• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of WC@TiO2 Core-shell Nanocomposite andIts Electrocatalytic Characteristics*

    2011-05-15 08:52:12LIGuohua李國華CHENDan陳丹YAOGuoxing姚國新SHIBinbin施斌斌andMAChunan馬淳安
    關鍵詞:淳安

    LI Guohua (李國華), CHEN Dan (陳丹), YAO Guoxing (姚國新), SHI Binbin (施斌斌) and MA Chun’an (馬淳安)

    ?

    Preparation of WC@TiO2Core-shell Nanocomposite andIts Electrocatalytic Characteristics*

    LI Guohua (李國華)**, CHEN Dan (陳丹), YAO Guoxing (姚國新), SHI Binbin (施斌斌) and MA Chun’an (馬淳安)

    State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China Research Center of Nano Science & Technology, School of Chemical Engineering & Materials Science, Zhejiang University of Technology, Hangzhou 310032, China

    Monotungsten carbide and titania nanocomposite with core-shell (WC@TiO2) structure was prepared by a new approach of spray drying and reduction-carbonization reaction, with titania nanopowder and ammonium metatungstate as precursors, methane as carbon source, and hydrogen as reduction gas. The sample was characterized by X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope and X-ray energy dispersion spectroscopy. The results show that its crystal phase is composed of brookite, tungsten and monotungsten carbide. The morphology of the sample particle is irregular sphere-like, with a diameter smaller than 100 nm. Its chemical components are titanium, tungsten, carbon and oxygen. Monotungsten carbide nanoparticles lie on the surface of titania core and form an incomplete shell around titania core in the nanocomposite. The measurement with a microelectrode system of three electrodes shows that the sample is electrocatalytic active to nitrophenol in basic solution at room temperature. Its peak potential is at-0.988 V (saturated calomel electrode (SCE)), which is more negative than the peak potential,-0.817 V (SCE), of mesoporous monotungsten carbide, and its peak current is 8.809 μA, which is higher than the peak current, 4.058 μA, of mesoporous monotungsten carbide. The hydrogen generation potential of the sample is at-1.199 V (SCE), which is more negative than that of pure nanosized monotungsten carbide at-1.100 V (SCE). These results show that the presence of titania in the sample can lower the peak potential of nitrophenol electrocatalysis and its hydrogen generation potential, and increase its peak current of nitrophenol electrocatalysis in basic solution at room temperature. This indicates a synergistic effect of titania and monotungsten carbide in electrocatalysis.

    tungsten carbide, titania, nanocomposite, core-shell, electrocatalytic performance

    1 Introduction

    Since monotungsten carbide (WC) is found to have platinum-like behavior for the chemisorption of hydrogen and oxygen [1], it has been considered as an alternative electrocatalyst of Pt for hydrogen [2] or methanol fuel cells [3]. Although the performance of WC may be inferior in direct comparison to platinum [3], its low price and its insensitivity to catalyst poisons, such as H2S and CO [4], make it an interesting alternative to noble metal catalyst.

    WC is isoelectronic to platinum [5], but it does not share the inertness of platinum. When exposed to water, the surface layer of WC undergoes continuous oxidation and dissolution. The surface oxidation of WC preferentially progresses on those sites where oxidic species already exist [6]. This leads to a simultaneous oxidation of tungsten and carbon is oxidized to CO2,.., visible as a gas formation when WC electrodes are oxidatively polarized [7]. The thickness of the tungsten oxide surface layer, formed by anodic polarization, is found to be between two and three monolayers, with the predominant species being hydrated and non-hydrated WO3[6-8]. This relatively undefined composition of the surface oxide layer may be the major reason for the varying rest potentials of monotungsten carbide electrodes, immersed in similar electrolyte solutions [6]. It also explains the irreproducible hydrogen adsorption potentials at tungsten carbide [6, 9]. WO3layers on WC are not stable in 0.2 mol·L-1H2SO4when polarized at 0.7 V (. SCE) [10, 11]. The oxides on the surface of monotungsten carbide are readily soluble in alkaline solutions as WO4. The dissolution of surface oxides will result in the degradation of electrocatalytic effect of WC.

    The catalytic activity of tungsten carbide depends on many parameters. An important factor is the atomic ratio of tungsten to carbon [12] in the interstitial alloy. Other factors are particle size [13], lattice defects [13] and pseudometallic surfaces [9]. As for electrocatalysis, the most significant factor is the presence of oxygen species (tungsten oxides) at the surface of monotungsten carbide. This was testified by B?hm [14] in 1970. He demonstrated that on the surface of freshly prepared WC electrode, no appreciable hydrogen adsorption took place, only after the surface was anodized with low oxide coverage, the hydrogen adsorption could be improved.

    All the above results indicate that surface oxides are very critical for the electrocatalytic activity of WC, and surface oxides of WC is not stable in electrochemical environment. How to keep the stability of surface oxide of WC in electrochemical environment is one of the key problems in an electrocatalysis.

