• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation of Eu3+ Using a Novel Dispersion Combined LiquidMembrane with P507 in Kerosene as the Carrier*

    2011-05-15 08:32:06PEILiang裴亮WANGLiming王理明andFUXinglong付興隆
    關(guān)鍵詞:興隆

    PEI Liang (裴亮), WANG Liming (王理明) and FU Xinglong (付興隆)

    ?

    Separation of Eu3+Using a Novel Dispersion Combined LiquidMembrane with P507 in Kerosene as the Carrier*

    PEI Liang (裴亮)1,2,**, WANG Liming (王理明)2and FU Xinglong (付興隆)2

    1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2Faculty of Water Resources and Hydraulic Power, Xi’an University of Technology, Xi’an 710048, China

    The separation of Eu3+is studied with a dispersion combined liquid membrane (DCLM), in which polyvinylidene fluoride membrane (PVDF) is used as the liquid membrane support, dispersion solution containing HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. The effects of pH value, initial concentration of Eu3+and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the separation are investigated. The optimum condition for separation of Eu3+is that concentration of HCl solution is 4.0 mol·L-1, concentration of carrier is 0.16 mol·L-1, and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase. The ionic strength has no significant effect on separation of Eu3+. Under the optimum condition, when the initial concentration of Eu3+is 0.8×10-4mol·L-1, the separation percentage of Eu3+is 95.3% during the separation time of 130 min. The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Eu3+in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10-7m2·s-1and 36.6 μm, respectively. The results obtained are in good agreement with literature data.

    dispersion combined liquid membrane, 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester, separation, europium3+

    1 INTRODUCTION

    Liquid membranes (LMs) involve extraction and stripping processes simultaneously, and they have benefits of nonequilibrium mass transfer and up-hill effect, where the solute can move from low to high concentration solution [1-4]. The main liquid membrane systems include emulsion liquid membrane (ELM) [5], supported liquid membrane (SLM) [6], bulk liquid membrane (BLM), flowing liquid membrane (FLM) [7], electrostatic pseudo liquid membrane (EPLM) [2], supported emulsion liquid membrane (SELM) [8, 9], hollow fiber liquid membrane (HFLM) [10], supported liquid membrane with stripping dispersion (SLM-SD) [11, 12],. The potential advantages of LM techniques, over traditional separation techniques and solid membrane techniques, are low capital and operating costs, low energy and extractant consumption, high concentration factors and high fluxes. However, LM techniques have not been adopted for large-scale industrial processes [13-19], primarily due to the lack of longtime stability, difficult operation and larger membrane resistance,[20]. For example, SLM will lose the carrier because of the turbulent shear force of liquid in both phases and concentration difference between organic phase and aqueous phase, and the operation of ELM involves the complexity of emulsification and de-emulsification techniques [10-12].

    A new liquid membrane technique, named dispersion combined liquid membrane (DCLM), has been proposed [21]. The DCLM technique is based upon surface renewal and diffusion theory, with the advantages of fiber membrane extraction, liquid film permeation and most of other liquid membrane systems, resulting in more stable membrane, lower costs, simpler operation, extremely efficient stripping of target species from the organic phase with high flux, and high concentration of target species in the stripping solution. However, more studies are needed for the application of DCLM in industry [22, 23]. The scale-up for the new liquid membrane configuration requires a complete understanding of the efficiency parameters, reported in such a way that a concise and global insight of the separation characteristics of a given system can be easily drawn. For example, the study on the separation of a single cation and a new permeability coefficient equation are needed, and more data for the separation of two or more competitive solutes are required for some applications, such as waste liquid of metallurgical industry.

    The present study is concerned with the technical feasibility for separation of metal ions by DCLM. Eu3+is playing an increasingly important role in high technology. We choose DCLM to separate Eu3+. The effects of various experimental parameters on separation of rare earth Eu3+ions are investigated. The separation of Eu3+is carried out with a DCLM, which consists of polyvinylidene fluoride membrane (PVDF) as the support, dispersion solution concluding HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. Although the separation of metal ions by SLM containing the same carrier (P507) has been extensively studied, there is little research by DCLM. The effects of pH value, initial concentration of Eu3+and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of P507, and different stripping agents in the dispersion phase on separation of Eu3+are investigated. The results with DCLM are compared to those with conventional SLM. A kinetic equation for DCLM process is derived from the law of mass diffusion and the theory of interface chemistry and tested.

    2 EXPERIMENTAL

    2.1 Reagent

    All the reagents such as Eu(CH3COO)3·4H2O, arsenazo III(C22H18As2O14N4S2), CH3COONa, HCl, and CH3COOH used in the present work were of analytical grade. 2-ethyl hexyl phosphonic acid-mono-2- ethyl hexyl ester (P507) is a commercial extractant (purity>95%) and used without any further purification. Kerosene was washed with concentrated sulfuric acid and distilled at 180-220°C.

