• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化鋯小團(tuán)簇的結(jié)構(gòu)和穩(wěn)定性

    2011-11-30 10:42:06趙高峰沈?qū)W峰孫建敏白燕枝王淵旭
    物理化學(xué)學(xué)報 2011年5期
    關(guān)鍵詞:小團(tuán)成鍵河南大學(xué)

    趙高峰 向 兵 沈?qū)W峰 孫建敏 白燕枝 王淵旭

    (河南大學(xué)物理與電子學(xué)院,計算材料科學(xué)研究所,河南開封475004)

    氧化鋯小團(tuán)簇的結(jié)構(gòu)和穩(wěn)定性

    趙高峰*向 兵 沈?qū)W峰 孫建敏 白燕枝 王淵旭

    (河南大學(xué)物理與電子學(xué)院,計算材料科學(xué)研究所,河南開封475004)

    利用密度泛函理論在廣義梯度近似(GGA)和Perdew-Wang交換關(guān)聯(lián)泛函條件下研究了小團(tuán)簇ZrmOn(1≤m≤5,1≤n≤2m)的幾何結(jié)構(gòu)和穩(wěn)定性.結(jié)果表明:所有團(tuán)簇的最低能量結(jié)構(gòu)可通過鋯團(tuán)簇的連續(xù)氧化獲得,一般情況下O原子占據(jù)在Zr團(tuán)簇的橋位.(ZrO2)3和(ZrO2)5團(tuán)簇的基態(tài)結(jié)構(gòu)符合配位數(shù)規(guī)則和成鍵規(guī)律.此外,討論了氧化鋯團(tuán)簇的分解通道和分解能,值得指出的是在Zr原子數(shù)相同時ZrmO2m-1團(tuán)簇(除了Zr4O7)存在最大的分解能.

    密度泛函理論;氧化鋯團(tuán)簇;分解通道;成鍵規(guī)律

    1 Introduction

    In recent years,transition-metal oxides have attracted lots of attention due to their wide applications in electronics,catalysis,ceramics,and magnetic materials.1-7One typical example is the zirconium oxide.It is well known that zirconium dioxide (ZrO2)is not only used as refractories,but also widely used in the manufacture of piezoelectric components,ceramic capacitors,gas sensors,solid electrolyte batteries,internal combustion engine ceramics,optical glass,and catalysts,due to its excellent heat resistance,corrosion resistance,and plasticity.8,9At the same time,in nanocomposites study,people find that nanozirconia has a unique structure and nature,displaying a broad application prospects in electronic,metallurgical,aeronautical, chemical,environmental,biological,and medical areas.In fact,one can gain insight into the growth pattern of nanostructures from the study of the atomic clusters,10,11which plays an important role as a bridge between the molecules and the bulk materials.12Since clusters are the building blocks of cluster-assembled materials with tunable properties,13it would be interesting to search for the appropriate building blocks for cluster assembled zirconium oxide materials.

    Actually,there have been plenty of investigations about the transition-metal oxide clusters.For example,in the large stoichiometric alkali-earth metal oxide clusters,the structure is believed to be mostly cubic-like,which has been confirmed by experimental observations14-19and also by theoretical calculations based on model potentials.17,18,20The structures and stabilities of the small lead oxide clusters PbmOnwith m=1-4,n= 1-2m were systematically studied using density functional theory.21The lead-monoxide-like clusters(PbO)i(i=1-4)have great stability because of their significant dissociation energies and the highest occupied molecular orbital(HOMO)-the lowest unoccupied molecular orbital(LUMO)energy gaps.This suggests that they could be adopted as the building blocks of cluster-assembled materials.Both cage and noncage structures of(Fe2O3)n(n=2-6 and 10)clusters were studied using density functional theory.22The(Fe2O3)nclusters have high stability and different structural and bonding properties from those of the bulk Fe2O3,they may serve as good models for predicting or interpreting novel properties of Fe2O3nanomaterials.

    However,in contrast to the studies of other transition-metal oxide clusters,experimental and theoretical studies on clusters of the zirconium oxide have been rather scarce.Chertihin and Andrews23have carried out a matrix isolation study of the TiOx, ZrOx,and HfOx(x=1,2)systems.They found that TiO2,ZrO2, and HfO2were bent,consistent with the results of the deflection work24and with a previous and much earlier matrix isolation study of ZrO2.25The pure rotational spectrum of the asymmetric top ZrO2has been collected using a Fourier transform microwave spectrometer that employed a laser ablation molecular beam source.26Recently,the growth dynamics,stabilities, and structures of small zirconium oxide clusters(ZrmOn)(n=2m, m=1-8)were studied by covariance mapping time-of-flight mass spectrometry and density functional theory calculations.27The mass spectrum shows a very prominent“magic number”at cluster size n=5.Chen et al.28has studied(ZrO2)n(1≤n≤5) clusters by the density functional method.And they concluded that clusters with the highest extent contact between zirconium atom and oxygen atom were the most stable structure.

    In cluster physics,one of the most fundamental problems is to determine the ground-state structure of a cluster.In the previous DFT study about zirconium oxide clusters,they have studied(ZrO2)n(1≤n≤8)clusters.However,there is a lack of a detailed investigation on the ZrmOn(m≠n)clusters.So it should be worthwhile to perform a systematic study of the zirconium oxide clusters.In this paper,using first-principles calculations, we will study the structures and stabilities of ZrmOn(1≤m≤5,1≤ n≤2m)clusters.

    2 Computational details

    Our calculations were performed using DFT within the GGA using the Perdew-Wang exchange-correlation functional(PW91)29as implemented in the DMOL3package.30This method can perform accurate and efficient self-consistent calculations using a rapidly convergent three-dimensional numerical integration scheme.DFT techniques account for exchangecorrelation in many electron systems by the GGA,and they are suitable for studying transition metal clusters.31The double numerical basis set including d-polarization function(DND)30is utilized to describe the valence electrons with the core electrons described with effective core potential.

