• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure?

    2021-09-28 02:18:20ZhengCao曹正QingQiaoFu傅晴俏HuiGu顧輝ZhenTian田震XinbaYaer新巴雅爾JuanJuanXing邢娟娟LeiMiao苗蕾XiaoHuanWang王曉歡HuiMinLiu劉慧敏andJunWang王俊
    Chinese Physics B 2021年9期
    關鍵詞:王俊雅爾

    Zheng Cao(曹正),Qing-Qiao Fu(傅晴俏),Hui Gu(顧輝),Zhen Tian(田震),Xinba Yaer(新巴雅爾),Juan-Juan Xing(邢娟娟),?,Lei Miao(苗蕾),Xiao-Huan Wang(王曉歡),Hui-Min Liu(劉慧敏),and Jun Wang(王俊),§

    1Inner Mongolia Engineering Research Center of Multi-functioanl Copper Based Materials,School of Materials Science and Engineering,Inner Mongolia University of Technology,Hohhot 010051,China

    2School of Materials Science and Engineering,Materials Genome Institute,Shanghai University,Shanghai 200444,China

    3School of Material Science and Engineering,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords:strontium titanate,multiple-doping,multi-scale microstructure,nano-inclusions

    1.Introduction

    Strontium titanate(SrTiO3)is a promising thermoelectric material for applications in electricity generation and sensors like photothermoelectric devices[1]because of its high stability and large Seebeck coefficient(S).[2]A large S and electrical conductivity(σ)and a low thermal conductivity(κ)are needed to obtain a high thermoelectric dimensionless figure of merit,ZT=S2σT/κ.[3]It is expected that a high ZT of SrTiO3can be obtained by reducingκand increasing PF=S2σ;[4]however,the interdependence of S,σ,andκcomplicates control of the thermal electrical transport properties of bulk materials.[5]The ZT of many alloys and inorganic compounds has been improved by separately controlling S,σ,andκthrough band-engineering,[6]component control,[7–9]and structure control.[10–12]Some layerstructured oxides[13,14]and two-dimensional SrTiO3[15,16]exhibit high ZT values because of their intrinsically low thermal conductivity or large PF.SrTiO3thin films with a high ZT have been obtained,but polycrystalline bulk materials are more suitable for thermoelectric applications.The ZT of polycrystalline SrTiO3still falls short of requirements due to its high thermal conductivity and low carrier mobility.Theσ of SrTiO3can be optimized by doping to increase the carrier concentration.[17–24]

    Combining heavy doping and compositing allows the coordinated control of electrical conductivity and thermal conductivity.[25,26]Previous works have shown that La and Nb are effective n-type dopants that can enhance electrical transport properties when used to replace Sr and Ti,respectively.[17,26]But the thermal conductivity of SrTiO3is still higher than other perovskite oxides such as SrCeO3and BaCeO3.[27]If Ce reduces the thermal conductivity,an improved ZT can be expected when Ce,La,and Nb are used to co-dope SrTiO3while maintaining a high power factor;however,there have been few reports on triple-doped SrTiO3thermoelectric materials.In this work,we introduce a highperformance La–Ce–Nb-doped SrTiO3thermoelectric with a low thermal conductivity and a relatively large power factor.

    2.Experimental materials and methods

    2.1.Sample preparation

    Sr1?x?yLaxCeyTi1?zNbzO3(x=0–0.05,y=0–0.05,z=0–0.05)nanoparticles were prepared by a hydrothermal method.NbCl5(Shanghai Macklin Biochemical Co.,Ltd.)was added into a mixture of ethylene glycol(Tianjin Fengchuan Chemical Reagent Co.,Ltd.)and deionized water with a volume ratio of 1:1 and 10%[Ti(OBu)4](Aladdin Industrial Corporation)and mixed via ultrasonic oscillation.An aqueous solution containing 0.6 M Sr(NO3)2and stoichiometric amounts of Ce(NO3)3·6H2O and La(NO3)3·6H2O(Aladdin Industrial Corporation)were added into the above solution,followed by the addition of 6.4 M NaOH(Aladdin Industrial Corporation).The obtained solution was immediately transferred to a 100 mL teflon-lined stainless-steel autoclave and held at 180°C for 24 hours.The obtained powders were washed several times with glacial acetic acid to remove residual organic matter and then dried for 2 hours at 80°C.The obtained nanoparticles were pre-pressed under 4.3 MPa using a hydraulic press,followed by cold isostatic pressing(CIP)under 200 MPa.The samples were then embedded into carbon powders and sintered at 1573 K for 5 hours in a muffle furnace to obtain a black bulk sample,as shown in the process schematic in Fig.1.

