• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stopping Means Achieving: A Weaker Logic of Knowing How*

    2017-01-20 08:28:50YanjunLi
    邏輯學(xué)研究 2016年4期
    關(guān)鍵詞:公理弱化語(yǔ)義

    Yanjun Li

    Faculty of Philosophy,University of Groningeny.j.li@rug.nl

    Stopping Means Achieving: A Weaker Logic of Knowing How*

    Yanjun Li

    Faculty of Philosophy,University of Groningeny.j.li@rug.nl

    .This paper proposes a weaker but more realistic semantics to the knowing-how operator proposed by Y.Wang in 2015.According to this semantics,an agent knows how to achieveφgivenψif(s)he has a finite linearplan by which(s)he can always end up with aφ-state when the execution of the plan terminates,either successfully or not.This weaker interpretation of knowing-how results in a weaker logic where the composition axiom in Wang’s paper no longer holds.We present a sound and complete axiomatic system of this logic and prove that this logic is decidable.

    1 Introduction

    Epistemic logic proposed by von Wright and Hintikka[14,26]is a modal logic that is concerned with reasoning about knowledge.It formalizes the propositional knowledge,knowledge of the form“knowing that”,as a modal formulaKφwhich expressesthe agentknowsthatφholds.Itinterpretsknowledge-thatregarding agents’uncertainty.The agent knows thatφata statesifand only ifhe can rule out allthe?φepistemic possibilities ats.Epistemic logic is widely applied in theoretical computer science,artificial intelligence,economic and linguistics(see[4]).

    However,knowledge is not only expressed by“knowing that”,but also by other expressions,such as“knowing how”,“knowing what”,“knowing why”,and so on. Among all these expressions,“knowing how”(and the knowledge-how that it expresses)is the most discussed one.Despite the heated philosophical discussions on whether knowledge-how is a subspecies of knowledge-that(see the survey by [7]),researchers in artificial intelligence and logic have largely adopted the view that knowledge-how can be reduced to knowledge-that and ability.

    In artificial intelligence,beginning from McCarthy and Hayes([16,17]),researchers started to study what it means for a computer program to“know how”toachieve a state of affairsφin terms of its ability.In particular,Moore’s work([18]) is highly influential on representation and reasoning of knowledge and ability.According to Moore,there are two possible ways to define the agent’s knowledge-how:

    (I)There exists an actionasuch that the agent knows that the performance ofawill result inφ;

    (II)The agent knows that there exists an actionasuch that the performance ofawill result inφ.

    The first is ade redefinition of knowledge-how,and the second is ade dictodefinition.Moore pointed out that the first definition is too strong and the second is too weak.Therefore,he proposed an adapted,but very complicated version of the definition.Moore’s formalism has inspired a large body of work in artificial intelligence on knowledge and ability([9,1]).

    In logic,the framework of Alternating-time Temporal Logic(ATL)is concerned with reasoning about agent’s abilities in game structures.By adding the knowledge operator to this framework(see[2]),it can express that the agent knows that there is a strategy to enforceφf(shuō)rom the current state.However,it is still ade dictoreading of knowledge-how,and it is too weak to define knowledge-how.To solve this problem, researchersproposed differentsolutions([3,12,13]),such asmaking the strategy uniform,or specifying the explicit actions in the modality(e.g.,knowing that performingabcwill achieveφ).

    In the above-mentioned works,knowledge-how is usually expressed in a very rich logical language involving quantifiers or various complicated modalities.However,starting from[11,15,19],logiciansattempted to formalize some knowledge-wh, such as“knowing whether”,“knowing what”et al,as a whole modality,in the similar way of epistemic logic dealing with knowledge-that.The recent works([5,6,10,21, 22,23,24])are in line with this idea.

    In particular,[21]proposed a single-agentlogic of knowing how,which includes modal formulaKh(ψ,φ)to express that the agent knows how to achieveφgiven the preconditionψ.The models are labelled transition systems which reflect agent’s ability.Thusthe modelsare also calledabilitymaps.The formulaKh(ψ,χ)isinterpreted in ade rereading of knowledge-how:there exists an action sequence(also called a plan)σsuch that(1)performingσat eachψ-state will achieve aφ-state;and(2)the execution of the plan will never fail.In automated planning,such a plan is called aconformant plan(cf.[8,20]).Considering Example 1 which represents a map of a floor in a building where the agent can go right(r)or up(u).1This example is taken from[25,27,21].According to Wang’s interpretation of knowledge-how,the agent here knows how to achieveqgivenpbecause there is a conformant planru(first moving right then moving up)for achievingq-states fromp-states.

    Example 1

    However,the demands that a conformant plan askes may be too strong,in the sense that the execution of the plan willneverfail.Intuitively,we still be comfortable to say“we know how to achieveφgivenψ”only if we will always end up with aφ-state when the execution of the plan terminates,either successfully or not.For example,letqbe true only on the states5in Example 1 then there will be no conformant plans for achieving the onlyq-states5fromp-states,but we still say that“we know how to achieve theq-state fromp-states”because we can get there by moving right at most three times.The plan of moving right three times is not a conformant plan since the execution of the plan starting froms3will fail to continue ats5,but this plan will still guarantee our achieving theq-states5in the sense that we will always end up withs5when the execution of the plan terminates.We call it a weak conformant plan. A weak conformant plan for achievingφ-states fromψ-states is a finite linear action sequence such that the execution of the action sequence at eachψ-state will always terminate on aφ-state,either successfully or not.Intuitively,a weak conformant plan is enough for our knowing how to achieveφgivenψ.

    This paper interprets the knowledge-how formulaKh(ψ,φ)as that there is a weak conformant plan for achievingφgivenψ.Compared to the interpretation of [21],our interpretation is weaker,but it is more realistic.We also present a sound and complete axiomatic system.It shows that this weaker interpretation results in a weaker logic.The composition axiom in[21]

    is not valid under this weaker semantic.Even though the logic is weaker,the proof of the completenessisnon-trivial.We also define an alternative non-standard semantics. By reducing a decidable problem w.r.t.our weaker semantics to a decidable problem w.r.t.this alternative non-standard semantics,we show that this logic is decidable. Whatismore,from the perspective ofthe non-standard semantics,we can see thatour interpretation of knowledge-how is almost the same with Moore’s first interpretation (I).

    The rest of the paper is organized as follows.Section 2 introduces the language and semantics.Section 3 presents an axiomatic system,which is weaker than the system given in[21].Section 4 shows that our logic is decidable by reducing a standard decidable problem to a decidable problem w.r.t.the non-standard semantics.In the last section,we conclude with future directions.