    In cluster physics,one of the most fundamental problems is to determine the ground-state geometry.In the present work, we got the ground-state structures by test calculations of all possible-structures isomers for ZrO and ZrO2clusters.To check the reliability of the methods and basis sets used in this article,test calculations were performed for ZrO and ZrO2.The bond length and vibrational frequency of the ZrO dimer are 0.1776 nm and 928.49 cm-1,in good agreement with the previous theoretical resultsof 0.1757 nm and 983.43 cm-132and the experimental values of 0.1712 nm and 975 cm-1.33-35The calculated Zr―O bond length of ZrO2is 0.1807 nm,in good agreement with the values of 0.1762 nm,24(0.17710±0.00007) nm,270.179 nm,28and 0.178 nm.36Therefore,the calculation method employed is reasonably adequate for the present study of the zirconium oxide.

    For larger clusters,the potential energy surfaces of polyatomic clusters are very complicated,with plenty of local minima.To find the global minimum of a polyatomic cluster is an exhaustive work,and practically impossible for most first-principles calculations.So,as many as possible initial structures were prepared,including highly symmetrical structures,and analogs of other binary metal-nonmetal clusters.Furthermore,for a given initial structure,we have considered adequately the spin electronic configurations during our calculation.The spin multiplicity S was considered from 1,3,…,to 9 for the evenelectron system.The calculated results show that the lowestenergy ZrmOnisomers are singlet states.

    The geometry optimization was performed without any symmetry restrictions,and a following vibrational analysis was also carried out to check if the optimized structures were stable. For the accurate calculations,we have chosen an octupole scheme for the multipolar expansion of the charge density and Coulomb potential.In the generation of the numerical basis sets,a global orbital cutoff of 0.53 nm was used.The maximum force and the maximum displacement were less than 0.0002 eV·nm-1and 0.0005 nm,respectively.

    3 Results and discussion

    3.1 Geometrical structures

    The low-energy structures of the clusters obtained from our present calculations are plotted in Figs.1-4.Several isomers are plotted for each cluster size,for the purpose of comparison and discussion.Relative energies with respect to the corresponding lowest-energy isomers are also shown in the figures.

    3.1.1 Zr2On(n=1-4)

    The lowest-energy structure of the Zr2O cluster is an isosceles triangle with Zr-O bond length of 0.2005 nm.The linear ZrZrO structure is found to be a metastable isomer with 1.8323 eV higher in energy than the ground-state.When two O atoms are connected to two Zr atoms,the optimized ground-state structure is a nonplanar structure with two oxygen atoms located at the bridge sites between two Zr atoms,which is very close to a planar rhombic structure.Chertihin and Andrews23found that the M2O2(M=Ti,Zr,Hf)molecules were nonplanar in contrast to the analogous more ionic alkaline earth metal species(the cyclic Ca2O2,Sr2O2,and Ba2O2molecules).The Ca2O2, Sr2O2,and Ba2O2molecules are more ionic,and their dimers are rhombic rings based on oxygen isotopic shifts,whereas the former monomers are much less ionic and give more covalent rings with nonplanar structures owing to d2electron configurations.We also obtained two metastable isomers with an oxygen molecule bonded to the bridge or top sites of the Zr2cluster(as shown in Fig.1(b2,c2)).However,their total energies are much higher than that of the ground-state structure.The nonplanar structure with all three oxygen atoms located at the bridge sites between two Zr atoms is the lowest-energy structure of the Zr2O3cluster.There is a nearly degenerate isomer (shown in Fig.1(b3))(only 0.5442 eV higher in energy than the ground-state),which can be regarded as the structure with an O atom bonded to the Zr2O2-rhombus.And the planar structure with an oxygen molecule bonded to the triangle structure of Zr2O is 5.4750 eV higher in energy than the ground-state.The Zr2O4cluster,which has an O/Zr atomic ratio of 2:1,favors a D2hstructure with a Zr2O2rhombus and two Zr=O double bonds on each side of the rhombus,which is different from the previous study result(C2h).28The isomer that looks like a distorted planar rhombic Zr2O2structure with an attached oxygen molecule is 2.6749 eV higher in energy than the ground-state. It is interesting that the O-O distances in the above metastable structures(Fig.1(b2,c2,c3,b4))are all less than 0.148 nm, about 0.030 nm larger than the bond length of oxygen molecule,which implies that O2molecule prefers a dissociation adsorption on the zirconium oxide.

    Fig.1 Lower-energy structures of Zr2On(n=1-4)clustersThe dark balls are oxygen atoms and the light balls are zirconium atoms. The numbers in parentheses under the structures are relative energies(in eV)with respect to those of the corresponding lowest-energy isomers.

    3.1.2 Zr3On(n=1-6)

    The lowest-energy structure of the Zr3O cluster is a planar structure with an O atom located at the bridge site of two Zr atoms of the Zr3cluster.Another isomer(shown in Fig.2(b1))is a tetrahedral structure with an oxygen atom located on the face site of the triangle Zr3,which is 0.7918 eV higher in energy than the ground-state.For Zr3O2and Zr3O3,the planar C2vring structure and the planar D3hring structure are shown to be the most stable structures,which can be obtained from the lowestenergy structure of the Zr3O cluster by adding additional oxygen atoms one by one to the other two bridge sites of two Zr atoms,respectively.For Zr3O4,the most stable structure can be formed by adding oxygen atom into one of O-bridged site of the Zr3O3ring.As shown in Fig.2(c4),the third stable isomer (Fig.2(c4))with the double oxygen bridge chains with adjacent rhombuses oriented perpendicular to each other is 1.0476 eV higher in energy than the ground-state.For Zr3O5,the lowestenergy structure is obtained from the ground-state structure of the Zr3O4cluster by adding another oxygen atom located at the bridge site between two O atoms.In addition,there is a degenerate isomer(only 0.5442 eV higher in energy than the groundstate),which is formed from the ground-state structure of the Zr3O6cluster by removing the cap-faced O atom.For Zr3O6, the most stable structure(shown in Fig.2(b6))predicted by Foltin et al.27is found to be less stable than the structure (shown in Fig.2(a6))obtained from the present calculations. Whereas the ground-state structure of the Zr3O6cluster is well consistent with the previous study.28This can be explained by examining the coordination of O and Zr atoms.We know that Zr is tetravalent and O is divalent.Thus ideally in a given cluster structure,O and Zr atoms would prefer to be four-fold and two-fold coordinated,respectively.Comparing the two structures,we find that there is one more four-fold coordinated Zr atom in Fig.2(a6)than in Fig.2(b6).Consequently the structure of Fig.2(a6)is more stable than that of Fig.2(b6).