    Fig.1.The formation process of La–Ce–Nb-doped SrTiO3.(a)Schematic diagram of the preparation method and(b)photos of obtained bulk samples before and after sintering.

    2.2.Sample characterization

    All specimens were characterized by scanning electron microscopy(SEM,Zeiss,G300),x-ray diffraction(XRD,Rigaku D/Max-2500),and transmission electron microscopy(TEM,JEOL F200).The electrical conductivity and Seebeck coefficient were measured from 300 K to 1000 K in a helium atmosphere using a Linseis LSR-3.Thermal conductivity(κ)was calculated by the equationκ=DCpρ,where the thermal diffusivity D was measured by the laser flash method using a NETZSCH LFA 457,the specific heat Cpwas measured by differential scanning calorimetry using a NETZSCH DSC STA 449F3,and the densityρwas measured by Archimedes method.The Hall coefficients were measured using the van der Pauw method under a reversible magnetic field of 1.5 T.

    3.Results and discussion

    3.1.Phase analysis

    Figure 2 shows the XRD and TEM images of La–Ce–Nb-doped powders.All SrTiO3powders doped with different dopants and doping ratios showed cubic perovskite structures(PDF#73-0661),and no impurity phase peaks were observed in the XRD patterns in Fig.2(a)and the TEM-EDS result in Fig.2(b).A slight broadening of the diffraction peak in Fig.2(a)indicated that the powders had a small grain size,and the grain size distributed in 15 nm–40 nm,as determined from the TEM image(Fig.2(c)).The distance between the two lattice stripes determined from the HRTEM image was 0.278 nm as shown in Fig.2(d),which was consistent with the(110)planar spacing of SrTiO3(PDF#73-0661).The XRD peaks shifted by different degrees as the doping concentration changed,due to the substitution of large Sr2+(144.0 pm)ions at the A-site by smaller La3+(136.0 pm)ions and Ce3+(134.0 pm),as well as the substitution of small Ti4+(60.5 pm)ions at B-site by larger Nb5+(64.0 pm)ions.Moreover,the TEM-EDS analysis showed that La,Ce,and Nb were detected in SrTiO3grains for La5Ce5Nb5,indicating the introduction of dopant elements into the SrTiO3lattice.

    Fig.2.(a)XRD patterns of La,Ce,and Nb co-doped SrTiO3 powders with different doping ratios,(b)TEM-EDS,(c)TEM image and(d)HRTEM image of La5Ce5Nb5 powder.

    As shown in Fig.3,the XRD patterns of bulk samples contained peaks attributed to a secondary phase,along with peaks for the SrTiO3main phase;however,the weak peaks did not match those in the standard XRD pattern,suggesting that the weak peaks appeared due to several kinds of secondary phases.The grains of all samples grew into irregular polyhedrons after sintering,as shown in Fig.4.

    Fig.3.XRD patterns of bulk SrTiO3 samples with different La,Ce,and Nb ratios.

    Fig.4.SEM images of samples(a)Ce3,(b)La3Ce3,(c)La3Ce3Nb3,and(d)La5Ce5Nb5 and the inset of the nano-inclusions and nano-scale grain.

    3.2.Microstructural analysis

    The bulk samples were compacted with relatively high densities as shown in Fig.4,even though several types of grains with different contrasts,shapes,and sizes were observed.Many regular and gray grains were SrTiO3,while the irregular and black grains,randomly distributed in the perovskite matrix were secondary phases.Furthermore,nanoparticles were observed in some secondary phase grains,and some of these particles were completely wrapped in the secondary phases,while the others were only partially wrapped.The grain sizes ranged from the nanoscale to the microscale except for the sample La3Ce3.

    Figures 5(a)and 5(b)showed the SEM images and corresponding EDS element maps of La3Ce3Nb3and La5Ce5Nb5,which showed that La,Ce,Nb,Sr,Ti,and O were evenly distributed in the matrix.Some Ti-rich oxide phase was observed,suggesting that the SrTiO3matrix partially decomposed during sintering.Figure 5(c)shows that La and Ce existed only in the matrix,and Nb was distributed both in the matrix and secondary phase,but there was more in the matrix than in the secondary phase.