    2 Language and semantics

    In this section,we will introduce the language and the semantics.The language is the same as[21].The intuition of the semantics is that we know how to achieveφgivenψif and only if we have a weak conformant plan for achievingφ-states fromψ-states.

    Definition 1(Language)Given a set of proposition lettersP,the languageLis defined as follows:

    wherep∈P.KhW(ψ,φ)expresses that the agent knows how to achieveφgivenψ. We use the standard abbreviations⊥,φ∨ψandφ→ψ.The same as[21],we defineUφasKhW(?φ,⊥).Uis intended to be a universal modality,and it will become more clear after we define the semantics.

    Definition 2(Model)A model(also called an ability map)is essentially a labelled transition system(S,Σ,R,V)where:

    ·Sis a non-empty set of states;

    ·Σ is a set of actions(or labels);

    ·R:Σ→2S×Sis a collection of transitions labelled by actions in Σ;

    ·V:S→2Pis a valuation function.

    Definition 3(Terminal States)Given a states∈Sand an action sequenceσ=a1···an∈Σ?,TERMS(s,σ)is the set of states at which executingσonsmight terminate.Formally,it is defined as

    Definition 4(Semantics)Supposesis a state in a modelM=(S,Σ,R,V).Then

    we inductively define the notion of a formulaφbeing satisfied(or true)inMat statesas follows:

    where?ψ?={s∈S|M,s?ψ}.

    We also call the semantics defined here as the standard semantics,to distinguish it from the non-standard semantics defined in Section 4.Now we can also check that the operatorUdefined byKhW(?φ,⊥)is indeed auniversal modality:

    Under this semantics,the composition axiom in[21],

    isnotvalid.The following example presentsa modelon which the composition axiom is not true.

    Example 2ModelMis depicted as follows.

    ·M,s1?KhW(p,r)since there is a weak conformant plana.Please note that executingaons2will terminate on itself.

    ·M,s1?KhW(r,q)since there is a weak conformant planb.Executingbon eachr-states,eithers3ors2,will achieving on aq-state.

    ·M,s1?KhW(p,q)since there are no weak conformant plans for achievingq-states fromp-states.Particularly,abis not a weak conformant plan.The performance ofabons1will result in aq-states5,but executingabonp-states2will terminate on itself.

    The composition of two weak conformant plan might not be a weak conformant plan any more.Just as it is shown in Example 2,ais a weak conformant plan for achievingr-states fromp-states,andbis a weak conformant plan for achievingqstates fromr-states,but the compositionabis not a weak conformant plan for achievingq-states fromp-states.There are no weak conformant plans for how to achieveq-states fromp-states in this example.

    Definition 5(SK? System)The axiomatic system SK? is defined in Table 1.We write SK??φ(or sometimes just?φ)to mean that the formulaφis derivable in the axiomatic system SK?;the negation of SK??φis written SK??φ(or just?φ).To say thata setDofformulasis SK?-inconsistent(orjustinconsistent)means that there is a finite subsetD′?Dsuch that??∧D′,where∧D′:=∧φ∈D′φ

    ifD′/=?and∧φ∈?φ:=?.To say that a set of formulas is SK?-consistent(or just consistent)means that the set of formulas is not inconsistent.Consistency or inconsistency of a formula refers to the consistency or inconsistency of the singleton set containing the formula.

    Table 1:System SK?M

    All the axioms here except UKh are also axioms in the axiomatic system addressed in[21],where UKh is deducible from the composition axiom.As observed in Example 2,The composition axiom is not valid by our semantics.It means that the system here is strictly weaker than the syetem in[21],which is in line with the fact that here knowledge-how is interpreted in a weaker way.However,even though the system is weaker,the proof of its completeness is highly non-trivial.We will explain the reason later in the proof.

    Proposition 1?Uχ∧Uψ→U(χ∧ψ)

    Proof(1)?χ→(ψ→(χ∧ψ))by propositional logic

    (2)?U(χ→(ψ→(χ∧ψ)))by Rule NECU

    (3)?Uχ→U(ψ→(χ∧ψ))by Axiom DISTU

    (4)?U(ψ→(χ∧ψ))→(Uψ→U(χ∧ψ))by Axiom DISTU

    (5)?Uχ→(Uψ→U(χ∧ψ))by(3)and(4)

    (6)?Uχ∧Uψ→U(χ∧ψ)by propositional logic□

    Proposition 2?U(p′→p)∧U(q→q′)∧KhW(p,q)→KhW(p′,q′)

    ProofAssuming thatM,s?U(p′→p)∧U(q→q′)∧KhW(p,q),we need to show thatM,s?KhW(p′,q′).SinceM,s?KhW(p,q),it follows that there existsσ∈Σ?such that for eachw∈?p?and eacht∈TERMS(w,σ)we haveM,t?q(?).In order to showM,s?KhW(p′,q′),we only need to show thatM,t′?q′for eachw′∈?p′?and eacht′∈TERMS(w′,σ).

    Givenw′∈?p′?,it follows byM,s?U(p′→p)thatw′∈?p?.Due to(?),we have that for eacht′∈TERMS(w′,σ):M,t′?q,namelyt′∈?q?.Moreover,sinceM,s?U(q→q′),we have?q???q′?.Therefore,we have thatt′∈?q′?,namelyM,t′?q′,for eacht′∈TERMS(w′,σ).Thus,M,s?KhW(p′,q′).□

    SinceUis a universal modality,DISTU,TU and EMPKh are obviously valid. Because the modalityKhWis not local,it is easy to show that 4KhU and 5KhU are valid.Along with Propositions 2,we have that all axioms are valid.Moreover,due to a standard argument in modal logic,we know that the rules MP,NECU and SUB preserve formula’s validity.Therefore,the soundness of SK? follows immediately.Theorem 1(Soundness)SK? is sound w.r.t.the standard semantics.

    3 Completeness

    This section will show that SK? is complete w.r.t.the standard semantics.Here are some notions before we prove the completeness.Given a set ofLformulas Δ,let Δ|KhWand Δ|?KhWbe the collections of its positive and negativeKhWformulas:

    In the following,let Γ be a maximal consistent set(MCS)ofLformulas.We first prepare ourselves with some useful definitions and handy propositions.

    Definition 6Let ΦΓbe the set of all MCS Δ such that Δ|KhW=Γ|KhW.

    Proposition3ForeachΔ∈ΦΓ,we haveKhW(ψ,φ)∈Γifand only ifKhW(ψ,φ)∈Δ for allKhW(ψ,φ)∈L.