    Fig.2 Lower-energy structures of Zr3On(n=1-6)clusters

    3.1.3 Zr4On(n=1-8)

    From Fig.3,we can see easily that the lowest-energy structures of the Zr4Onclusters(not including Zr4O2and Zr4O3, where oxygen atoms are located on the face sites)can be obtained by adding additional oxygen atoms one by one into a Zr4tetrahedron,where oxygen atoms are located at the bridge sites between two Zr atoms.Moreover,for Zr4O7and Zr4O8,besides six oxygen atoms located at the bridge sites along the Zr4tetrahedron,there are one dangling and two dangling terminal(singly coordinated)atoms connected to Zr atoms,respectively. For Zr4O4,the cubic-like isomer(Fig.3(b4)),which is regarded as the ground-state of M4O417,18,20(M is alkali-earth meatal)and Pb4O421,is 0.7891 eV higher in energy than the lowest-energy structure.Whereas the ground-state structure of the Zr4O8cluster is consistent with the previous theoretical result.27,28

    3.1.4 Zr5On(n=1-10)

    Low-energy structures of Zr5Onclusters obtained from our calculations are plotted in Fig.4.We find that the ground-state structures of the Zr5Onclusters(except Zr5O3)have the similar growth mode to those of Zr4Onclusters,which can be obtained by adding additional oxygen atoms one by one into the most stable structure of the Zr5cluster,where oxygen atoms are also located at the bridge sites between two Zr atoms,respectively. The ground-state structures of the Zr5O3cluster can be obtained from the metastable stable structure of the Zr5cluster with three face-cappingg oxygen atoms(shown in Fig.4(a3)).For Zr5O10, we find that the lowest-energy structure(Fig.4(a10))is not the same as the computational results of Foltin et al.27(shown in

    Fig.4(c10)).But it agrees well with the computational results of Chen et al.28As mentioned in the previous paragraph,the relative stability of these isomers can be correlated with the coordination numbers of each of the Zr and O atoms.In Fig.4(a10), four Zr and nine O atoms have the preferred four-fold and two-fold coordination,respectively,while in Fig.4(c10),only two Zr and eight O atoms have the desired coordination.In addition,there is a nearly degenerate isomer(three Zr and nine O atoms have the desired coordination in Fig.4(b10)),which is regarded as the ground-state structure of the Si5O10cluster.37,38

    3.2 Stabilities of small zirconium oxide clusters

    We first calculate the binding energy per atom(Eb)of the lowest-energy ZrmOnclusters using the following formula:

    Eb(ZrmOn)=[mE(Zr)+nE(O)-E(ZrmOn)]/(n+m)

    where E(ZrmOn),E(Zr),and E(O)represent the total energy of the ground-state structure of the ZrmOnand the total energies of the Zr and O atoms,respectively.As shown in Fig.5,among clusters with the same number of zirconium atoms(not including the ZrOnclusters),the binding energy increases monotoni-cally as the oxygen-to-zirconium atomic ratio NO/NZrincreases. Thus,the clusters continue to gain energy during the growth processes.Whereas for the Zr4Onclusters,the little peak appears at NO/NZr=1.75,implying that the Zr4O7cluster has higher stability than their neighbours.

    In cluster physics,the fragmentation energy is a sensitive quantity that reflects the relative stability of the calculated clusters.So the studies of fragmentation pathways and fragmentation energies can provide useful information for understanding the stability of the clusters.On the other hand,the study of the stability is helpful for finding the candidates of the building block of the cluster-assembled materials.Therefore,in the following,we study the fragmentation pathways and calculate the fragmentation energies of clusters.When a cluster A is dissociated into fragments B and C(i.e.,A→B+C),the fragmentation energy is defined as ΔE=EB+EC-EA,where the EB,EC,and EAare the total energies of clusters B,C,and A,respectively.Note that a fragmentation process is exothermic(endothermic)if the associated fragmentation energy is negative(positive).In general,the cluster with large positive ΔE has great stability,and that with small positive or even negative ΔE is not stable and tends to dissociate.Moreover,it is said that favored fragmentation products can provide indirect evidence for stability.37,39

    The low-energy fragmentation pathways and corresponding fragmentation energies are calculated and listed in Tables 1 and 2.From the analysis of Tables 1 and 2,we can come to the following conclusions:

    (i)Zr-rich clusters:for Zr2O,Zr3On(n=1-2),Zr4On(n=2-3) and Zr5O4,the most favorable fragmentation channel is ZrmOn→Zrm-1On+Zr.However,in the case of Zr4O and Zr5O,the Zr3and Zr4atoms are one of the fragments,respectively.Both cases contain ZrO as the other fragmentation product.This is mainly due to the increasing binding energy of the zirconium cluster with the cluster size.32It is interesting to note that a similar behavior has been also found for lead oxide.21Through further study,we find that the fragmentation energies corresponding to the fragmentation channel Zr4O→Zr3O+Zr and Zr5O→Zr4O+ Zr,are higher 0.6586 and 1.6370 eV relative to the minimum ΔE,3.2082 and 2.0381 eV.