    2.2 Preparation of solutions

    Eu3+stock solution was prepared by dissolving Eu(CH3COO)3·4H2O in 1 mol·L-1HCl solution, and analyzed by arsenazo III as the chromogenic agent. For Eu3+feed solution, a certain amount of the Eu3+stock solution was diluted with 0.01 mol·L-1HCl solution after adding a calculated amount of CH3COONa and CH3COOH. Arsenazo III stock solution was prepared by dissolving the powder of arsenazo III in deionized water. To obtain the stripping solution, the required amount of HCl was solved and diluted with deionized water to a certain concentration. P507 solution was obtained by diluting a certain amount of extractant with kerosene.

    2.3 Experimental procedure

    The separation with the DCLM was determined as follows. The experiments were accomplished at (25±1)°C in a simple diffusion cell, which consists of two-compartment perspex half-cells, each with effective volume of 70 ml. The membrane impregnated with P507 dissolved in kerosene was clamped between the two half-cells. A microporous PVDF membrane was used as the solid support, the thickness of which is 65 μm, with nominal porosity of 75%, tortuosity of 1.67 and effective area of 10.5 cm2. The feed phase (50 ml) consisted of Eu3+and buffer solution was poured into the perspex half-cell. The mixed dispersion phase consisted of certain volume ratio of the membrane solution containing the carrier P507 to HCl stripping solution was placed into another half-cell. The stability of the SLM was ensured by a modified SLM with stripping dispersion phase, where the aqueous stripping solution was dispersed in the organic membrane solution in a mixer. The stripping dispersion formed in the mixer went to the membrane module to provide a constant supply of the organic solution to the membrane pores. Samples of the feed phase were taken at intervals. The stirred dispersion phase were allowed to stand until the phase separation occurred, and then the Eu3+sample was collected from the dispersion phase. Samples containing Eu3+in the feed phase were analyzed for ion concentration with a UV-1200 spectrophotometer using arsenazo III as the chromogenic agent (under the detection wave length 652 nm). Fig. 1 is the experimental installation of the DCLM process.

    Figure 1 Experimental installation of DCLM process

    1—feed pool; 2—PVDF membrane; 3—feed phase; 4—dispersion pool; 5—membrane solution; 6—stripping phase; 5+6—dispersion phase; 7—magnetic stirrer apparatus

    2.4 Experimental principle and theoretical analysis

    Figure 2 shows the principle of DCLM process, in which concentration change and separation processes are depicted, where subscripts m, f and s stand for membrane phase, feed solution, and dispersion phase, respectively. The co-separation involves following steps.

    (a) Eu3+diffuses from the feed phase to interface A.

    (b) In the membrane phase near interface A, the extraction of Eu3+from the feed solution with carrier P507 [such as (HR)2] in kerosene can be expressed as [24, 25]:

    where1and-1are the reaction percentage constants of the reversible reaction at the interface between the feed phase and membrane phase.

    Figure 2 The principle of DCLM process

    (c) The metal-complex [EuR3(HR)3] diffuses through the membrane A-B.

    (d) In the stripping side near interface B, EuR3(HR)3dissolves in the membrane solution and Eu3+are stripped by stripping agent. At the drop interface, Eu3+in the organic phase interchanges H+in the stripping phase, then Eu3+diffuses to the bulk of the stripping phase and the extractant is regenerated. The stripping reaction can be written as

    where2and-2are the reaction rate constant of the reversible reaction at interface B.

    (e) Carrier P507 returns from interface B to interface A.

    The equation for permeability coefficient can be defined as [26]

    We define

    so that Eq. (1) is expressed as

    In previous study, we obtained [26]

    3 RESULTS AND DISCUSSION

    3.1 Effect of volume ratio of membrane solution to stripping solution

    The effect of volume ratio of membrane solution to stripping solution in the dispersion phase on separation of Eu3+is shown in Fig. 3. The volume ratio is increased from 10︰50 to 50︰10. Volume ratio 50︰10 is better.

    Figure 3 Effect of volume ratio of membrane solution to stripping solution on separation of Eu3+

    (pH in feed phase: 4.0, initial concentration of Eu3+: 1.0×10-4mol·L-1, concentration of HCl solution in dispersion phase: 4.0 mol·L-1, concentration of P507: 0.16 mol·L-1)

    ■?10︰50; ▲?20︰40; ×?30︰30; □?40︰20;◆?50︰10

    At ratios of 50︰10, 40︰20 and 30︰30, the separation percentage of Eu3+are 83.5%, 81.5% and 81% respectively. These separation percentages are satisfactory, so we choose the ratio 30︰30 during the following experiments.