    Proposition 4Ifφ∈Δ for all Δ∈ΦΓthenUφ∈Δ for all Δ∈ΦΓ.

    By NECU,

    By DISTU we have:

    Now it is immediate thatUφ∈Γ.Due to Proposition 3,Uφ∈Δ for all Δ∈ΦΓ.□

    Proposition 5GivenKhW(ψ,φ)∈Γ and Δ∈ΦΓ,ifψ∈Δ then there exists Δ′∈ΦΓsuch thatφ∈Δ′.

    ProofAssumingKhW(ψ,φ)∈Γandψ∈Δ∈ΦΓ,ifthere doesnotexistΔ′∈ΦΓ

    such thatφ∈Δ′,it means that?φ∈Δ′for all Δ′∈ΦΓ.It follows by Proposition 4 thatU?φ∈Γ,and thenU(φ→⊥)∈Γ.SinceU(φ→⊥)andKhW(ψ,φ)∈Γ,it follows by UKh thatKhW(ψ,⊥)∈Γ,namelyU?ψ∈Γ.By Proposition 3,we have thatU?ψ∈Δ.It follows by TU that?ψ∈Δ.This is contradictory withψ∈Δ. Therefore,there exists Δ′∈ΦΓsuch thatφ∈Δ′.□

    SinceKhWformulas are globally true or false,it is not possible to satisfy each consistentKhWformulas simultaneously in one model.Therefore,in the following, we build a separate canonical model for each MCS Γ.Because the following proofsare quite technical,itiscrucialfirstto understand the ideasbehind the canonicalmodel construction.Besides satisfyingKhW(ψ,φ),the canonical model also needs to meet the following two requirements.

    (1)Generally,KhW(ψ,φ)cannot be satisfied by a one-step plan.Otherwise, the canonical model will always satisfy the formula thatKhW(p,?p)∧KhW(?p,q)→KhW(p,q)which is not a valid formula.Therefore,in the canonical model,KhW(ψ,φ)willbe satisfied by a two-step plan〈ψ,ψφ〉〈ψφ,φ〉.Ifwe already reach aφ-state by the first step〈ψ,ψφ〉,we do not need to go further anymore.If we arrive at a?φ-state by〈ψ,ψφ〉,then we need to make sure that doing the second step〈ψφ,φ〉on this state will achieve onlyφ-states.

    (2)If〈ψ,ψφ〉〈ψφ,φ〉is a weak conformant plan forKhm(ψ,φ),then〈ψ,ψφ〉must be executable on at least one?ψ-state.The reason is that if〈ψ,ψφ〉is only executable atψ-states then the canonical model will always satisfyKhW(ψ,φ)→KhW(ψ∨φ,φ)which is not a valid formula.If we allow〈ψ,ψφ〉also executable at?ψ-states,we must treat the step fromψ-states and?ψ-states differently.Otherwise, the canonical model will always satisfyKhW(ψ,φ)→KhW(?,φ).Our method is that the step〈ψ,ψφ〉starting fromψ-states will reach only states marked withψφ. This is why we includeψφmarkers in the building blocks of the canonical model besides maximal consistent set.2In[21],the canonical models are much simpler:we just need MCSs and the canonical relations are simply labelled by〈ψ,φ〉forKh(ψ,φ)∈Γ.

    ·Sc={(Δ,ψφ)|Δ∈ΦΓ,KhW(ψ,φ)∈Γ}.We write the pair inSasw,v,···,and refer to the first entry ofw∈Sas L(w),to the second entry as R(w);

    ·ΣΓ={〈ψ,ψφ〉,〈ψφ,φ〉|KhW(ψ,φ)∈Γ};

    ·p∈Vc(w)??p∈L(w).

    For eachw∈S,we also callwaψ-state ifψ∈L(w).

    Please note thatScisnon-empty because(Γ,??)∈Sc.We firstshow thateach Δ∈ΦΓappears as L(w)for somew∈Sc.

    Proposition 6For each Δ∈ΦΓ,there existsw∈Scsuch that L(w)=Δ.

    ProofSince??→?,it follows by NECU that?U(?→?).Thus,we haveU(?→?)∈Γ.It follows by EMPKhm thatKhW(?,?)∈Γ.Thus,we have that(Δ,??)∈Sc.□

    Since ?!师郸?it follows by Proposition 6 thatSc/=?.

    Proposition 4 helps us to prove the following proposition which will play crucial roles in the completeness proof.Note that according to Proposition 4,to obtain thatUφin alltheΔ∈ΦΓ,we justneed to show thatφisin alltheΔ∈ΦΓ,notnecessarily in all thew∈Sc.

    ·a1=〈ψ1φ1,φ1〉We willshow thatσ′=?satisfiesthatforeachψ-statew∈Scand each statet∈TERMS(w,σ′)we haveφ∈L(t).We only need to show thatψ→φ∈Δ for each Δ∈ΦΓ.If not,there exists Δ′∈ΦΓsuch that{ψ,?φ}?Δ′.Letχbe a formula such that?χ?ψ1andχ/=ψ1.Since?χ→?,it follows by NECU and EMPKh thatKhW(χ,?)∈Γ.Then we have aψ-statew′=(Δ′,χ?)∈Sc.Sinceχ/=ψ1,a1is not executable onw′,and then we have{w′}=TERMS(w′,σ).Since?φ∈L(w′),this is contradictory with our assumption.Thus we haveψ→φ∈Δ for each Δ∈ΦΓ.

    ·a1=〈ψ1,ψ1φ1〉There are two cases based on the form ofa2:–a2=〈ψ2,ψ2φ2〉There are two cases:U?ψ2∈Γ or not.

    –a2=〈ψ2φ2,φ2〉There are two cases:U(ψ→ψ1)∈Γ or not.

    *There exists Δ∈ΦΓsuch thatψ,?ψ1∈Δ.In this case,it must be thatφ∈Δ′for each Δ′∈ΦΓ.If not,lett= where?φ∈Δ′,?ψ2?ψ′2andψ2/=ψ2.Letwbe a state such that

    ProofBoolean cases are trivial,and we only focus on the case ofKhW(ψ,φ).

    ·n=0 It meansσ=?.It follows by HI thatψ∈Δ impliesφ∈Δ for all Δ∈ΦΓ.Therefore,we haveψ→φ∈Δ for all Δ∈ΦΓ.It follows by Proposition 4 thatU(ψ→φ)∈Γ.By EMPKh,we havew thatKhW(ψ,φ)∈Γ.It follows by Proposition 3 thatKhW(ψ,φ)∈L(w).

    ·n>0 There are three cases.

    Theorem 2(Completeness)SK? is complete w.r.t.the standard semantics.