    Fig.3 Lower-energy structures of Zr4On(n=1-8)clusters

    (ii)O-rich clusters:For most ZrmOn(m<n<2m)clusters,the most favorable fragmentation pathway is ZrmOn→Zrm-1On-1+ ZrO.For Zr3O6,Zr4O7,and Zr4O8,the three clusters favor the fragmentation channels that have oxygen atom as one of the fragments.As can be seen from Tables 1 and 2,for the above three clusters,the fragmentation energy corresponding to the fragmentation channel ZrmOn→ZrmOn-1+O is very close to that corresponding to the fragmentation pathway ZrmOn→Zrm-1On-1+ ZrO(the difference is less than 0.3 eV).It is worth being pointed out that the Zr5O10cluster favors the fragmentation channel Zr5O10→Zr4O8+ZrO2,which could be understood as a result of the growth pattern that involves the uptake of ZrO2units by a (ZrO2)4cluster to yield(ZrO2)5.And we find that the ZrmO2m-1clusters(not including Zr4O7)have the largest dissociation energy among the clusters with the same number of zirconium atoms,which indicates that these clusters are remarkably stable.

    (iii)Zirconium-monoxide-like clusters:The zirconium-monoxide-like clusters favor the fragmentation channel(ZrO)m→(ZrO)m-1+ZrO.It indicates that zirconium-monoxide-like clusters are stable.

    At the same time,Fig.6 also shows the lowest fragmentation energy as function of the oxygen-to-zirconium ratio for all clusters,revealing the underlying relationship between stability and stoichiometry of these clusters.In general,the fragmentation energies of the oxygen-rich clusters are larger than those of the zirconium-rich clusters with a few exceptions.

    From Fig.6,we can find that the fragmentation energy of ZrO is higher than the others.This is mainly due to the following factors:(i)the energies of Zr and O atoms are much higher compared to that of the ZrO molecule.(ii)As pointed out by Brugh et al.,26the bonding in ZrO is a complicated mixture of ionic and covalent components,with the covalent character dominating,which strengthens the interaction between Zr and O ztoms.It is therefore energetically unfavorable to split ZrO into individual Zr and O atoms.A similar behavior has been al-so found for the isoelectronic analogs SiO37and PbO.21

    Fig.4 Lower-energy structures of Zr5On(n=1-10)clusters

    Fig.5 Ebof the lowest-energy ZrmOnclusters as a function of the oxygen-to-zirconium ratio NO/NZr

    Fig.6 Fragmentation energies of the lowest-energy ZrmOn clusters as a function of NO/NZr

    The HOMO-LUMO energy gap(the difference between HOMO and LUMO)is the prototypical electronic property and is an invaluable parameter in cluster stability analysis.In general,the systems with larger HOMO-LUMO energy gap are stable and less reactive.It is interesting to point out that theHOMO-LUMO energy gaps(listed in Tables 1 and 2)for the ZrmOnclusters range from 0.2693 to 2.1170 eV,implying that these clusters are semiconducting.Moreover,among clusters with the same number of zirconium atoms,the ZrmO2m-1clusters(except Zr5O9)have the largest HOMO-LUMO energy gaps,which shows these clusters are more stable and less reactive,in agreement with the above fragmentation analysis.As can be seen from Fig.7,the values of the HOMO-LUMO energy gap of the Zr5Onclusters are in general smaller than those of the HOMO-LUMO energy gaps of the other ZrmOnclusters, suggesting that these Zr5Onclusters are less stable and more reactive.

    Table 1 Fragmentation channels(FC),binding energy per atom(Eb),fragmentation energies(ΔE),and HOMO-LUMO energy gaps (Egap)for the most stable ZrmOn(1≤m≤3,1≤n≤2m)clusters

    Table 2 FC,Eb,ΔE,and Egapfor the most stable ZrmOn (4≤m≤5,1≤n≤2m)clusters

    Fig.7 HOMO-LUMO energy gaps of the lowest-energy ZrmOn clusters as a function of NO/NZr

    4 Conclusions

    We have systematically studied the structures and stabilities of the small zirconium oxide ZrmOn(1≤m≤5,1≤n≤2m)clusters using the density functional theory(DFT)within the generalized gradient approximation(GGA).It is found that the lowestenergy structures of all these clusters can be obtained by the sequential oxidation of small“core”lead clusters.The additional oxygen atoms favor the bridge sites between the two zirconium atoms with a few exceptions.For the(ZrO2)m(m=3,4,5)clusters,only the lowest-energy structure of the(ZrO2)4cluster is the same as the previous theoretical result.From the analysis of the fragmentation channels and fragmentation energy,we find that the ZrmO2m-1clusters(not including Zr4O7)have the largest dissociation energy among the clusters with the same number of zirconium atoms,as well as larger HOMO-LUMO energy gaps,which indicates that these clusters are remarkably stable.Moreover,the HOMO-LUMO energy gaps for the ZrmOnclusters range from 0.2693 to 2.1170 eV,implying that these clusters are semiconducting.

    (1) Cox,P.A.Transition Metal Oxides;Clarendon:Oxford,1992.

    (2) Rao,C.N.;Raveau,B.Transition Metal Oxides;Wiley:New York,1998.

    (3) Hayashi,C.;Uyeda,R.;Tasaki,A.Ultra-Fine Particles;Noyes: Westwood,1997.

    (4) Henrich,V.E.;Cox,P.A.The Surface Science of Metal Oxides; Cambridge University Press:Cambridge,1994.

    (5) Somorjai,G.A.Introduction to Surface Chemistry and Catalysis;Wiley-Interscience:New York,1994.

    (6) Gates,B.C.Chem.Rev.1995,95,511.