    Utilization of the synergistic effect of tungsten carbide and titania is one of the approaches to solve the stability problem, because the catalytic effect of titania is good, the electron diffusion coefficient of titania is also good, titania is stable in acidic and basic solution environment [15, 16]. The activity of the catalyst with Ti-containing support is generally higher than that of the catalyst supported on alumina, because Ti can increase the catalyst activity of the pre-hydrogenation path [17-21]. These imply that the preparation of titania and monotungsten carbide composite is interesting and valuable.

    We reported tungsten carbide and titania composite (WC/TiO2), prepared with rutile as precursor and impregnation method to prepare intermediate product, and investigated the electrocatalytic characteristics of the composite for nitrobenzene with cyclic voltammetry [22]. In this study, we prepare tungsten carbide and titania nanocomposite with core-shell structure using anatase as precursor and a spray drying approach to prepare intermediate product, and investigate the electrocatalytic characteristics of the nanocomposite for nitrophenol by cyclic voltammetry. The electrocatalytic synergistic effect of titania and monotungsten carbide is examined.

    2 Experimental

    2.1 Sample preparation

    An appropriate amount of ammonium metatungstate was dissolved into deionized water to form aqueous solution with a mass percentage of 5%. The solution was stirred by ultrasonic wave for 15 min. Anatase nanoparticle, prepared according to reference [23], was added into the solution at a molar ratio of W to Ti 1︰1 with stirring. The turbid liquid was stirred by ultrasonic wave for 15 min, and was guided into a spray desiccator while stirred with magnetic stirrer at room temperature. During the drying process in the spray desiccator, the flow rate of hot air at the entrance was 30 m3·h-1and that of the liquid was 5 ml·min-1, the temperature of drying air at the entrance was 438 K and that of the mixture of gas and powder at the exit was 378 K. In this way, a precursor was prepared.

    Five grams of the precursor was put into a quartz boat, which was sent into a tubal resistance furnace. After pure nitrogen gas passed through the furnace at a flow rate of 50 ml·min-1for 30 min, a mixture gas at a ratio of CH4to H24︰1 passed through the furnace for 15 min, and the precursor was reduced and carbonized at 900°C for 3 h under the atmosphere of the mixture gas in the furnace. During this process, the exhaust fume was disposed by passing through 2.0 mol·L-1NaOH solution. After the furnace cooled down to room temperature under the protection of pure nitrogen gas, the quartz boat was drawn out from the furnace to get the final product.

    2.2 Sample characterization

    Figure 1 XRD patterns of the sample

    B—brookite; M—monotungsten carbide; T—tungsten

    Figure 2 SEM image of the sample

    2.3 Electrocatlytic characteristics

    The electrocatalytic characteristic of the sample was examined with an EG&G M273A potentiostat/ galvanostat by a microelectrode at room temperature (298 K), which was stated in detail in reference [24]. A saturated calomel electrode (SCE) was used as the reference electrode and a platinum sheet (1.0 cm2) was used as the counter electrode. Sodium hydroxide (A.R.) and nitrophenol (A.R.) were distilled with deionized water, which was obtained from a Millipore-Milli-Q system before use.

    3 Results and Discussion

    3.1 XRD

    Figure 1 shows XRD patterns of the sample. Ten diffraction peaks, with double diffraction angles (2) around 31.5°, 35.7°, 40.3°, 48.4°, 58.4°, 64.1°, 73.3°, 75.5°, 77.2°and 84.1°, are obvious, and one diffraction peak is weak, with 2value around 25.4°. The weak diffraction peak is assigned to brookite (JCPDS: 29-1360). Diffraction peaks with 2values around 31.5°, 35.7°, 48.4°, 64.1°, 75.5°, 77.2°and 84.1°are assigned to monotungsten carbide (JCDPS: 25-1047). Diffraction peaks with 2values around 40.3°, 58.4°and 73.3°are assigned to tungsten (JCPDS: 04-0806). Thus the sample is composed of monotungsten carbide, tungsten and brookite.

    3.2 SEM

    Figure 2 displays SEM image of the sample. The particles are non-spherical. The diameters of most particles are smaller than 100 nm. Some particles are congregate. The white dots are those particles whose conductivity is not good enough during scanning electron microscope characterization.