    3.2 Effect of concentration of HCl solution in the dispersion phase

    The effect of concentration of HCl solution in the dispersion phase on separation of Eu3+is shown in Fig. 4. As the acid concentration increases, the separation percentage increases. At the concentration of 5.0 and 4.0 mol·L-1, the separation percentages of Eu3+are 82.5% and 81%, respectively. The increasing of concentration of HCl solution from 2.0 mol·L-1to 3.0 mol·L-1has no significant effect on separation percentage of Eu3+, and it is less than 70%, because the number of Eu3+complex and the concentration of membrane solution which separation through the membrane per unit area of the membrane per unit time are definite. However, under the condition of 6.0 mol·L-1HCl solution, the separation percentage is a little lower than 5.0 mol·L-1and 4.0 mol·L-1, due to higher concentration of HCl solution resulting in a large number of volatilization of HCl during a certain time. The concentration of HCl solution 4.0 mol·L-1in the dispersion phase can be chosen during the following experiments.

    Figure 4 Effect of concentration of HCl solution on separation of Eu3+

    (pH in feed phase: 4.0, initial concentration of Eu3+: 1.0×10-4mol·L-1, volume ratio of membrane solution to stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    concentration/mol·L-1: ■?2; ▲?3; ×?4; □?5;◆?6

    3.3 Effect of pH in the feed phase

    Based on mechanism of mass transfer process, the concentration difference between feed phase and dispersion phase is the driving power of mass transfer process. So in the feed phase the lower the H+concentration is, the stronger the driving power of mass transfer process will be. Stronger power will promote the separation percentage of Eu3+. Equally, the greater the pH value in the feed phase is, the higher the separation percentage of Eu3+is. The effect of pH in the feed phase on separation of Eu3+is studied in the pH range of 3.3 to 4.6, which is adjusted with an HAc-NaAc buffer solution. Initial concentration of Eu3+in the feed phase is 1.0×10-4mol·L-1. The results are shown in the Fig. 5. The separation percentage of Eu3+increases when the pH in the feed phase increased from 3.3 to 4.6, and a maximum separation percentage observed at pH 4.2 is 90.8%. Above the pH of 4.2 in the feed phase, the separation percentage of Eu3+decreases to 86%. When pH value was higher than 4.6, hydroxy complex of Eu3+was formed in the feed phase and the separation percentage of Eu3+decreased. Contrast to the previous cases, the literature [28] suggested the influence of pH on distribution coefficient of extraction process. It is large because the separation process is mainly governed by the driving power of mass transfer caused by the distribution equilibrium, when the renewal effect of the liquid membrane and the diffusion mobility of Eu3+ions are determined under specific experimental conditions [29, 30]. The pH of 4.2 as the optimum pH condition in the feed phase was chosen during the following experiments.

    Figure 5 Effect of pH in the feed phase on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, initial concentration of Eu3+: 1.0×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    pH: ■?3.3; ▲?3.6; ×?4.0; □?4.2;◆?4.6

    3.4 Effect of initial concentration of Eu3+ in the feed phase

    Effect of initial concentration of Eu3+on separation percentage of Eu3+is studied in the Eu3+concentration range from 0.16×10-4mol·L-1to 1.50×10-4mol·L-1. The results obtained are presented in Fig. 6. With the increasing of initial concentration of Eu3+in the feed phase from 0.16×10-4mol·L-1to 1.50×10-4mol·L-1, the separation percentage of Eu3+decreased during the same time. This is because the number of P507 is definite through the membrane when the interface between the feed phase and the membrane phase is definite. That is to say, the number of Eu3+separated is definite in this separation process. When the Eu3+concentration is 0.8×10-4mol·L-1, 1.0×10-4mol·L-1, and 1.5×10-4mol·L-1, the separation percentage is up to 95.3%, 90.8% and 73.1% in 130 min, respectively. Further more, the separation percentage is up to 97.3% in 100 min, when initial concentration of Eu3+is adjusted to 0.16×10-4mol·L-1, and after 100 min Eu3+is hardly determined, because the concentration of Eu3+is too low to determine, that is to say the Eu3+is exhausted in the feed phase and concentration of Eu3+is below the analytical determination limits.

    Figure 6 Effect of initial concentrations of Eu3+on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    concentration/mol·L-1: ■?0.16×10-4; ▲?0.50×10-4; ×?0.80×10-4;□?1.00×10-4;◆?1.50×10-4

    3.5 Effect of different stripping agents on separation of Eu3+

    The effects of different stripping agents in the dispersion phase on separation of Eu3+are studied. The effect of different stripping agents in the dispersion phase on the separation percentage of Eu3+is shown in Fig. 7. Using hydrochloric acid (HCl) 4 mol·L-1, sulphuric acid (H2SO4) 2 mol·L-1and nitric acid (HNO3) 4 mol·L-1as the stripping agent respectively, it was found that hydrochloric acid is the most efficient stripping agent in this investigation. Under the conditions of hydrochloric acid solution, sulphuric acid solution and nitric acid solution, the separation percentage of Eu3+is up to 95.3%, 92% and 82% respectively. During the following experiment we have still chose the hydrochloric acid as the stripping agent.