    Similar with the proof of the completeness in[21],our canonical model is also based on a certain maximal consistent set Γ,but there are some critical differences. First,the state of the canonical model is a pair consisting of a maximal consistent set and a marker.The marker plays an important role in defining the binary relations of actions.Second,each knowing-how formula is generally realized by a weak conformant plan consisting of two actions.

    4 Decidability

    Thissection willshow thatthe problem thatwhethera formulaφisvalid w.r.t.the standard semantics is decidable.The strategy is that we firstly define a non-standard semantics and show thatφis valid w.r.t.the standard semantics if and only ifφis valid w.r.t.the non-standard semantics.Next,we show thatφhas a bounded model ifφis satisfiable w.r.t.the non-standard model.

    Definition 8(Non-standard semantics)Given a pointed modelM,sand a formulaφ,we writeM,s?φto mean thatφis true atM,sw.r.t.the non-standard semantics?.The non-standard semantics?is defined by the following induction on formula construction.

    M,s??alwaysM,s?p??s∈V(p).M,s??φ??M,s?φ.M,s?φ∧ψ??M,s?φandM,s?ψ.M,s?KhW(ψ,φ)??there existsa∈Σ●such that for allM,u?φ:ais executable atuandM,v?φf(shuō)or allv∈Ra(u)

    where Σ●=Σ∪{?}.To sayφis valid w.r.t.the non-standard semantics,written?φ, meansM,s?φf(shuō)or all pointed modelM,s.

    In this non-standard semantics,the knowledge-how is interpreted almost the same with Moore’s first interpretation(I).The only difference is that the witness action for the knowledge-how might be epsilon?.Intuitively,it means that ifφis true on eachψ-state then we know how to achieveφgivenψtrivially by doing nothing.

    LetM,s?Uφbe defined asM,u?φf(shuō)or allu∈S.It is easy to show that

    In order to show thatφis valid w.r.t.the standard semantics if and only ifφis valid w.r.t.the non-standard semantics,it follows by Theorem 1 and Theorem 2 that we only need to show that SK? is sound and complete w.r.t.the non-standard semantics.

    SinceKhWis also a universal modality,it is easy to verify that SK? is sound w.r.t.the non-standard semantics.

    Proposition 8If?φthen?φ.

    Next we will show that SK? is complete w.r.t.the non-standard semantics. Given a consistent formulaφ,we will show thatφis satisfiable w.r.t.the non-standard semantics.

    LetSub(φ)be the set of all sub-formulas ofφ.Let~ψ:=χifχis a negation formula,otherwise,~ψ:=?χ.It is obvious that??ψ?~ψ.LetSub+(φ):=Sub(φ)∪{~ψ|ψ∈Sub(φ)}.It is obvious that|Sub+(φ)|≤2|φ|where|φ|is the length ofφ.

    Definition9(Atom)An atom ofSub+(φ)Aisa maximalconsistentsetwith respect toSub+(φ),if and only if,Ais a consistent subset ofSub+(φ)such that for eachψ∈Sub+(φ)ifA∪{ψ}is consistent thenA:=A∪{ψ}.We useA,B,Cto denote atoms.

    Proposition 9If Γ is a consistent subset ofSub+(φ)then there exists an atomBofSub+(φ)such that Γ?B.

    LetAbe an atom ofSub+(φ)such thatφ∈A.We define ΘA=A|KhW∪A|?KhW.

    Definition 10The modelMA=〈SA,ΣA,RA,VA〉is defined as follows.

    ·SA={Bis an atom ofSub+(φ)|(B|KhW∪B|?KhW)=ΘA};

    ·ΣA={〈χ,ψ〉|KhW(χ,ψ)∈ΘA};

    ·p∈VA(B)??p∈B,for eachp∈Sub+(φ).SAis non-empty becauseA∈SA.

    Proposition 10ΘA?U∧ΘA

    Proposition 11For eachψ∈Sub+(φ),ifψ∈Bfor allB∈SAthen ΘA?Uψ.

    Proposition 12Givenχ∈Sub+(φ)andB∈SA,ifχ∈Bimplies that〈χ′,ψ′〉∈ΣAis executable atBthen we have ΘA?U(χ→χ′).

    ProofAssume that ΘA∪{χ,~χ′}is consistent.It follows that there existsC∈SAsuch that ΘA∪{χ,~χ′}?C.It follows thatχ∈Cand〈χ′,ψ′〉is not executable atC.Contradiction.Therefore,ΘA∪{χ,~χ′}is inconsistent.Thus, we have?∧ΘA→(χ→χ′).It follows by Rule NECU and Axiom DISTU that?U∧ΘA→U(χ→χ′).It follows by Proposition 10 that ΘA?U(χ→χ′).□

    Proposition 14For eachψ∈Sub+(φ),MA,B?ψiffψ∈B.

    ProofBoolean cases are trivial;we only focus on the case ofKhW(χ,ψ).

    ·a=?.It follows thatM,C?ψifM,C?χ.By IH,we have thatχ∈Cimpliesψ∈Cfor allC∈SA.Therefore,we have ΘA∪{χ,?ψ}is inconsistent.It follows that ΘA?χ→ψ.It follows by Rule NECU,Axiom DISTU,and Proposition 10 that ΘA?U(χ→ψ).It follows by Axiom EMPKh that ΘA?KhW(χ,ψ).Therefore,KhW(χ,ψ)∈B.

    ·a=〈χ′,ψ′〉∈ΣAand there is noC∈SAsuch thatχ∈C.It follows that ΘA∪{~χ}is inconsistent.Thus,we have ΘA??χ.It follows by Rule NECU,Axiom DISTU,and Proposition 10 that ΘA?U?χ,namely ΘA?KhW(χ,⊥).Since?U(⊥→ψ),it follows by Axiom UKh that ΘA?KhW(χ,ψ).Thus,we haveKhW(χ,ψ)∈B.

    ·a=〈χ′,ψ′〉∈ΣAandχ∈Cfor someC∈SA.It follows by IH that for eachχ∈B′we have〈χ′,ψ′〉is executable atB′.It follows by Proposition 12 that ΘA?U(χ→χ′).It follows by IH thatψ∈C′for eachC′∈SA

    Proposition 15If?φthen?φ.

    ProofWe only need to show that ifφis consistent thenφis satisfiable w.r.t.the non-standard semantics?.Ifφis consistent,it follows by Proposition 9 that there is an atomAofSub+(φ)such thatφ∈A.It follows by Proposition 14 thatM,A?φ.□

    It follows by Propositions 8 and 15 that SK? is sound and complete w.r.t.the non-standard semantics?.Since SK? is also sound and complete w.r.t.the standard semantics?,we have the following lemma.