    Fig.5.The SEM images and EDS element maps of(a)La3Ce3Nb3 and(b)La5Ce5Nb5,and(c)EDS analysis of La5Ce5Nb5.

    The electron back-scatter diffraction(EBSD)analysis showed that a large amount of Ti–O secondary phase was not TiO2and was in-homogeneously distributed in the SrTiO3polycrystalline matrix(Fig.6).The HRTEM and selected electron diffraction pattern(SAED)pattern analysis(Fig.7)indicated that these secondary phases were TinO2n?1.The formation of the TinO2n?1phase likely formed due to mixedvalence titanium cations already in the powder and the oxygen vacancies generated in a reducing atmosphere,which partially transformed Ti4+into Ti3+.[28]Interestingly,some nano/microscale SrTiO3and TinO2n?1grains were included in each other’s large grains,as shown in Fig.7.

    Fig.6.Microstructural analysis of La5Ce5Nb5 bulk sample:(a)electron back-scatter diffraction(EBSD)image,(b)phase mapping,(c)inverse pole figure(IPF)maps,and(d)–(e)HRTEM images of the secondary phases.

    Fig.7.Low and high resolution TEM images,and SAED pattern of TinO2n?1/SrTiO3 interfaces.(a)SrTiO3 grain with TinO2n?1 inclusions,(b)TinO2n?1 grain with SrTiO3 inclusions.

    The SAED patterns show that the[2 0 2]of TinO2n?1inclusions and[1 0–1]of host SrTiO3grains have the same orientation,showing a coherent relationship(Fig.7(a)),to form an epitaxial-like heterostructure,which reduced the thermal conductivity due to phonon scattering at the interface without reducing the electrical conductivity.[29–31]In addition,the SrTiO3inclusions smoothly connected with the TinO2n?1host grains(Fig.7(b)),which also contributed to the phonon scattering with less electron scattering.

    3.3.Electrical and thermal transport properties

    The measured electrical transport properties as a function of temperature are shown in Fig.8.The electrical conductivity increased until 420 K–470 K and then began to decrease above this temperature range,consistent with Nb-doped and La–Nb co-doped samples.[17,32,33]The lowest electrical conductivity of 23 S·cm?1in sample Ce3was obtained at 1000 K,which increased upon increasing the dopant concentration to 247 S·cm?1in sample La5Ce5Nb5.This again indicated successful lattice doping.The electrical conductivity of a material can be estimated by the formulaσ=neμ,where n,e,andμare the carrier concentration,electronic charge,and carrier mobility,respectively.The Hall carrier concentrations of all samples were constant over the entire measured temperature range,indicating that all free electrons were injected into the conduction band,and no thermal activation of intrinsic carriers occurred within this temperature range.

    The mobilities of all samples showed a temperature dependence that was similar to the electrical conductivity,which increased with temperature up to 400 K–450 K and then decreased above this temperature.These trends are related to the dominant scattering of ionized impurities and phonons at low and high temperatures,respectively.[26]The sample mobility increased with increasing carrier concentration,which is consistent with the grain size trend.Usually,the carrier mobility(μ),which is determined by the effective mass(m?),and relaxation time(τ),is proportional to the electron mean free pass(l),are expressed as follows:

    where kB,T,and e are the Boltzmann constant,absolute temperature,and electron charge,respectively.[34]The reduced effective mass and increased grain size at higher doping concentrations increased the electron mean free path,which is expected to enhance the mobility,resulting in a largeσin La5Ce5Nb5.

    Since the second phase was a Magneli-phase,which has a high electrical conductivity,[35–37]the higher amount of second phase did not significantly affect the electrical conductivity of La3Ce3Nb3and La5Ce5Nb5.The mosaic crystal structure and the epitaxial-like relationship between nano/microscale inclusions and the corresponding host grain also contributed to the electronic transitions at interfaces.[38]

    Figure 9(a)shows the temperature dependence of the Seebeck coefficient.A maximum Seebeck coefficient of 344μV·K?1was obtained in Ce3,which decreased to 207μV·K?1at 1000 K upon increasing doping concentration in La5Ce5Nb5.As shown in Fig.9(b),in contrast with the electrical conductivity,the Seebeck coefficient decreased upon increasing the dopant concentration,suggesting that|S|decreased as n increased.This trend complies with the relationship between S and n,

    where kBis the Boltzmann constant,m?is the carrier’s effective mass,n is the electron concentration,and T is the absolute temperature.