    3.3 HRTEM

    Figure 3 shows HRTEM images of the sample. The shape and size are consistent with SEM result. Most particles of the sample display dark crust. In order to see the crust structure more clearly, one selected area, as indicated in Fig. 3 (a), is enlarged and shown in Fig. 3 (b). The crust is composed of irregular crystallites, some of which intercross each other, as shown in the middle part of Fig. 3 (b). The enlarged middle part of Fig. 3 (b) is shown in Fig. 3 (c). Two directions of lattice stripe indicate intercrossing of two particles. The distances between the two lattice stripes are 0.285 nm and 0.252 nm, which are close to the distances of the crystal plane (001) (0.28400 nm) and (100) (0.25180 nm) of monotungsten carbide (JCPDS: 25-1047), respectively. The differences of the distances between the values of JCPDS card and the estimated values of the sample may result from the error of measurement. These results indicate that the crystallite that constructs the dark crust in Fig. 3 (a) can be assigned to monotungsten carbide. Since XRD results show that the sample is composed of monotungsten carbide and titania, the core of the particle should be titania. Fig. 3 (d) shows that titania and monotungsten carbide nanocomposite is of a core-shell structure, with a titania core and monotungsten carbide shell, though the shell is incomplete.

    Figure 3 TEM and HRTEM images of the sample

    Figure 4 EDS result of the sample

    3.4 EDS

    Figure 4 shows EDS patterns of the sample, indicating the peaks of tungsten, titanium, oxygen and carbon elements. Based on this result, the atomic and mass percentages of the above elements are estimated and shown in Table 1. The atomic percentage of W is 27.89%, and that of C is 26.87%. This indicates that the ratio of W to C is larger than 1 and some metal tungsten atoms may exist in the sample. This conclusion is consistent with XRD results. The difference between W atomic percentage and C atomic percentage is only 1.02%. This can explain why the diffraction peaks of self-existent tungsten metal phase can be seen in the XRD patterns, but it is not easy to find the lattice structure of metal tungsten lattice structure in HRTEM images.

    Table 1 Estimated atomic and mass percentages of thesample based on EDS analysis

    Figure 5 Cyclic voltammogram of the microelectrode of different samples in 0.5 mol·L-1sodium hydroxide +0.01 mol·L-1nitrophenol solutions (scan rate: 0.05 V·s-1)

    (1)—WC@TiO2nanocomposite; (2)—hollow mesoporous WC; (3)—WC (200 nm)

    3.5 Electrocatalytic performance

    Figure 5 displays the electrocatalytic activities of WC, hollow mesoporous WC and the sample to nitrophenolin basic solution at room temperature. Nanosized monotungsten carbide (200 nm) is not electrocatalytically active to nitrophenol, without any apparent peak current from-0.5 V to-1.0 V. Its hydrogen generation potential is at-1.1 V (SCE), with a weak peak current of 1.205 μA. Hollow mesoporous WC, prepared according to reference [24], is electrocatalytically active to nitrophenol, with a peak current of 4.058 μA and a peak potential at-0.817 V (SCE). Its hydrogen generation potential is at-1.049 V (SCE) with a current of 4.173 μA. Titania and monotungsten carbide core-shell nanocomposite is electrocatalytically active to nitrophenol, with a peak current of 8.809 μA and a peak potential of-0.988 V (SCE). Its hydrogen generation potential is at-1.19 V (SCE) with a current of 4.884 μA. These results show that the presence of titania in the sample can lower the peak potential of nitrophenol electrocatalysis and its hydrogen generation potential, and increase its peak current of nitrophenol electrocatalysis in basic solution at room temperature. This indicates a synergistic effect of titania and monotungsten carbide in electrocatalysis.

    Table 2 The values of peak currents and potentials of different samples for nitrophenol

    The comparison of electrocatalytic activity of titania and monotungsten carbide core-shell nanocomposite with that of hollow mesoporous monotungsten carbide in Table 2 show that the peak potential and the hydrogen generation potential of the core-shell nanocomposite are more negative than those of hollow mesoporous WC. The peak current and the hydrogen generation current of the core-shell nanocomposite are higher than those of hollow mesoporous WC. These results show that the core-shell nanocomposite has higher overpotential and wider electrochemical window than hollow mesoporous WC in basic environment. Higher overpotential corresponds to more stable electrode at the same potential under redox in electrochemical environment. Wider electrochemical window means that wider potential range of the electrode can be used in electrochemical environment. Thus monotungsten carbide and titania core-shell nanocomposite will be found more applications in electrocatalytic area.

    4 Conclusions

    Based on the above results and discussion, the following conclusions can be drawn.

    (1) Titania and monotungsten carbide core-shell nanocomposite, with an irregular sphere-like morphology, can be prepared by a new approach of spray drying and reduction-carbonization reaction approach.

    (2) The crystal phase of titania and monotungsten carbide core-shell nanocomposite is composed of brookite, tungsten and monotungsten carbide. The core is composed of titania, and the shell is composed of monotungsten carbide mainly.

    (3) Titania and monotungsten carbide core-shell nanocomposite is electrocatalytically active to nitrophenol, with a peak current of 8.809 μA and a peak potential of-0.988 V (SCE), a hydrogen generation potential of-1.19 V (SCE) and a hydrogen generation current of 4.884 μA.