    3.6 Effect of concentration of P507 on separation of Eu3+

    Concentration of P507 in the membrane phase and dispersion phase also plays a significant role in separation of Eu3+. Effect of concentration of P507 on separation percentage of Eu3+is studied in the P507 concentration range from 0.036 mol·L-1to 0.23 mol·L-1. The results are shown in the Fig. 8. With the increasing of concentration of P507 in the membrane phase from 0.036 mol·L-1to 0.23 mol·L-1, the separation percentage of Eu3+increases, however, when concentration of P507 increases to 0.23 mol·L-1from 0.16 mol·L-1, the increasing of separation percentage of Eu3+is near. So 0.16 mol·L-1can be chosen as the optimum concentration of carrier.

    Figure 8 Effect of concentration of P507 on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30)

    concentration/mol·L-1: ■?0.016; ▲?0.065; ×?0.100; □?0.160;◆?0.230

    3.7 Effect of ionic strength in the feed phase

    Above experiments, we did not consider the influence of ionic strength. Under the optimum condition, the effect of ionic strength in the feed phase on separation percentage of Eu3+is studied in this section under the same concentration of Eu3+0.8×10-4mol·L-1.The reagent KNO3was used to adjust the ionic strength to 0.5, 1.0, 1.5 and 2.0 mol·L-1respectively. The results are shown in Fig. 9. It indicates that the ionic strength has not influence on the separation percentage of Eu3+.

    4 KINETIC ANALYSIS

    Constructing based on the data of effect of pH in the feed phase, and the relationship developed between 1/cand [H+]3[Eq. (4)], When concentration of carrier is definite.

    Figure 9 Effect of ionic strengths on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    Figure 7 Effect of different stripping agents on separation of Eu3+

    (concentration of HCl solution in dispersion phase: 4.0 mol·L-1, pH in feed phase: 4.2, initial concentration of Eu3+: 0.8×10-4mol·L-1, volume ratio of membrane solution and stripping solution in the dispersion phase: 30︰30, concentration of P507: 0.16 mol·L-1)

    ■?hydrochloric acid (4 mol·L-1); ▲?sulphuric acid (2 mol·L-1); ×?nitric acid (4 mol·L-1)

    It indicates that the relationship between 1/cand [H+]3is linear (Fig. 10). The value of2is 0.998, which is in good agreement with the theory from Eq. (4). The slope and intercept of the line are 2.3815×1015s·L4·m-1·mol-4and 6.0998×104s·m-1. The thickness of diffusion layerf, which is obtained by using diffusion coefficient of Eu3+in the aqueous solution (6.0×10-10m2·s-1) [27, 31] is thatff·f3.660×10-5m36.6 μm. Then the diffusion coefficientin the membrane, obtained by Eqs. (3) and (4), is thatm2·s-1.

    Figure 10 Comparison between experimental and theoretical (I)

    When+concentration in the feed phase is set, the effect of concentration of carrier on 1/cis studied. The results can be shown in Fig. 11. The value of2is 0.9924, which is in good agreement with the Eq. (4). In the same way, another kinetic equation can be developed as below:

    Figure 11 Comparison between experimental and theoretical

    5 Conclusions

    Optimum separation condition of Eu3+in the DCLM system is that the concentration of HCl solution is 4.0 mol·L-1, volume ratio of membrane solution and stripping solution is 30︰30, the concentration of P507 is 0.16 mol·L-1in the dispersion phase, pH value is 4.2 in the feed phase. When initial concentration of Eu3+is 0.8×10-4mol·L-1, the separation effect of Eu3+is very obvious in the optimum condition and the separation percentage of Eu3+is up to 95.3% during the separation time of 130 min.

    DCLM, owing to a large number of membrane solution is used in the dispersion phase, can supply the losing carrier of supported liquid membrane. As a result, the separation percentage of Eu3+increases, the stability of membrane is enhanced, and the life span of the membrane is extended.

    NOMENCLATURE

    surface area of membrane

    fdiffusion coefficient of the metal ion in feed phase, m2·s-1

    fthickness of diffusion layer between the feed phase and membrane phase, m

    mthickness of the membrane, m

    [H+] concentration of H+, mol·L-1

    [HR] concentration of carrier P507, mol·L-1

    1forward reaction rate constant at the left interface of the membrane

    -1backward reaction rate constant at the left interface of the membrane

    2forward reaction rate constant at the right interface of the membrane

    -2backward reaction rate constant at the right interface of the membrane

    exextraction equilibrium constant

    cpermeability coefficient of metal ion, m·s-1

    fvolume of feed phase

    fseparation resistance due to diffusion by aqueous feed boundry layer, s·m-1

    mseparation resistance due to diffusion through the membrane, s·m-1

    porosity of the membrane

    tortuosity of the membrane

    Subscripts

    f feed phase

    m membrane phase

    s stripping phase

    1 Franken, T., “Liquid membranes-academic exercise or industrial separation proces”,.., 85, 6-10 (1997).

    2 Gu, Z.M., Wu, Q.F., Zheng, Z.X., Li, Z.Q., Jiang, Y.L., Tang C.J., Lin, P.G., “Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane”,..., 93, 137-147 (1994).