    Fig.8.Temperature-dependent electrical conductivity(a),carrier concentration(b),and mobility(c)of La–Ce–Nb doped SrTiO3.

    Fig.9.Variation of the(a)Seebeck coefficient as a function of temperature,and(b)Seebeck coefficient together with electrical conductivity as a function of carrier concentration.

    Fig.10.Variation of(a)the power factor PF as a function of temperature together with PF reported previously,and(b)PF,carrier concentration,and electrical conductivity as a function of doping concentration.

    Fig.11.Temperature dependence of(a)total thermal conductivity(κtotal),(b)thermal diffusivity(D)and specific heat(inset),(c)lattice thermal conductivity(κL),and(d)electrical thermal conductivity(κe)for present study together with thermal conductivity of SrTiO3,SrCeO3,and BaCeO3 from Ref.[27].

    The Seebeck coefficient only slightly varied between samples La3Ce3and La3Ce3Nb3,even though sample La3Ce3Nb3contained more dopant(3-mol% Nb).This indicates that the enhancement effect of Nb on the effective mass produced a large Seebeck coefficient.[39]As shown in Fig.10(a),the maximum power factor of 1.6 mW·m?1·K2was obtained for La3Ce3Nb3at 529 K,which decreased to 0.96 mW·m?1·K2when the temperature increased to 1000 K.At 1000 K,sample La5Ce5Nb5showed the largest PF of 1.1 mW·m?1·K2,due to its high electrical conductivity,arising from its high carrier concentration and large carrier mobility.The PF values of this work are not significantly different from those of Nb and La-doped SrTiO3previously reported,[19,24,40–42]indicating that Ce did not significantly affect the PF.Because heavy doping promotes second phase precipitation,[17,26,33]the electrical conductivity decreased as the dopant ratio increased to over 15 mol%.This reduced the PF,as shown in Fig.10(b).The doping concentration dependence on carrier concentration measured from 3 mol% to 15 mol%varied nonlinearly,which again demonstrates that the second phase increased with increasing doping concentration(Fig.10(b)).

    Fig.12.The ZT as a function of(a)temperature and(b)β?factor.

    Figure 11 shows the temperature dependence of the thermal transport properties.The total thermal conductivity decreased to a minimum of 2.77 W·m?1·K?1upon increasing the doping concentration in La5Ce5Nb5.Although the value is still larger than that of SrCeO3,and BaCeO3,but lower than pure or La–Nb doped SrTiO3,[17,26]suggesting that the Ce reduced the thermal conductivity.Such a low thermal conductivity may be related to the multiscale architecture with three dopants,nano-inclusions and nano/microsized grains.[43]The thermal diffusivity and lattice thermal conductivity showed the same trend asκtotal,suggesting that the two factors were dominant forκtotal.Compared withκtotal,κLshowed a greater decrease as the doping concentration increased,implying that the dopant,lattice distortion,and multiscale interfaces produced a strong phonon scattering.The low lattice thermal conductivity and relatively large effective mass,together with a higher carrier mobility,produced a large β?=μ(m?/m)3/2/κL,which increased with increasing doping concentration up to 15 mol%.The ZT value increased with the increasingβ?factor,leading to a maximum ZT of around 0.38 at 1000 K with a maximumβ?factor of 10.6 in the La5Ce5Nb5sample(Fig.12).

    4.Conclusion

    In this work,we investigated the microstructure and thermoelectric properties of La,Ce,and Nb-doped SrTiO3.A powder with an average size of 20 nm was obtained using a hydrothermal method,and then La,Ce,and Nb were incorporated into SrTiO3.The crystal grains grew abnormally during sintering and formed a complex microstructure.Co-doping with the three elements and the formation of multi-scale grain boundaries helped improve phonon scattering,which greatly decreased the lattice thermal conductivity to 2.17 W·m?1·K?1at 1000 K.The maximum ZT of 0.38 is one of the highest values reported for SrTiO3,which provides a reference for future research on n-type oxide thermoelectric materials.

    Acknowledgements

    Thanks Yanzhong Pei,Hongxia Liu from Tongji University for valuable discussion and support provided for the Hall effect measurements.Financial supports are given in the footnote on the first page.