    (4) Titania and monotungsten carbide nanocomposite has higher overpotential and wider electrochemical window than hollow mesoporous WC in basic environment.

    (5) An electrocatalytic synergistic effect exists between titania and monotungsten carbide of core-shell nanocomposite.

    1 B?hm, H., “New non-noble metal anode catalysts for acid fuel cells”,, 227, 484-485(1970).

    2 B?hm, H., Pohl, F.A., “The electrocatalytic property of tungsten carbide”,.., 41, 46-50 (1968).

    3 Baresel, D., Gellert, W., Heidemeyer, J., Scharner, P., “Tungsten carbide as anode material for fuel cells”,...., 10, 194-195 (1971).

    4 Palanker, V.S., Gajyev, R.A., Sokolsky, D.V., “On adsorption and electro-oxidation of some compounds on tungsten carbide; their effect on hydrogen electro-oxidation”,., 22, 133-136 (1977).

    5 Levy, R. B., Boudar, M. T., “Platinum-like behavior of tungsten carbide in surface catalysis”,, 181, 547-548 (1973).

    6 Bozzini, B., De Gaudenzi, G.P., Fanigliulo, M.A.C., “Electrochemical oxidation of WC in acidic sulphate solution”,., 46, 453-469 (2004).

    7 Fleischmann, R., Bohm, H., “Water oxidation on versatile tungsten carbide materials”,., 22, 1123-1128 (1977).

    8 Vidick, B., Lemaitre, J., Delmon, B., “Control of the catalytic activity of tungsten carbides (II) Physicochemical characterizations of tungsten carbides”,.., 99, 428-438 (1986).

    9 Johnson, J.W., Wu, C.L., “The surface property and catalytic activity of tungsten carbide”,..., 109, 531-533 (1971).

    10 Weigert, E.C., Stottlemyer, A.L., Zellner, M.B., Jingguang, G.C., “Tungsten monocarbide as potential replacement of platinum for methanol electrooxidation”,..., 111, 14617-14620 (2007).

    11 Patil, P.R., Pawar, S.H., Patil, P.S., “The electrochromic properties of tungsten oxide thin films deposited by solution thermolysis”,, 136–137, 505-511 (2000).

    12 Ross Jr.,P.N., Macdonald, J., Stonehart, P., “Surface composition of catalytically active tungsten carbide (WC)”,, 63, 450-455 (1975).

    13 Armstrong, R.D., “The crystal structure and catalytic activity of tungsten carbide”,..., 118, 568-571 (1971).

    14 B?hm, H., “Adsorption and anodic oxidation of water on tungsten carbide”,., 15, 1273-1280 (1970).

    15 Diamant, Y., Chappel, S., Chen, S.G., Melamed, O., Zaban, A., “Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode”,, 248, 1271-1276 (2004).

    16 Kambe, S., Nakade, S., Wada, Y., Kitamura, T., Yanagida, S., “Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2mesoporous electrodes”,,12, 723-728 (2002).

    17 Pophal, C., Kameda, F., Hoshino, K., Yoshinaka, S., Segawa, K., “Hydrodesulfurization of dibenzothiophene derivatives over TiO2-Al2O3supported sulfided molybdenum catalyst”,.,39, 21-32 (1997).

    18 Wei, Z.B., Yan, W., Zhang, H., Ren, T., Xin, Q., Li, Z., “Hydrodesulfurization activity of NiMo/TiO2-Al2O3catalysts”,..:., 167, 39-48 (1998).

    19 Segawa, K., Takahashi, K., Satoh, S., “Development of new catalysts for deep hydrodesulfurization of gas oil”,., 63, 123-131 (2000).

    20 Grzechowiak, R.J., Wereszczako-Zielinska, I., Rinkowski, J., Ziolek, M., “Hydrodesulphurisation catalysts supported on alumina-titania”,..:., 250, 95-103 (2003).

    21 Lecrenay, E., Sakanishi, K., Nagamatsu, T., Mochida, I., Suzuka, T., “Hydrodesulfurization activity of CoMo and NiMo supported on Al2O3-TiO2for some model compounds and gas oils”,..:., 18, 325-330 (1998).

    22 Wang, X.J., Ma, C.A., Li, G.H., Zheng, Y.F., “Preparation and electrocatalytic properties of WC/TiO2nanocomposite”,, 67, 367-371 (2009). (in Chinese)

    23 Li, G.H., Wang, D.W., Xu, Z.D., “The Experimental study about the control of TiO2nanopowder crystal phase prepared by the hydrolysis-sediment approach”,, 17, 422-427 (2002). (in Chinese)

    24 Li, G.H., Ma, C.A., Zheng, Y.F., Zhang, W.M., “Preparation and electrocatalytic activity of hollow global tungsten carbide with mesoporosity”,, 85, 234-239 (2005).