    Lemma 2?φif and only if?φ.

    Lemma 3Ifφis satisfiable w.r.t.the non-standard semantics,there is a modelMsuch thatM,s?φand|M|≤O(2|φ|).

    ProofIfφis satisfiable w.r.t.the non-standard semantics,it follows by Proposition 8 thatφis consistent.Then by Definition 10,we can construct a modelMAwhereAis an atom ofSub+(φ)andφ∈A.It follows by Proposition 15 thatMA,A?φ. It is obvious that|MA|≤O(2|φ|).□

    Theorem 3(Decidability)The problem that whetherφis valid w.r.t.the standard semantics is decidable.

    ProofTo decide whetherφis valid w.r.t.the standard semantics,it follows by Lemma 2 that we only need to decide whetherφis valid w.r.t.the non-standard semantics.In other words,we only need to decide whether?φis satisfiable w.r.t.the non-standard semantics.It follows by Lemma 3 that the problem of whether?φis satisfiable w.r.t.the non-standard semantics is decidable.□

    5 Conclusion and future work

    In thispaper,we interpretthe knowing-how formulaKhW(ψ,φ)asthatthe agent has a weak conformant plan for achievingφgivenψ,and a weak conformant plan for achievingφ-states fromψ-states is a finite linear action sequence such that the performance of the action sequence at eachψ-state will always end up with aφstate,either successfully or not.Our interpretation of knowledge-how is weaker than the interpretation of[21]where knowledge-how is interpreted as that the agent has a conformant plan,but our interpretation is more realistic.We also present a soundand complete axiomatic system.It shows that this system is weaker than the system addressed in[21].We also show that this logic is decidable by reducing a standard decidable problem to a decidable problem w.r.t.the non-standard semantics.

    One more interesting thing isthatthe canonicalmodelismuch more complicated even though the axiomatic system is weaker.Mainly,KhWformulas are realized by a two-step plan in our canonical model while they are realized by a one-step plan in the canonical model in[21].This also affords us some useful ideas about how to construct the decision procedure for the logic with tableau method.For example,for the tableau system of our logic,it is not enough to consider only one-step plans.

    The non-standard semantics played a major role in this paper not only because it is the key step in the proof of the decidability but also because it reveals the fact that our formalization of knowledge-how is in principle the same with Moore’s first interpretation.It also shows that Moore’s interpretation does not contain the trivial case of knowing how to guarantee a state of affairs by doing nothing.

    For future directions,we can express the existence of a weak conformant plan in the logic framework proposed in[27],where the existence of a conformant plan can be expressed by a formula.Moreover,we can study the knowing-how logic under fixed action set.In ourmodel,the action setΣisa partofthe model,butitis clearthat for different Σ we will get different logics.For example,if Σ is empty,KhW(ψ,φ)is equivalent toU(ψ→φ).If Σ is a singleton,the formulaKhW(p,q)∧KhW(q,r)→KhW(p,r)will be valid under our standard semantics.The more interesting thing is to compare the logic containing a finite Σ with the logic containing an infinite Σ.

    Another exciting research field is the multi-agent version ofKhW.We can also considergroup notionsof“knowing how”.Especially,the contribute knowledge-how will be very useful.If you know how to achieve B from A and I know how to achieve C from B,we two together should know how to achieve C form A.Moreover,it also makes good sense to extend our language with public announcement operator.The update ofthe new information willresultin the change ofthe background information throughoutthe model,and thiswillaffectthe knowledge-how.We also conjecture that adding public announcement operator to our logic will make the expressivity strictly stronger.

    [1]T.?gotnes,V.Goranko,W.Jamroga and M.Wooldridge,2015,“Knowledge and ability”,in H.van Ditmarsch,J.Halpern,W.van der Hoek and B.Kooi(eds.),Handbook of Epistemic Logic,pp.543–589,College Publications.

    [2]R.Alur,T.Henzinger and O.Kupferman,2002,“Alternating-time temporal logic”,Journal of the ACM,49:672–713.

    [3]F.Belardinelli,2014,“Reasoning about knowledge and strategies:Epistemic strategy logic”,Proceedings of the Second International Workshop on Strategic Reasoning, pp.27–33,EPTCS.

    [4]H.van Ditmarsch,J.Y.Halpern,W.van der Hoek and B.Kooi(eds.),2015,Handbook of Epistemic Logic,College Publications.

    [5]J.Fan,Y.Wang and H.van Ditmarsch,2014,“Almost necessary”,Advances in Modal Logic,Vol.10,pp.178–196.

    [6]J.Fan,Y.Wang and H.van Ditmarsch,2015,“Contingency and knowing whether”,The Review of Symbolic Logic,8:75–107.

    [7]J.Fantl,2008,“Knowing-how and knowing-that”,Philosophy Compass,3(3):451–470.

    [8]M.Ghallab,D.Nau and P.Traverso,2004,Automated Planning:Theory and Practice, Morgan Kaufmann.

    [9]P.Gochet,2013,“An open problem in the logic of knowing how”,in J.Hintikka(ed.),Open Problems in Epistemology,The Philosophical Society of Finland.

    [10]T.Gu and Y.Wang,2016,“‘Knowing value’logic as a normal modal logic”,Advances in Modal Logic,Vol.11,pp.362–381.

    [11]S.Hart,A.Heifetz and D.Samet,1996,“Knowing whether,knowing that,and the cardinality of state spaces”,Journal of Economic Theory,70(1):249–256.

    [12]A.Herzig,2015,“Logics of knowledge and action:Critical analysis and challenges”,Autonomous Agents and Multi-Agent Systems,29(5):719–753.

    [13]A.Herzig,E.Lorini and D.Walther,2013,“Reasoning about actions meets strategic logics”,Proceedings of LORI 2013,pp.162–175.

    [14]J.Hintikka,1962,Knowledge and Belief:An Introduction to the Logic of the Two Notions,Cornell University Press.

    [15]W.van der Hoek and A.Lomuscio,2003,“Ignore at your peril—Towards a logic for ignorance”,Proceedings of AAMAS-03,pp.1148–1149.

    [16]J.McCarthy,1979,“First-order theories of individual concepts and propositions”,Machine Intelligence,9:129–147.

    [17]J.McCarthy and P.J.Hayes,1969,“Some philosophical problems from the standpoint of artificial intelligence”,Machine Intelligence,pp.463–502,Edinburgh University Press.