    猜你喜歡
    王俊雅爾
    Improving dynamic characteristics for IGBTs by using interleaved trench gate
    腹腔鏡手術與開放手術治療急性闌尾炎的經(jīng)驗
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    簡論蒙古族與星星有關的傳說
    Non-adiabatic quantum dynamical studies of Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction?
    莫·浩斯巴雅爾小說集《人參姑娘》題材的探究
    導數(shù)應用點睛
    巴雅爾吐胡碩地區(qū)50多年氣溫變化特征分析
    王俊看醫(yī)改政府盡快解決三個問題
    High-resolution boosted reconstruction of γ-ray spectra?
    亚洲人成网站在线播| 国产高清有码在线观看视频| 国产一区二区在线观看日韩| 我的老师免费观看完整版| 人妻制服诱惑在线中文字幕| 成人午夜精彩视频在线观看| 日本黄色片子视频| 欧美成人一区二区免费高清观看| 亚洲精品影视一区二区三区av| 日韩强制内射视频| 久久久成人免费电影| 精品人妻偷拍中文字幕| 99久久九九国产精品国产免费| 午夜免费男女啪啪视频观看| 久久精品国产亚洲av天美| 三级毛片av免费| 亚洲国产最新在线播放| 啦啦啦中文免费视频观看日本| 成人特级av手机在线观看| 亚洲国产欧美在线一区| 久久精品夜夜夜夜夜久久蜜豆| 汤姆久久久久久久影院中文字幕 | 干丝袜人妻中文字幕| 亚洲国产色片| 欧美日韩国产mv在线观看视频 | 国产淫语在线视频| 中文在线观看免费www的网站| 欧美成人午夜免费资源| 麻豆av噜噜一区二区三区| 国产成人aa在线观看| 国产在视频线精品| 一本久久精品| 啦啦啦中文免费视频观看日本| 搡老乐熟女国产| 亚洲欧洲日产国产| 精品久久国产蜜桃| www.色视频.com| 自拍偷自拍亚洲精品老妇| 三级国产精品欧美在线观看| av.在线天堂| 老司机影院毛片| 99久久九九国产精品国产免费| 精品少妇黑人巨大在线播放| 日韩成人伦理影院| 亚洲精华国产精华液的使用体验| 成人综合一区亚洲| 国产精品麻豆人妻色哟哟久久 | 国产黄片美女视频| 亚洲av二区三区四区| 一个人看视频在线观看www免费| 中文字幕av在线有码专区| 国产精品麻豆人妻色哟哟久久 | 少妇人妻一区二区三区视频| 亚洲激情五月婷婷啪啪| 熟女电影av网| 国产毛片a区久久久久| 亚洲在久久综合| 国产在线男女| 久久精品熟女亚洲av麻豆精品 | 亚洲人成网站在线播| 久久久久网色| 欧美日韩国产mv在线观看视频 | 十八禁网站网址无遮挡 | 中文字幕亚洲精品专区| 久久人人爽人人片av| 久久久亚洲精品成人影院| 肉色欧美久久久久久久蜜桃 | 亚洲在线自拍视频| 色尼玛亚洲综合影院| 狠狠精品人妻久久久久久综合| 99热这里只有是精品在线观看| 一本一本综合久久| 毛片女人毛片| 男插女下体视频免费在线播放| 国产精品久久久久久av不卡| 搡老妇女老女人老熟妇| 床上黄色一级片| 国产极品天堂在线| 欧美三级亚洲精品| 成年女人看的毛片在线观看| 亚洲色图av天堂| 免费看光身美女| 亚洲欧美日韩东京热| 欧美激情久久久久久爽电影| 久久鲁丝午夜福利片| 久久精品国产亚洲av涩爱| 伊人久久精品亚洲午夜| 全区人妻精品视频| 看免费成人av毛片| 欧美最新免费一区二区三区| 亚洲av二区三区四区| 亚洲国产高清在线一区二区三| 一级毛片黄色毛片免费观看视频| 成人毛片60女人毛片免费| 国内少妇人妻偷人精品xxx网站| 永久免费av网站大全| 欧美精品一区二区大全| 亚洲精品aⅴ在线观看| 国产免费一级a男人的天堂| 我的老师免费观看完整版| 亚洲精品aⅴ在线观看| 日韩av在线免费看完整版不卡| 欧美三级亚洲精品| 成人毛片60女人毛片免费| 午夜福利高清视频| av播播在线观看一区| av.在线天堂| 国产av在哪里看| 久久99精品国语久久久| 黄片无遮挡物在线观看| 亚洲欧洲国产日韩| 免费播放大片免费观看视频在线观看| 久久久成人免费电影| 婷婷六月久久综合丁香| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 日韩三级伦理在线观看| 又粗又硬又长又爽又黄的视频| 色吧在线观看| 久久久久久久久久黄片| 一级片'在线观看视频| 国产成人福利小说| 亚洲精品国产成人久久av| 国产高清有码在线观看视频| 六月丁香七月| 亚洲四区av| 午夜激情欧美在线| 日本黄色片子视频| 成年av动漫网址| 国产 一区 欧美 日韩| 一级毛片aaaaaa免费看小| 国产免费又黄又爽又色| a级一级毛片免费在线观看| 日韩,欧美,国产一区二区三区| 精品酒店卫生间| 免费观看av网站的网址| 在线观看av片永久免费下载| 日产精品乱码卡一卡2卡三| 黄片wwwwww| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 国产一区亚洲一区在线观看| 亚洲欧洲日产国产| 日韩强制内射视频| 欧美日韩视频高清一区二区三区二| 日本爱情动作片www.