    3 Gaikwad, A.G., “Synergetic separation of europium through a contained supported liquid membrane using trioctylamine and tributyl phosphate as carriers”,, 63, 917-926 (2004).

    4 Zhang, B.C., Gozzelino, G., Baldi, G., “State of art of the research on supported liquid membrane”,..., 20, 46-54 (2000).

    5 Li, Q.M., Liu, Q., Li, K.A., Tong, S.Y., “Separation study of cadmium through an emulsion liquid membrane”, Talanta, 44, 657-662 (1997).

    6 Bloch, R., Finkelstein, A., “Metal ion separation by dialysis through solvent membrane”,....., 6, 231-237 (1967).

    7 Teramoto, M., Matsuyama, H., Yamashiro, T., Okmoto, S., “Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier”,..., 45 (3), 115-136 (1989).

    8 Fouad, E.A., Bart, H.J., “Emulsion liquid membrane extraction of zinc by a hollow-fiber contact”,..., 307, 156-168 (2008).

    9 Sonawane, J.V., Pabby, A.K., Sastre, A.M., “Au(I) extraction by LIX-79/-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique”,..., 300, 147-155 (2007).

    10 Gabelman, A., Hwang, S.T., “Hollow fiber membrane contactors”,..., 159, 61-106 (1999).

    11 Basualto, C., Marchese, J., Valenzuela, F., Acosta, A., “Extraction of molybdenum by a supported liquid membrane method”,, 59, 999-1007 (2003).

    12 Ho, W.S.W., Wang, B., “Strontium removal by new alkyl phenylphosphonic acids in supported liquid membranes with strip dispersion”,...., 41, 381-388 (2002).

    13 Danesi, P.R., Reichley, Y.L., Rickert, P.G., “Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water separation on the long term stability of the membrane”,..., 31, 117-145 (1987).

    14 Gu, Z.M., “State of the art and recent progress of liquid membrane separation process”,..., 23, 214-223 (2003).

    15 Lin, C., He, G.H., Chen G.H., Tu, Z.H., “Stability of water-in-oil emulsion and its liquid membrane”,....., 18, 224-230 (2004).

    16 Neplenbroek, A.M., Bargeman, D., Smolders, C.A., “Supported liquid membranes: instability effects”,..., 67, 121-132 (1992).

    17 Neplenbroek, A.M., Bargeman, D., Smolders, C.A., “Mechanism of supported liquid membranes degradation: emulsion formation”,..., 67, 133-148 (1992).

    18 Bechiri, O., Ismail, F., Abbessi, M., Samar, M.E.H., “Stability of the emulsion (W/O): application to the extraction of a dawson type heteropolyanion complex in aqueous solution”,..., 52, 895-902 (2008) .

    19 Zha, F.F., Fane, A.G., Fell, C.J.D., “Effect of surface tension gradients on stability of supported liquid membranes”,..., 107, 75-86 (1995).

    20 Ren, Z.Q., Zhang, W.D., Liu, Y.M., Dai, Y., Cui, C.H., “New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater”,..., 62, 6090-6101 (2007).

    21 He, D.S., Luo, X.J., Yang, C.M., Ma, M., Wan, Y., “Study of transport and separation of Zn(II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier”,, 194, 40-51 (2006).

    22 Pei, L., Yao, B., Zhang, C., “Transport of Tm(III) through dispersion supported liquid membrane containing PC-88A in kerosene as the carrier”,..., 65 (2), 220-227 (2009).

    23 Pei, L., Yao, B., Fu, X., “Study on transport of Dy(III) by dispersion supported liquid membrane”,.., 27 (3), 447-456 (2009).

    24 Kubota, F., Goto, M., Nakashio, F., “Extraction of earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase”,...., 11, 437-453 (1993).

    25 Choi, K.S., Lee, C.H., Kim, J.G., “Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP-AES analysi”,, 71, 662-667 (2007).

    26 Pei, L., Yao, B., Fu, X., Wang, L., “La(III) transport in dispersion supported liquid membrane including PC-88A as the carrier and HCl solution as the stripping solution”,...., 8 (6), 1041-1050 (2008).

    27 Danesi, P.R., Vandegrift, G.F., ”Kinetics and mechanism of the interfacial mass transfer of Eu3+and Am3+in system bis(2-ethylhexyl) phosphate--dodecane NaCl-HCl-water”,..., 85, 36-46 (1981).

    28 Yaftian, M.R., Burgard, M., Dieleman, C.B., Matt, D., “Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix(IV) arene”,..., 144 (2), 57-64 (1998).

    29 Jyothi, A., Rao, G.N., “Solvent extraction behaviour of lanthanum(III), cerium(III), europium(III), thorium(IV) and uranium(VI) with 3-phenyl-4-benzoyl-5-isoxazolone”,, 37, 431-433 (1990).