    ** To whom correspondence should be addressed. E-mail: nanozjut@zjut.edu.cn

    2010-06-29,

    2010-11-06.

    the National Natural Science Foundation of China (20476097), the Zhejiang Natural Science Foundation (Y4080209,Y406094), the Science Plan of Zhejiang Province (2007F70039) and the Scientific Starting Fund of Zhejiang University of Technology.

    猜你喜歡
    淳安
    共同富裕示范區(qū)建設背景下淳安茶產(chǎn)業(yè)發(fā)展路徑思考
    中國茶葉(2021年12期)2021-12-16 06:25:18
    在淳安獅城
    西湖(2020年3期)2020-04-09 04:51:59
    從“淳安女童失聯(lián)案”看新媒體的悲劇性事件報道
    傳媒評論(2019年9期)2019-11-16 09:25:38
    杭州“擁江發(fā)展” 視野下的區(qū)域產(chǎn)業(yè)協(xié)調研究?
    ——以淳安為例
    漁舟唱晚
    走進淳安,去游千島之湖
    淳安:中國攝影小鎮(zhèn)落戶淳安
    杭州(2017年2期)2017-04-25 02:31:30
    淳安人物類民間故事對淳安文化的影響
    青春歲月(2015年13期)2016-01-14 12:53:23
    淳安:舉辦首屆淳商大會
    杭州(2015年5期)2015-10-24 08:42:07
    浙江省暨杭州市紀念第46個“世界地球日”活動在淳安舉行
    一区二区三区免费毛片| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 99热网站在线观看| 2021天堂中文幕一二区在线观| 亚洲成av人片在线播放无| 亚洲人与动物交配视频| 麻豆国产97在线/欧美| 欧美又色又爽又黄视频| 欧美人与善性xxx| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 麻豆乱淫一区二区| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看 | 天天一区二区日本电影三级| 免费观看人在逋| 大香蕉久久网| av国产久精品久网站免费入址| 色网站视频免费| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 少妇人妻精品综合一区二区| 日韩欧美精品v在线| 精品无人区乱码1区二区| 国产av在哪里看| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 日日干狠狠操夜夜爽| 国产精品.久久久| 日韩高清综合在线| 成年女人看的毛片在线观看| 亚洲欧美日韩高清专用| 亚洲av中文av极速乱| 久热久热在线精品观看| 亚洲综合色惰| 国产淫语在线视频| 国产精品精品国产色婷婷| 黄色配什么色好看| 18禁裸乳无遮挡免费网站照片| 日本黄大片高清| 日韩一区二区三区影片| 日本午夜av视频| av黄色大香蕉| 久久精品综合一区二区三区| 特级一级黄色大片| av国产久精品久网站免费入址| 91久久精品电影网| 女人被狂操c到高潮| 亚洲怡红院男人天堂| 精品久久久噜噜| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 男人的好看免费观看在线视频| 在线观看av片永久免费下载| 国产69精品久久久久777片| 亚洲av成人精品一二三区| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 国产人妻一区二区三区在| 国产真实伦视频高清在线观看| 亚洲国产精品国产精品| 国产成年人精品一区二区| 日韩成人伦理影院| 国产精品久久视频播放| 天天躁夜夜躁狠狠久久av| 日本免费一区二区三区高清不卡| eeuss影院久久| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 久久人妻av系列| 国产毛片a区久久久久| 久久欧美精品欧美久久欧美| 国产一区二区三区av在线| 欧美精品国产亚洲| 美女xxoo啪啪120秒动态图| 久久久久久久久久久免费av| 在线免费十八禁| 亚洲精品成人久久久久久| 精品久久久噜噜| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| 亚洲人成网站在线播| 麻豆国产97在线/欧美| 亚洲av二区三区四区| 精品无人区乱码1区二区| 国产成人91sexporn| av在线亚洲专区| 欧美色视频一区免费| 日韩精品有码人妻一区| 国产精品久久久久久精品电影| 亚洲精品aⅴ在线观看| 看十八女毛片水多多多| 成人欧美大片| 