    (7) (a)Clair,T.P.S.;Goodman,D.W.Top.Catal.2000,13,5. (b)Wallace,W.T.;Min,B.K.;Goodman,D.W.Top.Catal. 2005,34,17.

    (8) Jia,X.T.;Yang,W.;Qin,M.H.;Li,J.P.J.Magn.Magn.Mater. 2009,321,2354.

    (9) Zirconia Engineering Ceramics.In Key Engineering Materials; Kisi,E.Ed.;TransTech.Publications:Zurich,1998;pp 153-154.

    (10) Brune,H.Surf.Sci.Rep.1998,31,121.

    (11) Liu,S.D.;Bonig,L.;Metiu,H.Phys.Rev.B 1995,52,2907.

    (12) Castleman,A.W.,Jr.;Jena,P.Proc.Natl.Acad.Sci.U.S.A. 2006,103,10552.

    (13) Bai,J.;Zeng,X.C.;Tanaka,H.;Zeng,J.Y.Proc.Natl.Acad. Sci.U.S.A.2004,101,2664.

    (14) Martin,T.P.;Bergmann,T.J.Chem.Phys.1989,90,6664.

    (15) Boutou,V.;Lebeault,M.A.;Allouche,A.R.;Bordas,C.; Paulig,F.;Viallon,J.;Chevaleyre,J.Phys.Rev.Lett.1998,80, 2817.

    (16) Boutou,V.;Lebeault,M.A.;Allouche,A.R.;Paulig,F.; Viallon,J.;Bordas,C.;Chevaleyre,J.J.Chem.Phys.2000,112, 6228.

    (17) Ziemann,P.J.;Castleman,A.W.,Jr.Phys.Rev.B 1991,44, 6488.

    (18) Ziemann,P.J.;Castleman,A.W.,Jr.J.Chem.Phys.1991,94, 718.

    (19) Saunders,W.A.Phys.Rev.B 1988,37,6583.

    (20)Wilson,M.J.Phys.Chem.B 1997,101,4917.

    (21)Liu,H.T.;Wang,S.Y.;Zhou,G.;Wu,J.;Duan,W.H.J.Chem. Phys.2007,126,134705.

    (22)Ding,X.L.;Xue,W.;Ma,Y.P.;Wang,Z.C.;He,S.G.J.Chem. Phys.2009,130,014303.

    (23) Chertihin,G.V.;Andrews,L.J.Phys.Chem.1995,99,6356.

    (24)Kaufman,M.;Muenter,J.;Klemperer,W.J.Chem.Phys.1967, 47,3365.

    (25) Linevsky,M.J.Proceedings of the First Meeting of the Interagency Chemical Rocket Propulsion Group on Thermochemistry;Chemical Propulsion InformationAgency: New York,1963.

    (26) Brugh,D.J.;Suenram,R.D.J.Chem.Phys.1999,111,3526.

    (27) Foltin,M.;Stueber,G.J.;Bernstein,E.R.J.Chem.Phys.2001, 114,8971.

    (28)Chen,S.G.;Yu,M.Y.;Hu,B.G.;Wang,X.;Liu,Y.C.;Yu,S. Q.;Zhang,W.W.;Yin,Y.S.J.Chin.Ceram.Soc.2007,35,46. [陳守剛,于美燕,胡保革,王 昕,劉英才,于帥琴,張偉偉,尹衍升.硅酸鹽學(xué)報,2007,35,46.]

    (29)Takashi,A.;Wataru,H.;Shige,O.J.Chem.Phys.2002,117,24.

    (30) Perdew,J.P.;Wang,Y.Phys.Rev.B 1992,45,13244.

    (31) Delley,B.J.Chem.Phys.1990,92,508;2000,113,7756.

    (32)Wang,C.C.;Zhao,R.N.;Hang,J.G.J.Chem.Phys.2006,124, 194301.

    (33) Huber,K.P.;Herzberg,G.Constant of Diatomic Molecules;Van Nostrand Reinhold:New York,1979.

    (34) Weltner,W.,Jr.;Mcleod,D.,Jr.J.Phys.Chem.1965,69,488.

    (35) Mcintyre,N.S.;Thompson,K.R.;Weltner,W.,Jr.J.Phys. Chem.1971,75,3243.

    (36) Siegbahn,P.E.M.J.Phys.Chem.1993,97,9096.

    (37)Lu,W.C.;Wang,C.Z.;Nguyen,V.;Schmidt,M.W.;Gordon, M.S.;Ho,K.M.J.Phys.Chem.A 2003,107,6936.

    (38) Chu,T.S.;Zhang,R.Q.;Cheng,J.F.J.Phys.Chem.B 2001, 105,1705.

    (39) Jones,N.O.;Reddy,B.V.;Rasouli,F.Phys.Rev.B 2005,72, 165411.

    December 21,2010;Revised:March 4,2011;Published on Web:March 18,2011.

    Structures and Stabilities of Small Zirconium Oxide Clusters

    ZHAO Gao-Feng*XIANG Bing SHEN Xue-Feng SUN Jian-Min BAI Yan-Zhi WANG Yuan-Xu
    (Institute of Computational Materials Science,School of Physics and Electronics,Henan University, Kaifeng 475004,Henan Province,P.R.China)

    The geometric structures and stabilities of small ZrmOn(1≤m≤5,1≤n≤2m)clusters were studied using density functional theory(DFT)calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation(GGA).The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small“core”zirconium clusters.In general,the O atoms prefer the bridge sites along the Zrmskeleton.The ground-state structures of the(ZrO2)3and(ZrO2)5clusters are consistent with coordination number rules and bonding regularity.The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed.We found that the ZrmO2m-1clusters(not including Zr4O7)had the largest fragmentation energy among the clusters with the same number of zirconium atoms.

    Density functional theory;Zirconium oxide cluster;Fragmentation channel; Bonding regularity

    O641

    *Corresponding author.Email:zgf@henu.edu.cn;Tel:+86-378-3881602.