    [18]R.C.Moore,1985,“A formal theory of knowledge and action”,in J.R.Hobbs and R.C.Moore(eds.),Formal Theories of the Commonsense World,Ablex Publishing Corporation.

    [19]J.A.Plaza,1989,“Logics of public communications”,in M.L.Emrich,M.S.Pfeifer, M.Hadzikadic and Z.W.Ras(eds.),Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems,pp.201–216.

    [20]D.E.Smith and D.S.Weld,1998,“Conformant graphplan”,AAAI-98:Proceedings of the Fifteenth National Conference on Artificial Intelligence,pp.889–896.

    [21]Y.Wang,2015,“A logic of knowing how”,Proceedings of LORI 2015,pp.392–405.

    [22]Y.Wang,2017,“A logic of goal-directed knowing how”,Synthese,to appear.

    [23]Y.Wang and J.Fan,2013,“Knowing that,knowing what,and public communication:Public announcement logic withKvoperators”,Proceedings of the 23rd IJCAI, pp.1147–1154.

    [24]Y.Wang and J.Fan,2014,“Conditionally knowing what”,Advances in Modal Logic,Vol.10,pp.569–587.

    [25]Y.Wang and Y.Li,2012,“Not all those who wander are lost:Dynamic epistemic reasoning in navigation”,Advances in Modal Logic,Vol.9,pp.559–580.

    [26]G.H.von Wright,1951,An Essay in Modal Logic,Amsterdam:North Holland.

    [27]Q.Yu,Y.Li and Y.Wang,2016,“A dynamic epistemic framework for conformant planning”,Proceedings of TARK XV,pp.298–318.

    停下即完成:“知道如何”的弱邏輯

    李延軍
    格羅寧根大學(xué)哲學(xué)系y.j.li@rug.nl

    本論文針對(duì)王彥晶提出的“知道如何”的模態(tài)算子提出了一種新的語(yǔ)義。與原來(lái)的語(yǔ)義相比,我們的語(yǔ)義比較弱但是卻更容易實(shí)現(xiàn)。根據(jù)該語(yǔ)義,主體知道如何從狀態(tài)ψ到達(dá)狀態(tài)φ當(dāng)且僅當(dāng)主體有一個(gè)有窮的線性動(dòng)作系列使得執(zhí)行該動(dòng)作系列停止后的狀態(tài)即是目的狀態(tài)。這種弱化的新語(yǔ)義導(dǎo)致了一種弱化的邏輯。原來(lái)邏輯系統(tǒng)里面的組合公理在我們的新語(yǔ)義下不再有效。我們也給出了該邏輯的一個(gè)公理系統(tǒng)并證明了其可靠性和完全性。同時(shí),我們也證明了該邏輯具有可判定性。

    Received2016-06-07

    *The author acknowledges the support from China Scholarship Council.The author thanks Yanjing Wang for telling the author the idea of the weak conformant plan and encouraging the author to write this paper.The author thanks Stipe Pandzic and Yuri David Santos for their helpful comments to make the paper more readable.The author is grateful to the two anonymous reviewers of this journal for their comments helping the author to improve the original work.Especially,one of them pointed out the interesting future direction of studying the logic under a finite action set.