    30 Kandah, M.I., Meunier, J.L., “Removal of nickel ions from water by multi-walled carbon nanotubes”,..., 146, 283-288 (2007).

    31 Chiarizia, R., Castagnola, A., Danesi, P.R., Horwitz, E.P., “Mass transfer rate through solid supported liquid membranes: influence of carrier dimerization and feed metal concentration on membrane permeability”,..., 14 (1), 1-11 (1983).

    ** To whom correspondence should be addressed. E-mail: pellys_0311@163.com

    2010-03-22,

    2010-09-11.

    the National Natural Science Foundation of China (90401009), the Foundation for Planning Project of West Action of Chinese Academy of Sciences (KZCX2-XB2-13), the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology (602-210805).

    猜你喜歡
    興隆
    我與興隆撞個滿懷
    興隆山楂管理技術(shù)
    河北果樹(2020年2期)2020-05-25 06:58:44
    興隆湖初冬
    萬寧之旅·興隆植物小姐模特大賽(二)
    新教育(2018年27期)2019-01-08 02:23:18
    Unit 6 Travelling around Asia Listening and speaking
    特別的生日禮物
    成都興隆湖畔白鷺飛舞
    我要飛翔
    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory
    李興隆 ● 書法欣賞
    中國商論(2014年7期)2014-05-25 05:57:56
    久久久久久人妻| 在线观看国产h片| 国产视频首页在线观看| av电影中文网址| 久久久久国产精品人妻一区二区| 国产乱人偷精品视频| 久久久久国产网址| 在线观看免费日韩欧美大片 | 蜜桃国产av成人99| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 美女国产视频在线观看| 在线观看免费高清a一片| 午夜激情福利司机影院| 精品一品国产午夜福利视频| 国产成人精品久久久久久| 日本午夜av视频| 久久久精品94久久精品| 女性被躁到高潮视频| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 国产黄频视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 18禁在线播放成人免费| 黄色视频在线播放观看不卡| 日本欧美视频一区| 免费观看在线日韩| 一本—道久久a久久精品蜜桃钙片| 卡戴珊不雅视频在线播放| 蜜桃国产av成人99| 精品人妻熟女毛片av久久网站| 亚洲av欧美aⅴ国产| 免费不卡的大黄色大毛片视频在线观看| 男男h啪啪无遮挡| 18禁动态无遮挡网站| 日日摸夜夜添夜夜添av毛片| 最新的欧美精品一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲四区av| 在线观看人妻少妇| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| 91aial.com中文字幕在线观看| 国产高清国产精品国产三级| 97精品久久久久久久久久精品| 国产色爽女视频免费观看| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 嫩草影院入口| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 亚洲伊人久久精品综合| 午夜91福利影院| 亚洲美女搞黄在线观看| 亚洲成色77777| 精品国产一区二区久久| 嫩草影院入口| 91成人精品电影| 99精国产麻豆久久婷婷| 一级毛片 在线播放| 日韩欧美精品免费久久| 老女人水多毛片| 国产av码专区亚洲av| 亚洲av.av天堂| 性色avwww在线观看| av黄色大香蕉| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 亚洲人与动物交配视频| 久久毛片免费看一区二区三区| 男女边摸边吃奶| 伦理电影免费视频| 建设人人有责人人尽责人人享有的| 熟女av电影| 黄片无遮挡物在线观看| 国产黄片视频在线免费观看| 亚洲精品国产av蜜桃| 黄色一级大片看看| 精品久久久久久电影网| 一本久久精品| 成人综合一区亚洲| 日本-黄色视频高清免费观看| 最黄视频免费看| 国产精品一国产av| 尾随美女入室| 亚洲成色77777| 亚洲欧美精品自产自拍| 久久99精品国语久久久| av免费在线看不卡| 一级二级三级毛片免费看| 午夜福利网站1000一区二区三区| 黄片无遮挡物在线观看| 国产精品免费大片| 一二三四中文在线观看免费高清| 午夜激情av网站| 十八禁高潮呻吟视频| 人人妻人人爽人人添夜夜欢视频| 我的老师免费观看完整版| 一区二区av电影网| 成人18禁高潮啪啪吃奶动态图 | 日日啪夜夜爽| 亚洲成色77777| 亚洲国产av新网站| 美女福利国产在线| 三级国产精品片| 新久久久久国产一级毛片| 精品少妇黑人巨大在线播放| 最新中文字幕久久久久| 婷婷色综合www| 男人添女人高潮全过程视频| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 国产精品蜜桃在线观看| 免费高清在线观看日韩| 日韩中文字幕视频在线看片| 国产 精品1| 