    The project was supported by the National Natural Science Foundation of China(10804027,11011140321).

    國家自然科學(xué)基金(10804027,11011140321)資助項目

    猜你喜歡
    小團(tuán)成鍵河南大學(xué)
    “不急不急”和“快點(diǎn)兒快點(diǎn)兒”
    構(gòu)建“三步法”模型解決大π鍵問題
    團(tuán)簇MnPS3成鍵及熱力學(xué)穩(wěn)定性分析
    SixGey(n=x+y,n=2~5)團(tuán)簇成鍵條件與解離行為的密度泛函緊束縛方法研究
    歸 去 兮
    新生代(2019年5期)2019-11-14 06:17:33
    詠 河 大
    新生代(2018年15期)2018-11-13 19:48:53
    高考化學(xué)中一種解決中心原子雜化、成鍵等問題的有效方法
    考試周刊(2018年39期)2018-04-19 10:39:44
    故 鄉(xiāng)
    乙烯基自由基與IB金屬小團(tuán)簇的相互作用研究
    91成年电影在线观看| 亚洲中文字幕日韩| 日日夜夜操网爽| 9191精品国产免费久久| 国产成+人综合+亚洲专区| 亚洲专区字幕在线| 久久国产精品影院| 国产精品一区二区精品视频观看| 一级毛片女人18水好多| 欧美人与性动交α欧美精品济南到| av视频在线观看入口| 色综合站精品国产| 亚洲成人久久性| 看片在线看免费视频| 久久久国产成人精品二区| 午夜福利在线观看吧| 亚洲无线在线观看| 欧美黄色片欧美黄色片| 一a级毛片在线观看| 国产精品综合久久久久久久免费| 欧美国产精品va在线观看不卡| 国产成人啪精品午夜网站| 桃色一区二区三区在线观看| 精品欧美国产一区二区三| 国产亚洲精品久久久久5区| 在线永久观看黄色视频| 欧美av亚洲av综合av国产av| 久久精品91蜜桃| 国产精品野战在线观看| 亚洲第一电影网av| www国产在线视频色| 免费在线观看亚洲国产| 欧美乱妇无乱码| 久久天堂一区二区三区四区| 精品国产一区二区三区四区第35| 国产一区二区三区视频了| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女| 久久久久亚洲av毛片大全| 成人国产综合亚洲| 精品高清国产在线一区| 在线观看日韩欧美| 欧美成人一区二区免费高清观看 | 91麻豆av在线| 在线观看免费午夜福利视频| 免费搜索国产男女视频| 亚洲av日韩精品久久久久久密| 午夜福利欧美成人| 人人妻人人澡欧美一区二区| 黄色 视频免费看| 激情在线观看视频在线高清| 国产亚洲精品一区二区www| 一级毛片精品| 正在播放国产对白刺激| 亚洲欧美精品综合久久99| aaaaa片日本免费| 99久久精品国产亚洲精品| tocl精华| 制服诱惑二区| av超薄肉色丝袜交足视频| 狠狠狠狠99中文字幕| 嫩草影院精品99| 国产精品精品国产色婷婷| 十八禁网站免费在线| 男女床上黄色一级片免费看| 久久精品国产清高在天天线| 精品久久久久久久久亚洲| 日韩精品青青久久久久久| 亚洲精品日韩在线中文字幕 | 午夜视频国产福利| 国产高清三级在线| 国产色爽女视频免费观看| 精品国内亚洲2022精品成人| 亚洲婷婷狠狠爱综合网| videossex国产| 亚洲欧美清纯卡通| 禁无遮挡网站| av女优亚洲男人天堂| 好男人在线观看高清免费视频| 国产亚洲精品久久久com| 最近在线观看免费完整版| 亚洲国产色片| 精品欧美国产一区二区三| 最近2019中文字幕mv第一页| 欧美xxxx性猛交bbbb| 夜夜夜夜夜久久久久| 啦啦啦啦在线视频资源| 精品久久久久久久末码| 淫秽高清视频在线观看| 狂野欧美激情性xxxx在线观看| 免费av毛片视频| 97人妻精品一区二区三区麻豆| 成人高潮视频无遮挡免费网站| 人人妻人人澡人人爽人人夜夜 | 亚洲最大成人中文| 少妇高潮的动态图| 中文亚洲av片在线观看爽| 22中文网久久字幕| 男女啪啪激烈高潮av片| 久久久久久九九精品二区国产| 老熟妇仑乱视频hdxx| 久久欧美精品欧美久久欧美| 国产 一区精品| 2021天堂中文幕一二区在线观| 国产一区二区三区av在线 | 三级国产精品欧美在线观看| 国产亚洲精品久久久久久毛片| 国产免费一级a男人的天堂| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| av国产免费在线观看| 色综合亚洲欧美另类图片| 免费高清视频大片| 99在线人妻在线中文字幕| 舔av片在线| 精品免费久久久久久久清纯| 免费人成视频x8x8入口观看| 日韩高清综合在线| 在线免费十八禁| 少妇人妻精品综合一区二区 | 亚洲精品粉嫩美女一区| 99在线人妻在线中文字幕| or卡值多少钱| 亚洲欧美日韩卡通动漫| 午夜精品在线福利| 午夜激情福利司机影院| 99热6这里只有精品| 亚洲av不卡在线观看| 别揉我奶头 嗯啊视频| 老女人水多毛片| 国内精品久久久久精免费| 中文资源天堂在线| 一个人看的www免费观看视频| 久久久久国产精品人妻aⅴ院| 波野结衣二区三区在线| 国产亚洲精品久久久久久毛片| 老熟妇仑乱视频hdxx| 婷婷色综合大香蕉| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 最近手机中文字幕大全| 99热这里只有是精品在线观看| 非洲黑人性xxxx精品又粗又长| 精品久久久久久成人av| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 日韩欧美在线乱码| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 日本 av在线| 国产男人的电影天堂91| or卡值多少钱| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 91精品国产九色| 日韩欧美国产在线观看| 亚洲欧美成人精品一区二区| 欧美日韩综合久久久久久| 12—13女人毛片做爰片一| 日本与韩国留学比较| 一进一出好大好爽视频| 国产一区亚洲一区在线观看| 97在线视频观看| 久久6这里有精品| 男插女下体视频免费在线播放| 乱系列少妇在线播放| 麻豆精品久久久久久蜜桃| 蜜桃亚洲精品一区二区三区| 级片在线观看| 亚洲欧美日韩高清在线视频| 国产亚洲精品av在线| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱 | 欧美日韩精品成人综合77777| 久久久久久伊人网av| 成人漫画全彩无遮挡| 久久韩国三级中文字幕| 国产欧美日韩一区二区精品| 免费看日本二区| 最近最新中文字幕大全电影3| 久久久久精品国产欧美久久久| 欧美潮喷喷水| 欧美绝顶高潮抽搐喷水| 成年女人看的毛片在线观看| 精品人妻视频免费看| 久久久久久伊人网av| 