日本三级黄在线观看| 午夜福利在线观看吧| 91狼人影院| 一本一本综合久久| 草草在线视频免费看| 久久久久免费精品人妻一区二区| 日本欧美国产在线视频| 少妇丰满av| 国产伦理片在线播放av一区| 1024手机看黄色片| 精品一区二区免费观看| 1000部很黄的大片| 自拍偷自拍亚洲精品老妇| 我的老师免费观看完整版| 欧美激情久久久久久爽电影| 成人欧美大片| 尤物成人国产欧美一区二区三区| 欧美极品一区二区三区四区| 国产激情偷乱视频一区二区| 91精品一卡2卡3卡4卡| 在线天堂最新版资源| 欧美bdsm另类| 一边亲一边摸免费视频| 大话2 男鬼变身卡| 国产色爽女视频免费观看| 亚洲国产最新在线播放| 欧美bdsm另类| 人妻制服诱惑在线中文字幕| 亚洲一区高清亚洲精品| 亚洲精品国产成人久久av| 边亲边吃奶的免费视频| 亚洲人成网站高清观看| videossex国产| 韩国高清视频一区二区三区| 久久欧美精品欧美久久欧美| 青春草视频在线免费观看| 男插女下体视频免费在线播放| 久久婷婷人人爽人人干人人爱| 不卡视频在线观看欧美| a级毛色黄片| 狂野欧美激情性xxxx在线观看| av在线蜜桃| 欧美97在线视频| 精品欧美国产一区二区三| 免费电影在线观看免费观看| 波野结衣二区三区在线| 亚洲av一区综合| 只有这里有精品99| 亚洲无线观看免费| 久久精品国产亚洲网站| 国产精品爽爽va在线观看网站| 欧美一区二区精品小视频在线| 亚洲在线观看片| 国产精华一区二区三区| 日日撸夜夜添| 人体艺术视频欧美日本| 99久久成人亚洲精品观看| 亚洲精品自拍成人| 久久精品国产亚洲网站| 五月玫瑰六月丁香| 国产免费男女视频| 久久精品久久久久久久性| 视频中文字幕在线观看| 深夜a级毛片| 亚洲国产精品合色在线| 中文字幕免费在线视频6| 久久久精品大字幕| 欧美激情在线99| 亚洲自拍偷在线| 国产伦在线观看视频一区| 国产一级毛片在线| 欧美激情在线99| 婷婷六月久久综合丁香| 久久久久久久久久久免费av| 亚洲久久久久久中文字幕| 美女内射精品一级片tv| 免费av毛片视频| 中文亚洲av片在线观看爽| 国产一区有黄有色的免费视频 | 波野结衣二区三区在线| 久久精品国产亚洲网站| 久久这里只有精品中国| 在线观看66精品国产| 中文在线观看免费www的网站| 男插女下体视频免费在线播放| 长腿黑丝高跟| 又粗又爽又猛毛片免费看| 欧美高清成人免费视频www| 春色校园在线视频观看| 亚洲av成人av| 久久久亚洲精品成人影院| 久久亚洲国产成人精品v| 欧美一区二区精品小视频在线| 五月伊人婷婷丁香| 欧美bdsm另类| 亚洲综合色惰| 日韩三级伦理在线观看| 床上黄色一级片| 男人的好看免费观看在线视频| 九色成人免费人妻av| 精华霜和精华液先用哪个| 精品国产露脸久久av麻豆 | 亚洲最大成人av| 少妇丰满av| 国产成人精品久久久久久| 小蜜桃在线观看免费完整版高清| 女人被狂操c到高潮| 一区二区三区免费毛片| 国产av不卡久久| 亚洲va在线va天堂va国产| 一级黄片播放器| 一级av片app| 国产精品永久免费网站| 中文字幕人妻熟人妻熟丝袜美| 国产成人a区在线观看| 国产精品电影一区二区三区| 国产熟女欧美一区二区| 日韩一本色道免费dvd| 黄色日韩在线| 国产又色又爽无遮挡免| 别揉我奶头 嗯啊视频| 免费黄色在线免费观看| 亚洲国产精品成人综合色| 亚洲18禁久久av| 深夜a级毛片| 大话2 男鬼变身卡| 日韩国内少妇激情av| 国产成人a区在线观看| 久久精品国产99精品国产亚洲性色| 日韩欧美精品免费久久| 淫秽高清视频在线观看| 国产精品av视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 人妻制服诱惑在线中文字幕| 成人美女网站在线观看视频| 日本黄色片子视频| 午夜老司机福利剧场| 男女边吃奶边做爰视频| 久久久久精品久久久久真实原创| 我的老师免费观看完整版| 久久久久国产网址| 国产伦精品一区二区三区四那| 如何舔出高潮| 能在线免费观看的黄片| 亚洲婷婷狠狠爱综合网| 一级毛片电影观看 | 久久久精品94久久精品| 国产精品av视频在线免费观看| 搡女人真爽免费视频火全软件| 一夜夜www| 亚洲久久久久久中文字幕| 国产老妇伦熟女老妇高清| 亚洲av熟女| 美女黄网站色视频| 成年版毛片免费区| 少妇的逼水好多| 亚洲人成网站高清观看| 晚上一个人看的免费电影| 熟女人妻精品中文字幕| 一区二区三区免费毛片| 在线观看美女被高潮喷水网站| 亚洲国产欧洲综合997久久,| 少妇丰满av| 人人妻人人澡欧美一区二区| 午夜福利在线观看免费完整高清在| 伊人久久精品亚洲午夜| 亚洲av中文字字幕乱码综合| 天堂影院成人在线观看| 一级av片app| 少妇人妻精品综合一区二区| 春色校园在线视频观看| 少妇猛男粗大的猛烈进出视频 | 午夜激情欧美在线| 禁无遮挡网站| 一个人观看的视频www高清免费观看| 97在线视频观看| 国产一区亚洲一区在线观看| 男女下面进入的视频免费午夜| 亚洲精品,欧美精品| 国产乱人视频| 亚洲欧美精品自产自拍| 成年版毛片免费区| 久久精品国产亚洲av涩爱| 国产在线男女| 