在线观看| 欧美成人a在线观看| 午夜老司机福利剧场| 能在线免费观看的黄片| 亚洲国产色片| 国产美女午夜福利| 久热久热在线精品观看| 久热久热在线精品观看| 夜夜爽夜夜爽视频| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 蜜臀久久99精品久久宅男| 街头女战士在线观看网站| 在线观看一区二区三区| 美女黄网站色视频| 国产高清国产精品国产三级 | 国产亚洲av片在线观看秒播厂 | h日本视频在线播放| 夜夜看夜夜爽夜夜摸| freevideosex欧美| 草草在线视频免费看| 国产精品三级大全| 一个人免费在线观看电影| 久久韩国三级中文字幕| 在线 av 中文字幕| 女人被狂操c到高潮| 午夜久久久久精精品| 久久久精品免费免费高清| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品,欧美精品| 亚洲av.av天堂| 国产精品一区二区三区四区久久| 乱人视频在线观看| 男人和女人高潮做爰伦理| 人妻系列 视频| 伊人久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 日韩国内少妇激情av| 全区人妻精品视频| 久久99精品国语久久久| 日本wwww免费看| 一边亲一边摸免费视频| 日韩成人av中文字幕在线观看| 午夜福利视频1000在线观看| 久久草成人影院| 在线观看人妻少妇| 日韩国内少妇激情av| av网站免费在线观看视频 | 亚洲国产av新网站| 一边亲一边摸免费视频| 日本免费a在线| 视频中文字幕在线观看| 亚洲四区av| 成人亚洲精品av一区二区| 国产伦精品一区二区三区四那| 伊人久久精品亚洲午夜| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 国产精品福利在线免费观看| 99久久精品热视频| 综合色av麻豆| 久久韩国三级中文字幕| 久久精品夜色国产| 久久久久久久久久久丰满| 午夜免费男女啪啪视频观看| 人妻制服诱惑在线中文字幕| 国产成人精品久久久久久| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 内地一区二区视频在线| 成人美女网站在线观看视频| 亚洲性久久影院| 永久网站在线| 国产不卡一卡二| 97超视频在线观看视频| 青青草视频在线视频观看| av女优亚洲男人天堂| 日日啪夜夜爽| 中文资源天堂在线| 天堂中文最新版在线下载 | 老女人水多毛片| 不卡视频在线观看欧美| av网站免费在线观看视频 | 日韩av在线大香蕉| 国产精品美女特级片免费视频播放器| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 天堂中文最新版在线下载 | 国产精品人妻久久久久久| 国产精品一区二区在线观看99 | 亚洲自偷自拍三级| 久久精品久久精品一区二区三区| 精品一区二区三区视频在线| 亚洲美女搞黄在线观看| 久久亚洲国产成人精品v| 97超视频在线观看视频| 欧美区成人在线视频| 午夜福利在线观看免费完整高清在| 亚洲精品,欧美精品| 日韩欧美三级三区| 视频中文字幕在线观看| 国产淫片久久久久久久久| 中文字幕亚洲精品专区| videos熟女内射| 色5月婷婷丁香| 午夜福利在线在线| 欧美一区二区亚洲| 三级国产精品片| 欧美变态另类bdsm刘玥| 99视频精品全部免费 在线| 亚洲熟女精品中文字幕| 亚洲国产欧美人成| 国产精品久久视频播放| 久久久久性生活片| 亚洲在线观看片| 成人亚洲精品一区在线观看 | 我的老师免费观看完整版| 热99在线观看视频| 综合色丁香网| 狂野欧美白嫩少妇大欣赏| 十八禁国产超污无遮挡网站| 99久久九九国产精品国产免费| freevideosex欧美| 久久人人爽人人爽人人片va| 国产精品久久视频播放| 久热久热在线精品观看| 看黄色毛片网站| 精品熟女少妇av免费看| 七月丁香在线播放| 一个人观看的视频www高清免费观看| 51国产日韩欧美| 真实男女啪啪啪动态图| 十八禁网站网址无遮挡 | 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频 | 午夜亚洲福利在线播放| 亚洲国产色片| 国产精品麻豆人妻色哟哟久久 | 一级毛片久久久久久久久女| 最近2019中文字幕mv第一页| 欧美人与善性xxx| 日产精品乱码卡一卡2卡三| 国产av不卡久久| 一二三四中文在线观看免费高清| 麻豆成人午夜福利视频| 又爽又黄a免费视频| 欧美人与善性xxx| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 午夜福利在线观看吧| 国产精品久久久久久久久免| 欧美变态另类bdsm刘玥| 色网站视频免费| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 有码 亚洲区| 午夜福利视频1000在线观看| 18禁动态无遮挡网站| 免费看不卡的av| 