国产不卡av网站在线观看| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 新久久久久国产一级毛片| 国产成人精品无人区| 有码 亚洲区| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三| 搡女人真爽免费视频火全软件| 国语对白做爰xxxⅹ性视频网站| 精品久久久噜噜| 日韩av在线免费看完整版不卡| 黄片播放在线免费| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| 97在线视频观看| 啦啦啦啦在线视频资源| 夫妻性生交免费视频一级片| 国产男女内射视频| 国产亚洲一区二区精品| 亚洲成色77777| 777米奇影视久久| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| 亚州av有码| 欧美日韩av久久| 秋霞伦理黄片| 欧美日韩一区二区视频在线观看视频在线| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区 | 午夜福利网站1000一区二区三区| 少妇丰满av| 人人澡人人妻人| 免费观看性生交大片5| 久久精品夜色国产| 涩涩av久久男人的天堂| 国产成人精品在线电影| 少妇被粗大猛烈的视频| 搡老乐熟女国产| 插阴视频在线观看视频| 亚洲av不卡在线观看| 免费黄频网站在线观看国产| 一级毛片我不卡| 狂野欧美白嫩少妇大欣赏| 久久精品国产a三级三级三级| 欧美激情国产日韩精品一区| 亚洲精品亚洲一区二区| 少妇的逼好多水| 国内精品宾馆在线| av在线app专区| 伦理电影大哥的女人| 欧美日韩视频精品一区| 在线观看国产h片| 亚洲精品成人av观看孕妇| 99久久精品一区二区三区| 中文字幕人妻丝袜制服| 亚洲av男天堂| 丝袜美足系列| 黑人巨大精品欧美一区二区蜜桃 | 精品一品国产午夜福利视频| 国产欧美亚洲国产| 99热6这里只有精品| 久久精品国产亚洲av天美| 免费看不卡的av| 国产女主播在线喷水免费视频网站| 日日撸夜夜添| 日本av手机在线免费观看| 亚洲av免费高清在线观看| 欧美成人午夜免费资源| 亚洲国产日韩一区二区| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级| 国产 精品1| 亚洲丝袜综合中文字幕| 大陆偷拍与自拍| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 久久久久久人妻| 国产欧美亚洲国产| 日韩中字成人| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频| 午夜福利影视在线免费观看| 久久久精品区二区三区| 久久精品久久精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 高清毛片免费看| av有码第一页| 精品国产一区二区久久| 男男h啪啪无遮挡| 亚洲图色成人| 亚洲成人av在线免费| 日韩亚洲欧美综合| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 国产又色又爽无遮挡免| 最新的欧美精品一区二区| 丰满迷人的少妇在线观看| 日本黄色片子视频| 日本黄色日本黄色录像| 久久精品国产自在天天线| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 亚洲国产成人一精品久久久| 亚洲精品视频女| 成人无遮挡网站| 尾随美女入室| 一级片'在线观看视频| 18禁动态无遮挡网站| 久久热精品热| 婷婷色综合www| 伊人久久精品亚洲午夜| 国产亚洲午夜精品一区二区久久| 久久久久久久久久久丰满| 亚洲精品日韩在线中文字幕| 亚洲精品国产av成人精品| 免费看光身美女| 一级片'在线观看视频| 自线自在国产av| 18在线观看网站| 美女cb高潮喷水在线观看| 免费看光身美女| 午夜久久久在线观看| 亚洲不卡免费看| 这个男人来自地球电影免费观看 | 国产高清不卡午夜福利| 久久综合国产亚洲精品| 久久狼人影院| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 国产黄片视频在线免费观看| 国产精品国产av在线观看| 女人精品久久久久毛片| 久久久久久久国产电影| 国产精品国产三级专区第一集| 99久国产av精品国产电影| 成人免费观看视频高清| 人人澡人人妻人| 亚洲精品久久成人aⅴ小说 | 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看 | 亚洲一级一片aⅴ在线观看| 91精品国产九色| 久久久亚洲精品成人影院| 日韩欧美精品免费久久| 精品酒店卫生间| 久久影院123| 亚洲三级黄色毛片| 成人国产av品久久久| 成人手机av| 亚洲婷婷狠狠爱综合网| 久久久国产欧美日韩av| 成年人免费黄色播放视频| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 亚洲天堂av无毛| 免费高清在线观看日韩| 女人精品久久久久毛片| 在现免费观看毛片| 亚洲三级黄色毛片| 亚洲精品视频女| 在线观看美女被高潮喷水网站| 在线亚洲精品国产二区图片欧美 | 各种免费的搞黄视频| 国产女主播在线喷水免费视频网站| 美女国产视频在线观看| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 国产有黄有色有爽视频| xxx大片免费视频| 99热6这里只有精品| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 亚洲国产精品国产精品| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 特大巨黑吊av在线直播| 国产成人精品在线电影| 777米奇影视久久| 麻豆精品久久久久久蜜桃| 亚洲成色77777| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 精品人妻熟女av久视频| 亚洲四区av| 女人久久www免费人成看片| 国产av精品麻豆| 男女国产视频网站| 国产爽快片一区二区三区| 日本黄大片高清| 国产高清国产精品国产三级| 