99热这里只有是精品50| 日本三级黄在线观看| 18禁动态无遮挡网站| 久久久久性生活片| 国产精品美女特级片免费视频播放器| 最近手机中文字幕大全| 国产精品久久久久久av不卡| 观看美女的网站| 一级二级三级毛片免费看| 成年女人永久免费观看视频| 国产一区亚洲一区在线观看| 亚洲av.av天堂| 热99在线观看视频| 亚洲成人中文字幕在线播放| 日本五十路高清| 亚洲精品乱码久久久久久按摩| 永久免费av网站大全| 久久精品91蜜桃| 中文亚洲av片在线观看爽| 人人妻人人澡人人爽人人夜夜 | 国语对白做爰xxxⅹ性视频网站| 亚洲五月天丁香| 久久6这里有精品| av在线播放精品| 岛国在线免费视频观看| 搡老妇女老女人老熟妇| 校园人妻丝袜中文字幕| 18禁在线播放成人免费| 亚洲最大成人av| 中国国产av一级| 欧美性感艳星| 国产精品精品国产色婷婷| 中文字幕熟女人妻在线| 一区二区三区乱码不卡18| 亚洲在线观看片| 日本黄色视频三级网站网址| 国产一区二区在线观看日韩| 99在线人妻在线中文字幕| 六月丁香七月| 如何舔出高潮| 亚洲电影在线观看av| 国产一区二区在线观看日韩| 六月丁香七月| 久久久色成人| 韩国av在线不卡| 男人狂女人下面高潮的视频| 成年av动漫网址| 久久久a久久爽久久v久久| 99热精品在线国产| kizo精华| 日韩,欧美,国产一区二区三区 | 国产精品三级大全| 国产亚洲最大av| 视频中文字幕在线观看| 丝袜美腿在线中文| 亚洲综合精品二区| 成年av动漫网址| 免费av不卡在线播放| www.色视频.com| 一边亲一边摸免费视频| 久久韩国三级中文字幕| 免费观看的影片在线观看| 99热这里只有精品一区| 久久精品国产亚洲av涩爱| 国产亚洲5aaaaa淫片| 一个人观看的视频www高清免费观看| 性色avwww在线观看| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 欧美成人午夜免费资源| 国产成人精品一,二区| 18+在线观看网站| 看免费成人av毛片| 夫妻性生交免费视频一级片| 国产成人精品久久久久久| 午夜日本视频在线| 看非洲黑人一级黄片| 99久久中文字幕三级久久日本| 国产精品三级大全| 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 国产成人aa在线观看| 极品教师在线视频| 亚洲人成网站高清观看| 亚洲成av人片在线播放无| 亚洲色图av天堂| 成人毛片60女人毛片免费| 国产三级在线视频| 热99在线观看视频| 99在线人妻在线中文字幕| 免费观看人在逋| 男插女下体视频免费在线播放| 免费黄色在线免费观看| 成年av动漫网址| 美女被艹到高潮喷水动态| 久久久久久久久久成人| 九九在线视频观看精品| 日日啪夜夜撸| www.色视频.com| 嫩草影院精品99| 一级毛片我不卡| 一级黄片播放器| 久久精品国产鲁丝片午夜精品| 看片在线看免费视频| 国产精品.久久久| 在线观看av片永久免费下载| 色噜噜av男人的天堂激情| 中文精品一卡2卡3卡4更新| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 美女高潮的动态| 亚洲在线自拍视频| 亚洲最大成人中文| 午夜福利网站1000一区二区三区| av免费观看日本| 麻豆国产97在线/欧美| 毛片一级片免费看久久久久| 国产精品美女特级片免费视频播放器| 欧美成人免费av一区二区三区| 免费观看精品视频网站| 大香蕉久久网| 亚洲精品乱码久久久久久按摩| 久久婷婷人人爽人人干人人爱| 亚洲最大成人av| 国内精品宾馆在线| 高清在线视频一区二区三区 | 亚洲欧美成人综合另类久久久 | 内地一区二区视频在线| 欧美变态另类bdsm刘玥| 亚洲成人av在线免费| 日本与韩国留学比较| 欧美精品国产亚洲| 毛片一级片免费看久久久久| 久久精品国产亚洲网站| 亚洲人成网站高清观看| 黄色一级大片看看| 波多野结衣高清无吗| 日日撸夜夜添| 国产高清有码在线观看视频| 少妇熟女欧美另类| 岛国毛片在线播放| 精品免费久久久久久久清纯| 国产亚洲精品av在线| 男女边吃奶边做爰视频| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 久久精品国产99精品国产亚洲性色| 亚洲精品久久久久久婷婷小说 | 99九九线精品视频在线观看视频| 最近手机中文字幕大全| 亚洲美女搞黄在线观看| 日韩国内少妇激情av| 日日啪夜夜撸| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 国产免费男女视频| 神马国产精品三级电影在线观看| 国产男人的电影天堂91| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 国产伦精品一区二区三区四那| 日本-黄色视频高清免费观看| 少妇丰满av| 狠狠狠狠99中文字幕| 日本黄色片子视频| kizo精华| 男人舔奶头视频| АⅤ资源中文在线天堂| 免费观看的影片在线观看| 级片在线观看| 国产高清不卡午夜福利| 免费播放大片免费观看视频在线观看 | 