亚洲av日韩在线播放| 国产精品久久久久久精品电影| 观看美女的网站| 国产亚洲一区二区精品| 一边亲一边摸免费视频| 超碰av人人做人人爽久久| 水蜜桃什么品种好| 成人美女网站在线观看视频| 欧美不卡视频在线免费观看| 免费看a级黄色片| 又粗又硬又长又爽又黄的视频| 亚洲aⅴ乱码一区二区在线播放| 18禁动态无遮挡网站| av专区在线播放| 国产一级毛片七仙女欲春2| 男人舔女人下体高潮全视频| 欧美性感艳星| 成年人午夜在线观看视频 | 亚洲欧美成人精品一区二区| 亚洲精品aⅴ在线观看| av免费在线看不卡| 毛片一级片免费看久久久久| 免费看日本二区| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 久热久热在线精品观看| 97超碰精品成人国产| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 亚洲综合精品二区| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 日韩伦理黄色片| 两个人视频免费观看高清| 干丝袜人妻中文字幕| 亚洲无线观看免费| 男女边摸边吃奶| av又黄又爽大尺度在线免费看| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 久久久久精品性色| 男女那种视频在线观看| 国产精品久久久久久久电影| 久久久久久久久大av| 久久久久九九精品影院| 一级爰片在线观看| 国产免费福利视频在线观看| 日韩大片免费观看网站| 日本一二三区视频观看| 国产在视频线在精品| 久久久久久久亚洲中文字幕| av天堂中文字幕网| 久久精品夜夜夜夜夜久久蜜豆| 搡老妇女老女人老熟妇| 禁无遮挡网站| 一级爰片在线观看| 亚洲精华国产精华液的使用体验| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 亚洲综合精品二区| 亚洲天堂国产精品一区在线| 最近中文字幕2019免费版| 国产不卡一卡二| 69av精品久久久久久| 熟妇人妻不卡中文字幕| 久久久久国产网址| 街头女战士在线观看网站| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 中文资源天堂在线| 亚洲乱码一区二区免费版| 精品一区在线观看国产| 韩国av在线不卡| 日韩国内少妇激情av| 亚洲自偷自拍三级| 18禁动态无遮挡网站| 国产毛片a区久久久久| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 精品久久久久久久久久久久久| 精品国产露脸久久av麻豆 | 久久精品综合一区二区三区| 亚洲成人久久爱视频| 日韩成人伦理影院| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 久久久久久久大尺度免费视频| 亚洲欧美日韩东京热| 色综合亚洲欧美另类图片| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 国产爱豆传媒在线观看| 美女黄网站色视频| 在线 av 中文字幕| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| 青青草视频在线视频观看| 婷婷色av中文字幕| 久久久久久久久久久免费av| 久久这里只有精品中国| 国产在视频线精品| 欧美潮喷喷水| freevideosex欧美| 两个人视频免费观看高清| 丝瓜视频免费看黄片| 亚洲国产高清在线一区二区三| 一级片'在线观看视频| 免费在线观看成人毛片| 欧美+日韩+精品| 国产精品久久久久久精品电影| 一区二区三区乱码不卡18| 波多野结衣巨乳人妻| 草草在线视频免费看| 久久久久网色| 赤兔流量卡办理| 汤姆久久久久久久影院中文字幕 | 亚洲欧美清纯卡通| 成人综合一区亚洲| 边亲边吃奶的免费视频| 日韩成人av中文字幕在线观看| av线在线观看网站| 免费观看在线日韩| av一本久久久久| 蜜桃久久精品国产亚洲av| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 内射极品少妇av片p| 日韩中字成人| 婷婷色综合www| 久久这里有精品视频免费| 五月伊人婷婷丁香| 亚洲四区av| 亚洲人成网站在线观看播放| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| eeuss影院久久| 久久久久网色| 国内精品一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产中年淑女户外野战色| 国产探花极品一区二区| 成人国产麻豆网| 好男人在线观看高清免费视频| 国产又色又爽无遮挡免| 亚洲精品成人久久久久久| 大香蕉97超碰在线| 伊人久久精品亚洲午夜| 日韩av免费高清视频| 美女高潮的动态| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 日本黄色片子视频| 精品国产露脸久久av麻豆 | 