    猜你喜歡
    公理弱化語(yǔ)義
    語(yǔ)言與語(yǔ)義
    歐幾里得的公理方法
    如何解決果樹盆景弱化的問(wèn)題
    基于ANSYS的硬塑氣囊蓋板弱化研究
    Abstracts and Key Words
    “上”與“下”語(yǔ)義的不對(duì)稱性及其認(rèn)知闡釋
    公理是什么
    自然主義是一種需要弱化的社會(huì)科學(xué)綱領(lǐng)
    認(rèn)知范疇模糊與語(yǔ)義模糊
    數(shù)學(xué)機(jī)械化視野中算法與公理法的辯證統(tǒng)一
    青春草国产在线视频| 人妻 亚洲 视频| 亚洲国产精品成人久久小说| 一边摸一边做爽爽视频免费| 下体分泌物呈黄色| 国产精品久久久久成人av| 天天躁夜夜躁狠狠躁躁| www.av在线官网国产| 日韩一本色道免费dvd| 成年女人毛片免费观看观看9 | 国产激情久久老熟女| 99久久综合免费| 欧美 日韩 精品 国产| av视频免费观看在线观看| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o | 老司机影院成人| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| 亚洲av成人精品一二三区| 日韩成人av中文字幕在线观看| 国产亚洲av高清不卡| 久久婷婷青草| 亚洲欧美精品自产自拍| 国产欧美日韩综合在线一区二区| 日韩av免费高清视频| 午夜福利视频精品| 麻豆乱淫一区二区| 考比视频在线观看| 久久99一区二区三区| 男人操女人黄网站| 男女高潮啪啪啪动态图| 在线 av 中文字幕| 日日啪夜夜爽| av有码第一页| 国产熟女午夜一区二区三区| 亚洲av电影在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | av电影中文网址| 如何舔出高潮| 欧美黑人欧美精品刺激| 一级,二级,三级黄色视频| 国产精品亚洲av一区麻豆 | 欧美日本中文国产一区发布| 观看av在线不卡| 午夜免费鲁丝| 18禁动态无遮挡网站| 亚洲久久久国产精品| 久久性视频一级片| 天美传媒精品一区二区| 国产精品久久久久久久久免| 大香蕉久久网| 极品人妻少妇av视频| netflix在线观看网站| 韩国精品一区二区三区| 国产熟女欧美一区二区| 在线观看三级黄色| 老司机亚洲免费影院| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 久久精品国产亚洲av涩爱| 欧美人与性动交α欧美精品济南到| 国产成人av激情在线播放| 国产亚洲一区二区精品| 国产精品二区激情视频| 国产精品成人在线| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 一级毛片黄色毛片免费观看视频| 久久久国产一区二区| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 国产精品 国内视频| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 久久久久久免费高清国产稀缺| 亚洲精品在线美女| 免费日韩欧美在线观看| 亚洲熟女毛片儿| 精品亚洲成国产av| 午夜福利,免费看| 天堂中文最新版在线下载| 欧美日韩视频精品一区| 久久久国产一区二区| 亚洲成人手机| 韩国av在线不卡| 少妇精品久久久久久久| 19禁男女啪啪无遮挡网站| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 国产精品免费大片| 精品国产国语对白av| 国产在视频线精品| 男女边吃奶边做爰视频| 天天影视国产精品| 国产色婷婷99| 狠狠精品人妻久久久久久综合| 啦啦啦啦在线视频资源| 久久精品久久久久久久性| 亚洲图色成人| 午夜免费男女啪啪视频观看| 欧美人与善性xxx| 国产免费福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产熟女欧美一区二区| 老司机影院毛片| 亚洲一码二码三码区别大吗| 中文字幕人妻丝袜制服| 久久久精品免费免费高清| 国产欧美亚洲国产| 欧美在线一区亚洲| 99热网站在线观看| 夫妻午夜视频| 又黄又粗又硬又大视频| 亚洲国产欧美日韩在线播放| 午夜免费男女啪啪视频观看| 国产伦人伦偷精品视频| 美女主播在线视频| www.熟女人妻精品国产| 日韩免费高清中文字幕av| 午夜福利影视在线免费观看| 日韩不卡一区二区三区视频在线| 又黄又粗又硬又大视频| 午夜日韩欧美国产| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 精品酒店卫生间| 免费人妻精品一区二区三区视频| av网站在线播放免费| 精品国产国语对白av| 久久久久久久国产电影| 欧美人与善性xxx| 这个男人来自地球电影免费观看 | 一区二区三区激情视频| 男人添女人高潮全过程视频| 中文字幕另类日韩欧美亚洲嫩草| 国产黄色免费在线视频| 我的亚洲天堂| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 两个人看的免费小视频| 久久久国产欧美日韩av| 亚洲av中文av极速乱| 精品第一国产精品| 一个人免费看片子| 制服诱惑二区| 五月天丁香电影| 国产毛片在线视频| 国产一区二区在线观看av| 成年人午夜在线观看视频| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 一边摸一边抽搐一进一出视频| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 国产老妇伦熟女老妇高清| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| av有码第一页| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 天天躁日日躁夜夜躁夜夜| 欧美日韩国产mv在线观看视频| 国产又爽黄色视频| 最黄视频免费看| 一本大道久久a久久精品| 宅男免费午夜| 成年女人毛片免费观看观看9 | 日日啪夜夜爽| 亚洲精品,欧美精品| 在线观看免费高清a一片| 午夜影院在线不卡| 十八禁人妻一区二区| 午夜福利视频精品| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 老司机亚洲免费影院| 99国产精品免费福利视频| 操美女的视频在线观看| 久久久精品区二区三区| 欧美在线一区亚洲| 天天躁日日躁夜夜躁夜夜| 国产又色又爽无遮挡免| 色吧在线观看| 欧美亚洲日本最大视频资源| 交换朋友夫妻互换小说| 午夜91福利影院| 久热这里只有精品99| av免费观看日本| 在现免费观看毛片| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| 免费在线观看完整版高清| 天美传媒精品一区二区| 大片免费播放器 马上看| 老司机在亚洲福利影院| 久久影院123| 午夜激情av网站| 午夜免费观看性视频| 一级片免费观看大全| 亚洲国产中文字幕在线视频| 不卡av一区二区三区| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 精品一区二区三卡| 日本黄色日本黄色录像| 久久精品熟女亚洲av麻豆精品| 午夜激情久久久久久久| 国产成人av激情在线播放| 欧美人与性动交α欧美软件| 婷婷成人精品国产| 亚洲精品在线美女| 精品国产一区二区三区四区第35| 高清黄色对白视频在线免费看| 精品午夜福利在线看| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 亚洲国产欧美一区二区综合| 丰满乱子伦码专区| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 十八禁人妻一区二区| 精品一区二区三区av网在线观看 | 女人爽到高潮嗷嗷叫在线视频| 波多野结衣av一区二区av| 亚洲激情五月婷婷啪啪| 亚洲四区av| 十八禁网站网址无遮挡| 免费观看人在逋| 亚洲欧洲国产日韩| 国产亚洲av高清不卡| 欧美日韩一区二区视频在线观看视频在线| 国产免费视频播放在线视频| 黄片小视频在线播放| 亚洲精品乱久久久久久| 久久久久久人妻| 1024视频免费在线观看| 亚洲精品日本国产第一区| 九草在线视频观看| 丰满乱子伦码专区| 亚洲国产看品久久| 一本色道久久久久久精品综合| 在线观看www视频免费| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 一二三四在线观看免费中文在| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 欧美黑人精品巨大| 各种免费的搞黄视频| 蜜桃国产av成人99| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 天天影视国产精品| 国产一区二区在线观看av| 免费看av在线观看网站| 永久免费av网站大全| 丰满迷人的少妇在线观看| 美女福利国产在线| 亚洲精品国产av蜜桃| 久久久久精品人妻al黑| 亚洲av中文av极速乱| 黄片播放在线免费| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 亚洲免费av在线视频| 国产老妇伦熟女老妇高清| 亚洲第一青青草原| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 青春草视频在线免费观看| 亚洲av中文av极速乱| 丁香六月欧美| av在线老鸭窝| 亚洲精品自拍成人| 欧美国产精品一级二级三级| 午夜精品国产一区二区电影| 大话2 男鬼变身卡| 成人18禁高潮啪啪吃奶动态图| 亚洲精品中文字幕在线视频| 国产免费现黄频在线看| 亚洲,欧美精品.| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av高清一级| 汤姆久久久久久久影院中文字幕| 不卡视频在线观看欧美| 久久99精品国语久久久| 欧美少妇被猛烈插入视频| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 亚洲色图 男人天堂 中文字幕| 一二三四中文在线观看免费高清| 亚洲精品一区蜜桃| 老鸭窝网址在线观看| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 人妻 亚洲 视频| 男女之事视频高清在线观看 | 久久精品国产亚洲av高清一级| 久久99热这里只频精品6学生| 日韩一区二区视频免费看| av在线观看视频网站免费| 青青草视频在线视频观看| 午夜免费观看性视频| 中文精品一卡2卡3卡4更新| videos熟女内射| 免费在线观看黄色视频的| 国产乱来视频区| 电影成人av| 美国免费a级毛片| 蜜桃在线观看..| 涩涩av久久男人的天堂| 99久久综合免费| 国产精品蜜桃在线观看| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 国产精品亚洲av一区麻豆 | 中文乱码字字幕精品一区二区三区| 国产精品女同一区二区软件| 亚洲欧美精品综合一区二区三区| 在线观看免费视频网站a站| 啦啦啦 在线观看视频| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看 | 少妇被粗大的猛进出69影院| 久久久久精品久久久久真实原创| 美女国产高潮福利片在线看| 老汉色av国产亚洲站长工具| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 国产男女超爽视频在线观看| 国产成人啪精品午夜网站| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 国产99久久九九免费精品| 精品亚洲成国产av| 黄片无遮挡物在线观看| av卡一久久| 另类亚洲欧美激情| 国产97色在线日韩免费| 999精品在线视频| 欧美xxⅹ黑人| 亚洲中文av在线| 777米奇影视久久| 精品少妇一区二区三区视频日本电影 | 亚洲欧美一区二区三区久久| 国产一卡二卡三卡精品 | 久久97久久精品| 免费少妇av软件| 国产97色在线日韩免费| 亚洲五月色婷婷综合| 最近最新中文字幕大全免费视频 | 欧美 亚洲 国产 日韩一| av有码第一页| 搡老乐熟女国产| av线在线观看网站| 成年美女黄网站色视频大全免费| 日本av手机在线免费观看| 欧美精品高潮呻吟av久久| 男女免费视频国产| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 亚洲成人免费av在线播放| 天天躁夜夜躁狠狠久久av| 国产精品嫩草影院av在线观看| 久久亚洲国产成人精品v| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 在线观看人妻少妇| 久久99一区二区三区| 丰满少妇做爰视频| 亚洲精品美女久久av网站| 丰满乱子伦码专区| 天天影视国产精品| 最黄视频免费看| 青春草亚洲视频在线观看| 国产精品嫩草影院av在线观看| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 亚洲精品一区蜜桃| 在线观看免费午夜福利视频| 国产成人欧美| 成人毛片60女人毛片免费| 久久97久久精品| 18禁国产床啪视频网站| 欧美少妇被猛烈插入视频| av在线老鸭窝| 精品国产乱码久久久久久小说| 青春草国产在线视频| 纵有疾风起免费观看全集完整版| 啦啦啦视频在线资源免费观看| 熟女av电影| 丰满乱子伦码专区| 国产av一区二区精品久久| av片东京热男人的天堂| 激情视频va一区二区三区| 亚洲国产欧美一区二区综合| 五月天丁香电影| 90打野战视频偷拍视频| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 伦理电影免费视频| 青春草视频在线免费观看| 亚洲av福利一区| 男女午夜视频在线观看| 久久久久精品久久久久真实原创| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| 日本猛色少妇xxxxx猛交久久| 日韩中文字幕欧美一区二区 | 宅男免费午夜| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的| 午夜福利网站1000一区二区三区| 久久久久人妻精品一区果冻| 巨乳人妻的诱惑在线观看| 欧美97在线视频| 亚洲一级一片aⅴ在线观看| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 一级黄片播放器| 国产一区二区激情短视频 | 久久久久久免费高清国产稀缺| 黑丝袜美女国产一区| 国产激情久久老熟女| 成年女人毛片免费观看观看9 | 亚洲色图 男人天堂 中文字幕| 七月丁香在线播放| av女优亚洲男人天堂| 19禁男女啪啪无遮挡网站| 青春草亚洲视频在线观看| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 如日韩欧美国产精品一区二区三区| 久久久久网色| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 欧美黑人精品巨大| 七月丁香在线播放| 黄色 视频免费看| 视频在线观看一区二区三区| 五月天丁香电影| 精品国产乱码久久久久久男人| 午夜福利视频精品| 久久鲁丝午夜福利片| 综合色丁香网| 午夜免费男女啪啪视频观看| 亚洲综合色网址| 在线观看一区二区三区激情| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网 | 国产xxxxx性猛交| 久久久久视频综合| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| av网站免费在线观看视频| 女性被躁到高潮视频| 欧美日韩一区二区视频在线观看视频在线| netflix在线观看网站| 久久人人爽人人片av| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 考比视频在线观看| 免费女性裸体啪啪无遮挡网站| 欧美日韩一级在线毛片| 男人爽女人下面视频在线观看| 啦啦啦 在线观看视频| 夫妻午夜视频| 人人妻,人人澡人人爽秒播 | 中文字幕亚洲精品专区| 亚洲七黄色美女视频| 美女福利国产在线| 18禁国产床啪视频网站| 精品久久蜜臀av无| 丰满饥渴人妻一区二区三| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 人妻 亚洲 视频| 欧美国产精品一级二级三级| 国产日韩欧美在线精品| 最近最新中文字幕免费大全7| 伊人久久大香线蕉亚洲五| 最黄视频免费看| 久久久久久人人人人人| 99香蕉大伊视频| 999久久久国产精品视频| 国产国语露脸激情在线看| 成年av动漫网址| 日韩不卡一区二区三区视频在线| 欧美成人精品欧美一级黄| 中文字幕人妻熟女乱码| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 久久人人97超碰香蕉20202| 男人操女人黄网站| 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看| 国产激情久久老熟女| 午夜免费观看性视频| 国产人伦9x9x在线观看| 午夜91福利影院| 赤兔流量卡办理| 天美传媒精品一区二区| 岛国毛片在线播放| 国产av国产精品国产| 看免费成人av毛片| 黑人猛操日本美女一级片| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 亚洲精品美女久久久久99蜜臀 | 男女边吃奶边做爰视频| 亚洲国产精品999| 久久久久久久久免费视频了| 1024香蕉在线观看| 观看美女的网站| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 午夜福利免费观看在线| 少妇猛男粗大的猛烈进出视频| 美女高潮到喷水免费观看| 咕卡用的链子| 欧美在线一区亚洲| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 国产一卡二卡三卡精品 | av线在线观看网站| 国产成人欧美在线观看 | 欧美激情极品国产一区二区三区| 男女国产视频网站| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 波多野结衣av一区二区av| 国产欧美日韩综合在线一区二区| 飞空精品影院首页| 一区在线观看完整版| 免费黄网站久久成人精品| 久久这里只有精品19| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片| 在线观看人妻少妇| 亚洲综合色网址| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 青春草视频在线免费观看| 免费av中文字幕在线| 国产成人一区二区在线| xxxhd国产人妻xxx| 免费日韩欧美在线观看| 麻豆av在线久日| 韩国高清视频一区二区三区| 久久久久精品久久久久真实原创| 日韩视频在线欧美| 久久久久久久精品精品| 成年美女黄网站色视频大全免费| 久久人人爽人人片av| 日韩制服骚丝袜av| 国产精品久久久人人做人人爽| 久久 成人 亚洲| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 如日韩欧美国产精品一区二区三区| 国产一级毛片在线| 精品久久蜜臀av无| 国产精品二区激情视频| av一本久久久久| 啦啦啦 在线观看视频| 一区二区三区乱码不卡18| 久久免费观看电影| 妹子高潮喷水视频| 国产97色在线日韩免费| 亚洲成人国产一区在线观看 | 青春草亚洲视频在线观看| 国产在线免费精品| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| 伊人久久国产一区二区| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 不卡av一区二区三区| 久久人妻熟女aⅴ| 欧美成人午夜精品|