国产一区二区亚洲精品在线观看| 毛片一级片免费看久久久久| 亚洲国产色片| 免费黄网站久久成人精品| 亚洲av成人精品一区久久| av在线亚洲专区| 久久久久国产精品人妻aⅴ院| 国产精品综合久久久久久久免费| 少妇人妻一区二区三区视频| 九九久久精品国产亚洲av麻豆| 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 免费搜索国产男女视频| 97热精品久久久久久| a级毛色黄片| 国产伦精品一区二区三区四那| 欧美激情久久久久久爽电影| 夜夜看夜夜爽夜夜摸| 97人妻精品一区二区三区麻豆| АⅤ资源中文在线天堂| 成人漫画全彩无遮挡| 性插视频无遮挡在线免费观看| 久99久视频精品免费| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片aaaaaa免费看小| 久久久久久久久久成人| 亚洲成人av在线免费| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| 久久中文看片网| 哪里可以看免费的av片| 听说在线观看完整版免费高清| 日韩欧美精品免费久久| 99热6这里只有精品| 成人美女网站在线观看视频| 伊人久久精品亚洲午夜| 一区二区三区高清视频在线| 一a级毛片在线观看| 欧美精品国产亚洲| 久久韩国三级中文字幕| 国产精品一二三区在线看| 又爽又黄a免费视频| 97超碰精品成人国产| av天堂中文字幕网| av在线观看视频网站免费| 亚洲自偷自拍三级| 亚洲婷婷狠狠爱综合网| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点| 91久久精品电影网| 国产成人91sexporn| 日本a在线网址| 麻豆国产av国片精品| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 99视频精品全部免费 在线| 国产精品综合久久久久久久免费| 国产老妇女一区| 国产一区二区在线观看日韩| or卡值多少钱| 日韩亚洲欧美综合| 观看免费一级毛片| 黄色配什么色好看| 久久精品人妻少妇| 久久久久久伊人网av| 少妇裸体淫交视频免费看高清| 在线免费十八禁| 国产aⅴ精品一区二区三区波| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区| 日韩欧美一区二区三区在线观看| 18禁在线播放成人免费| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕| av天堂中文字幕网| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 极品教师在线视频| 午夜视频国产福利| 黄色一级大片看看| 国产精品福利在线免费观看| 变态另类丝袜制服| 精品久久久久久久末码| 亚洲av不卡在线观看| av在线亚洲专区| 男人舔奶头视频| 亚洲18禁久久av| 亚洲va在线va天堂va国产| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 波多野结衣高清无吗| 综合色av麻豆| 日韩av在线大香蕉| 成年免费大片在线观看| 国产精品野战在线观看| 亚洲一区二区三区色噜噜| 国产伦精品一区二区三区视频9| 少妇裸体淫交视频免费看高清| 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 夜夜夜夜夜久久久久| 美女被艹到高潮喷水动态| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 一本久久中文字幕| 国内久久婷婷六月综合欲色啪| 国产探花极品一区二区| 人人妻人人澡欧美一区二区| 麻豆国产97在线/欧美| 人妻少妇偷人精品九色| 又爽又黄a免费视频| 欧美区成人在线视频| 日韩欧美一区二区三区在线观看| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区 | 国产精品不卡视频一区二区| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| av在线天堂中文字幕| 久久6这里有精品| 国产中年淑女户外野战色| 久久久精品大字幕| 97超碰精品成人国产| 国产av在哪里看| 在线观看美女被高潮喷水网站| 美女高潮的动态| 欧美绝顶高潮抽搐喷水| 日韩中字成人| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 大香蕉久久网| 国产高清激情床上av| 亚洲欧美日韩卡通动漫| 精品午夜福利视频在线观看一区| 日韩,欧美,国产一区二区三区 | 欧美成人免费av一区二区三区| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 亚洲成人av在线免费| 久久中文看片网| 免费观看的影片在线观看| 国产av一区在线观看免费| 国产精品久久久久久久电影| 天堂√8在线中文| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影| 欧美精品国产亚洲| 能在线免费观看的黄片| 亚洲成av人片在线播放无| 亚洲真实伦在线观看| 精品久久国产蜜桃| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 1000部很黄的大片| 我要看日韩黄色一级片| 99热6这里只有精品| 欧美激情国产日韩精品一区| 91av网一区二区| 18禁在线无遮挡免费观看视频 | 久久国产乱子免费精品| 少妇猛男粗大的猛烈进出视频 | 久久精品国产清高在天天线| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| 亚洲成人久久性| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区 | 别揉我奶头~嗯~啊~动态视频| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 亚洲av一区综合| 中文字幕免费在线视频6| 亚洲成人av在线免费| АⅤ资源中文在线天堂| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 国产三级在线视频| 亚洲性夜色夜夜综合| 非洲黑人性xxxx精品又粗又长| 国产精品不卡视频一区二区| 亚洲美女黄片视频| av卡一久久| 黄色欧美视频在线观看| 97碰自拍视频| 免费观看人在逋| 午夜精品国产一区二区电影 | 日韩精品有码人妻一区| 校园人妻丝袜中文字幕| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 国产精品人妻久久久影院| 美女 人体艺术 gogo| 免费看光身美女| 在线免费观看的www视频| 成人性生交大片免费视频hd| 看黄色毛片网站| 黄片wwwwww| 夜夜爽天天搞| 欧美丝袜亚洲另类| 99久久精品国产国产毛片| 久久精品综合一区二区三区| 亚洲真实伦在线观看| 一级黄色大片毛片| 看十八女毛片水多多多| 22中文网久久字幕| 99热只有精品国产| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看 | 亚洲欧美清纯卡通| 国产成人一区二区在线| 色噜噜av男人的天堂激情| 俺也久久电影网| 午夜精品一区二区三区免费看| 国产av在哪里看| 美女内射精品一级片tv| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 国产高清有码在线观看视频| 级片在线观看| 日本免费一区二区三区高清不卡| 乱人视频在线观看| av黄色大香蕉| 日本五十路高清| 日韩高清综合在线| 久久久欧美国产精品| www.