国模一区二区三区四区视频| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 欧美另类一区| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 97在线视频观看| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 床上黄色一级片| 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| 搡老妇女老女人老熟妇| 国产日韩欧美在线精品| 美女大奶头视频| 日韩亚洲欧美综合| 久久精品国产亚洲av涩爱| xxx大片免费视频| 又爽又黄无遮挡网站| 国产成人精品久久久久久| 大片免费播放器 马上看| 可以在线观看毛片的网站| 国产不卡一卡二| 国产美女午夜福利| 国产精品一区二区在线观看99 | 嫩草影院入口| 久久久久久久久中文| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| a级毛片免费高清观看在线播放| 亚洲久久久久久中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲精品影视一区二区三区av| 欧美变态另类bdsm刘玥| 久久久成人免费电影| 建设人人有责人人尽责人人享有的 | 亚洲四区av| 久久久久久久久久久免费av| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 日韩欧美三级三区| 嘟嘟电影网在线观看| 91久久精品电影网| 最后的刺客免费高清国语| 国产伦在线观看视频一区| xxx大片免费视频| 狠狠精品人妻久久久久久综合| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 伦理电影大哥的女人| 天美传媒精品一区二区| 国产探花极品一区二区| 日日干狠狠操夜夜爽| 欧美日本视频| 免费电影在线观看免费观看| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 欧美xxxx黑人xx丫x性爽| 人妻一区二区av| 亚洲av福利一区| 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 国产黄色视频一区二区在线观看| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 国产又色又爽无遮挡免| 国产国拍精品亚洲av在线观看| 色尼玛亚洲综合影院| 91av网一区二区| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 能在线免费看毛片的网站| 欧美激情久久久久久爽电影| 国产人妻一区二区三区在| 日本黄大片高清| 日韩av在线大香蕉| 在线播放无遮挡| 床上黄色一级片| 精品亚洲乱码少妇综合久久| 深夜a级毛片| 久99久视频精品免费| 你懂的网址亚洲精品在线观看| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 天堂√8在线中文| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 久久久久性生活片| av网站免费在线观看视频 | 国产综合精华液| 小蜜桃在线观看免费完整版高清| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 黄片wwwwww| 亚洲成人一二三区av| 2022亚洲国产成人精品| 能在线免费观看的黄片| 国产一级毛片七仙女欲春2| 一区二区三区乱码不卡18| 国产黄片美女视频| 一区二区三区四区激情视频| 亚洲精品一二三| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| eeuss影院久久| 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 老师上课跳d突然被开到最大视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧洲国产日韩| 中文字幕制服av| 少妇被粗大猛烈的视频| 女人被狂操c到高潮| 日本与韩国留学比较| 毛片女人毛片| 天堂中文最新版在线下载 | 观看美女的网站| 国产精品.久久久| 99久国产av精品国产电影| 亚洲精品乱码久久久久久按摩| 国产精品伦人一区二区| av免费观看日本| 久热久热在线精品观看| 日本午夜av视频| 亚洲av电影不卡..在线观看| 3wmmmm亚洲av在线观看| 狠狠精品人妻久久久久久综合| 看非洲黑人一级黄片| 午夜福利成人在线免费观看| 免费观看a级毛片全部| 如何舔出高潮| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 国产精品蜜桃在线观看| 精品人妻视频免费看| 亚洲精品456在线播放app| 亚洲国产精品sss在线观看| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 特大巨黑吊av在线直播|