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 99久国产av精品国产电影| 观看免费一级毛片| 插逼视频在线观看| 99久久中文字幕三级久久日本| 欧美成人一区二区免费高清观看| 免费黄网站久久成人精品| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 伦精品一区二区三区| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| av在线播放精品| 国产精品永久免费网站| 插逼视频在线观看| 久久亚洲精品不卡| 久久久精品94久久精品| 插阴视频在线观看视频| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 亚洲一级一片aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 一级黄色大片毛片| 亚洲av男天堂| 国内精品宾馆在线| 免费观看精品视频网站| 男的添女的下面高潮视频| 97在线视频观看| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品成人久久久久久| 日本欧美国产在线视频| 伦精品一区二区三区| 日韩三级伦理在线观看| 亚洲欧美精品综合久久99| 纵有疾风起免费观看全集完整版 | 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区三区| 超碰97精品在线观看| 色综合色国产| 日韩三级伦理在线观看| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 26uuu在线亚洲综合色| 丰满少妇做爰视频| 亚洲成色77777| 亚洲国产最新在线播放| 亚洲,欧美,日韩| 精品一区二区免费观看| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| 国产免费视频播放在线视频 | 国产麻豆成人av免费视频| 1000部很黄的大片| 日本一二三区视频观看| 精品国产一区二区三区久久久樱花 | 久久热精品热| 欧美性感艳星| 国产久久久一区二区三区| 日本黄大片高清| 深爱激情五月婷婷| 久久久久久久久久久丰满| 身体一侧抽搐| 偷拍熟女少妇极品色| 久久精品国产亚洲av天美| 国产成人精品久久久久久| 听说在线观看完整版免费高清| 国产精品久久电影中文字幕| 大话2 男鬼变身卡| 我要搜黄色片| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 中文在线观看免费www的网站| 男女啪啪激烈高潮av片| 99国产精品一区二区蜜桃av| 黄色欧美视频在线观看| 精品人妻视频免费看| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| www.色视频.com| 精品无人区乱码1区二区| 波野结衣二区三区在线| 成年女人永久免费观看视频| 午夜精品国产一区二区电影 | 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 天堂网av新在线| 日本午夜av视频| 国产精品久久久久久精品电影小说 | 麻豆国产97在线/欧美| 中文字幕免费在线视频6| 午夜福利高清视频| 亚洲高清免费不卡视频| 久久久久久久久中文| 久久久久久伊人网av| 建设人人有责人人尽责人人享有的 | 久久99蜜桃精品久久| 99久久精品国产国产毛片| 国产探花极品一区二区| 黑人高潮一二区| 干丝袜人妻中文字幕| 午夜福利在线观看免费完整高清在| 一个人免费在线观看电影| 亚洲在线自拍视频| 国产不卡一卡二| 国产麻豆成人av免费视频| 美女脱内裤让男人舔精品视频| 国产精品女同一区二区软件| 一级爰片在线观看| 26uuu在线亚洲综合色| 精品无人区乱码1区二区| 亚洲国产高清在线一区二区三| 国产亚洲av片在线观看秒播厂 | 精品99又大又爽又粗少妇毛片| 天天躁夜夜躁狠狠久久av| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 直男gayav资源| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 欧美激情在线99| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 精品久久久久久久久久久久久| 精品人妻视频免费看| 三级毛片av免费| 两个人的视频大全免费| av国产久精品久网站免费入址| 日韩国内少妇激情av| 中国国产av一级| 99久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产不卡一卡二| 国产69精品久久久久777片| 久久久亚洲精品成人影院| 毛片女人毛片| 插逼视频在线观看| 嫩草影院入口| www.av在线官网国产| 免费观看人在逋| 97超碰精品成人国产| 精品久久久久久久久av| 亚洲人成网站高清观看| 亚洲av.av天堂| 国产在线一区二区三区精 | 国产精品一区二区三区四区久久| 高清在线视频一区二区三区 |