the hippocampus if a APP/PS1 mouse model of Alzheimer's disease is impaired in old but not young mice[J].PloS One,2010,5(3):e9764.

      [18]McGowan E,Eriksen J,Hutton M.Adecade of modeling Alzheimer's disease in transgenic mice[J].Trends Genet,2006,22(5):281-289.

      [19]Giacchino J,Criado JR,Games D,et al.In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice[J].Brain Res,2000,876(1-2):185-190.

      [20]Volianskis A,Kostner R,Molgaard M,et al.Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1DeltaE9-deleted transgenic mice model of beta-amyloidosis[J].NeurobiolAging,2010,31(7):1173-1187.

      [21]Gureviciene I,Ikonen S,Gurevicius K,et al.Normal induction but accelerated decay of LTP in APP+PS1 transgenic mice[J].Neurobiol dis,2004,15(2):188-195.

      [22]Fitzjohn SM,Kuenzi F,Morton RA,et al.A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1[J].Mol Brain,2010,3(1):21.

      [23]Lippa CF.Synaptophysin immunoreactivity in Pick's disease:Comparison with Alzheimer's disease and dementia with Lewy bodies[J].Am J Alzheimers Dis Other Demen,2004,19(6):341-344.

      [24]Guevara J,Dilhuydy H,Espinosa B,et al.Coexistence of reactive plasticity and neurodegeneration in Alzheimer's diseased brains[J].Histol Histopathol,2004,16(4):1075-1084.

      [25]Bertoni-Freddari C,Fattoretti P,Casoli T,et al.Morphological adaptive response of the synaptic junctional zones in human dentate gyrus during aging and Alzheimer's disease[J].Brain Res,1990,517(1-2):69-75.

      [26]Masliah E,Mallory M,Alford M,et al.Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease[J].J Neurology,2001,56(l):127-129.

      [27]Heinonen O,Soininen H,Sorvari H,et al.Loss of synaptophysin like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer's disease[J].J Neuroscience,1995,64(2):375-384.

      [28]Honer WG,Dickson DW,Gleeson J,et al.Regional synaptic pathology in Alzheimer's disease[J].J Neurobiol Aging,1992,13(3):375-382.

      [29]Farmer J,Zhao X,Van Praag H,et al.Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo[J].Neuroscience,2004,124(1):717-719.

      [30]Van Praag H,Christie BR,Sejnowski TJ,et al.Running enhances neurogenesis,learning,and long-term potentiation in mice[J].Proc NatlAcad Sci USA,1999,96(23):13427-13431.

      [31]O'Callaghan RM,Ohle R,Kelly AM.The effects of forced exercise on hippocampal plasticity in the rat:a comparison of LTP,spatial-and non-spatial learning[J].Behav Brain Res,2007,176(2):362-366.

      [32]余茜,李曉紅,吳士明,等.運(yùn)動(dòng)康復(fù)對(duì)腦梗死大鼠學(xué)習(xí)記憶能力和LTP的影響[J].中華物理醫(yī)學(xué)與康復(fù)雜志,2002,24(3):140-143.

      [33]Arida RM,Sanabria ER,da Silva AC,et al.Physical training reverts hippocampal electrophysiological changes in rats submitted to the pilocarpine model of epilepsy[J].Physiol Behav,2004,83(1):165-171.

      [34]馬強(qiáng),王靜,劉洪濤,等.體力活動(dòng)減緩慢性應(yīng)激對(duì)海馬的損傷作用[J].生理學(xué)報(bào),2002,54(5):427-430.

      [35]白石,劉濤,趙曉慧.不同負(fù)荷游泳訓(xùn)練對(duì)大鼠大腦皮質(zhì)形態(tài)學(xué)影響的實(shí)驗(yàn)研究[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2003,22(5):474-478.

      [36]Briones TL,Suh E,Hattar H,et al.Dentate gyrus neurogenesis after cerebral ischemia and behavioral training[J].Biol Res Nurs,2005,6(3):167-169.

      [37]Briones TL,Suh E,Jozsa L,et al.Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training[J].Brain Res,2005,1033(1):51-57.

      [38]Briones TL,Suh E,Jozsa L,et al.Behaviorally-induced ultrastructural plasticity in the hippocampal region after cerebral ischemia[J].Brain Res,2004,997(2):137-146.

      [39]余茜,李曉紅,吳士明.運(yùn)動(dòng)訓(xùn)練后腦缺血大鼠學(xué)習(xí)記憶與健側(cè)腦內(nèi)突觸結(jié)構(gòu)變化的關(guān)系[J].中華物理醫(yī)學(xué)與康復(fù)雜志,2002,24(7):399-402.

      猜你喜歡
      可塑性轉(zhuǎn)基因海馬
      探秘轉(zhuǎn)基因
      轉(zhuǎn)基因,你吃了嗎?
      海馬
      甲基苯丙胺改變成癮小鼠突觸可塑性基因的甲基化修飾
      內(nèi)源性NO介導(dǎo)的Stargazin亞硝基化修飾在腦缺血再灌注后突觸可塑性中的作用及機(jī)制
      超聲刺激小鼠伏隔核后c-Fos蛋白及結(jié)構(gòu)可塑性改變的實(shí)驗(yàn)
      海馬
      “海馬”自述
      天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對(duì)轉(zhuǎn)基因食品的意蘊(yùn)
      轉(zhuǎn)GDNF基因的BMSCs移植對(duì)大鼠腦出血突觸可塑性的影響
      佛冈县| 临江市| 安宁市| 凌云县| 葵青区| 浮山县| 永靖县| 乐安县| 常熟市| 阿拉善右旗| 秭归县| 连南| 孟连| 承德市| 根河市| 通江县| 屯门区| 保定市| 六枝特区| 林州市| 霞浦县| 镇沅| 五莲县| 仙居县| 双鸭山市| 肃北| 香格里拉县| 广丰县| 清苑县| 壤塘县| 兴国县| 汉川市| 高阳县| 江达县| 祁门县| 安丘市| 大连市| 南城县| 观塘区| 莱西市| 台江县|