色视频.com| 国产中年淑女户外野战色| 黄色日韩在线| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 悠悠久久av| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 一本久久中文字幕| 日韩成人av中文字幕在线观看 | 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 亚洲三级黄色毛片| 日韩欧美精品v在线| 老司机影院成人| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 舔av片在线| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 我的女老师完整版在线观看| 成人鲁丝片一二三区免费| 狂野欧美激情性xxxx在线观看| 少妇裸体淫交视频免费看高清| 欧美潮喷喷水| www.色视频.com| 成人鲁丝片一二三区免费| 麻豆久久精品国产亚洲av| 狠狠狠狠99中文字幕| 美女被艹到高潮喷水动态| 久久久成人免费电影| 中出人妻视频一区二区| 日韩人妻高清精品专区| 午夜免费激情av| 少妇熟女aⅴ在线视频| 亚洲国产欧洲综合997久久,| 亚洲一区高清亚洲精品| 国产白丝娇喘喷水9色精品| 国产成人福利小说| 一本精品99久久精品77| 无遮挡黄片免费观看| 国产淫片久久久久久久久| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 免费人成在线观看视频色| av免费在线看不卡| 麻豆av噜噜一区二区三区| av在线蜜桃| 亚洲高清免费不卡视频| 午夜日韩欧美国产| 亚洲av美国av| 晚上一个人看的免费电影| 神马国产精品三级电影在线观看| 国产成人影院久久av| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 成人精品一区二区免费| 亚洲精品色激情综合| 日本在线视频免费播放| 亚洲精品成人久久久久久| 成年免费大片在线观看| 成人av一区二区三区在线看| 99riav亚洲国产免费| 国产毛片a区久久久久| 国产精品国产三级国产av玫瑰| 色av中文字幕| 国产三级在线视频| 国产美女午夜福利| 国产午夜福利久久久久久| 一边摸一边抽搐一进一小说| 大香蕉久久网| а√天堂www在线а√下载| 亚洲无线观看免费| 一级毛片电影观看 | 亚洲精品日韩在线中文字幕 | 国产精品嫩草影院av在线观看| 黄色日韩在线| 岛国在线免费视频观看| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 我的女老师完整版在线观看| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 日韩av不卡免费在线播放| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 亚洲va在线va天堂va国产| av天堂中文字幕网| 男女视频在线观看网站免费| 欧美激情久久久久久爽电影| 综合色丁香网| 久久久欧美国产精品| 一级毛片电影观看 | av中文乱码字幕在线| 非洲黑人性xxxx精品又粗又长| 寂寞人妻少妇视频99o| 午夜免费激情av| 你懂的网址亚洲精品在线观看 | 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 亚洲一区二区三区色噜噜| 久久国内精品自在自线图片| 亚洲专区国产一区二区| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 嫩草影院新地址| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 国产亚洲精品av在线| 露出奶头的视频| 99热精品在线国产| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 成年版毛片免费区| 国产黄色小视频在线观看| 亚洲性久久影院| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 天堂动漫精品| 欧美最黄视频在线播放免费| 精品久久国产蜜桃| 亚洲av成人精品一区久久| 亚州av有码| 十八禁国产超污无遮挡网站| 香蕉av资源在线| 国产 一区 欧美 日韩| 国产一区亚洲一区在线观看| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 亚洲av成人精品一区久久| 97超视频在线观看视频| 男女那种视频在线观看| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 久久久久久久久中文| 国产一区二区三区在线臀色熟女| 亚洲欧美成人精品一区二区| 听说在线观看完整版免费高清| 日韩成人伦理影院| 免费观看人在逋| 人妻制服诱惑在线中文字幕| 成人漫画全彩无遮挡| 91在线观看av| 国产精品精品国产色婷婷| 国产午夜精品论理片| 免费看美女性在线毛片视频| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频 | 美女内射精品一级片tv| 寂寞人妻少妇视频99o| 97超级碰碰碰精品色视频在线观看| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 色综合站精品国产| 亚洲精华国产精华液的使用体验 | 日韩欧美免费精品| 欧美不卡视频在线免费观看| 亚洲五月天丁香| 搞女人的毛片| 69人妻影院| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 午夜爱爱视频在线播放| 日本五十路高清| 亚洲久久久久久中文字幕| 日日撸夜夜添| 欧美最黄视频在线播放免费| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| 少妇猛男粗大的猛烈进出视频 | 精品无人区乱码1区二区| 久久精品人妻少妇|