超碰97精品在线观看| 你懂的网址亚洲精品在线观看| 欧美另类一区| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区| 高清不卡的av网站| 老熟女久久久| 男女啪啪激烈高潮av片| 国产成人av激情在线播放 | 另类亚洲欧美激情| 少妇人妻 视频| 老司机影院成人| 精品人妻熟女毛片av久久网站| 我的女老师完整版在线观看| 亚洲人与动物交配视频| 少妇高潮的动态图| 少妇的逼好多水| 特大巨黑吊av在线直播| 午夜福利网站1000一区二区三区| 黑人欧美特级aaaaaa片| 久久久久久久久久久丰满| 最新的欧美精品一区二区| 亚洲婷婷狠狠爱综合网| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 日韩av免费高清视频| 日韩强制内射视频| 91精品国产九色| 免费av不卡在线播放| 2018国产大陆天天弄谢| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图 | 成人国语在线视频| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 老熟女久久久| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 久久亚洲国产成人精品v| 精品久久蜜臀av无| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 亚洲精品,欧美精品| 亚洲情色 制服丝袜| 91精品国产国语对白视频| 在线观看免费视频网站a站| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| .国产精品久久| 亚洲av电影在线观看一区二区三区| 日本91视频免费播放| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 九九在线视频观看精品| 色视频在线一区二区三区| 美女中出高潮动态图| av免费观看日本| 国产黄片视频在线免费观看| 国产亚洲精品第一综合不卡 | 国产成人免费无遮挡视频| 在线观看一区二区三区激情| 两个人的视频大全免费| 亚洲av电影在线观看一区二区三区| 亚洲国产精品国产精品| av.在线天堂| 久久久久久久久大av| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 国产极品粉嫩免费观看在线 | 国产 精品1| 性高湖久久久久久久久免费观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频 | 欧美日韩综合久久久久久| 各种免费的搞黄视频| 美女视频免费永久观看网站| 91久久精品电影网| 黄色毛片三级朝国网站| 少妇精品久久久久久久| 午夜福利网站1000一区二区三区| 大码成人一级视频| 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 成年人免费黄色播放视频| 免费久久久久久久精品成人欧美视频 | 777米奇影视久久| 免费看av在线观看网站| 成人二区视频| 在线看a的网站| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 在线免费观看不下载黄p国产| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 一区二区三区免费毛片| 波野结衣二区三区在线| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| 18禁在线播放成人免费| 99久久精品一区二区三区| 日韩制服骚丝袜av| 国产精品久久久久久精品古装| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 99国产综合亚洲精品| 美女福利国产在线| 丝瓜视频免费看黄片| av免费观看日本| 性色av一级| 亚洲av中文av极速乱| 国产黄色视频一区二区在线观看| 免费观看在线日韩| 最后的刺客免费高清国语| 免费人成在线观看视频色| 成人午夜精彩视频在线观看| 欧美bdsm另类| 97精品久久久久久久久久精品| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 一个人免费看片子| 免费观看a级毛片全部| 亚洲精品成人av观看孕妇| 精品国产露脸久久av麻豆| 高清不卡的av网站| 麻豆成人av视频| 一级毛片电影观看| 久久国产精品男人的天堂亚洲 | 欧美日韩精品成人综合77777| 韩国av在线不卡| 在线观看免费日韩欧美大片 | 国产亚洲欧美精品永久| 国产成人一区二区在线| 久久午夜福利片| 99国产综合亚洲精品| a 毛片基地| 国产精品一国产av| 在线观看人妻少妇| 久久ye,这里只有精品| 国产欧美亚洲国产| 婷婷色综合www| 亚洲精品视频女| 中文字幕制服av| 色吧在线观看| 久久久欧美国产精品| 久久久久久久精品精品| 国产av码专区亚洲av| 国产精品嫩草影院av在线观看| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| av免费在线看不卡| 蜜桃在线观看..| 日日摸夜夜添夜夜爱| 天堂中文最新版在线下载| 99热全是精品| 国产一区二区在线观看av| 免费人成在线观看视频色| 国产综合精华液| 久久女婷五月综合色啪小说| 午夜激情av网站| 69精品国产乱码久久久| 亚洲av不卡在线观看| av免费观看日本| 99久国产av精品国产电影| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 91精品三级在线观看| a级毛片免费高清观看在线播放| 成人综合一区亚洲| 2018国产大陆天天弄谢| 青春草视频在线免费观看| 午夜激情久久久久久久| 欧美一级a爱片免费观看看| av又黄又爽大尺度在线免费看| 精品亚洲成国产av| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 中文字幕最新亚洲高清| 亚洲av二区三区四区| 久久久久精品性色| 国产欧美日韩综合在线一区二区| 美女中出高潮动态图| 精品少妇久久久久久888优播| 国产熟女欧美一区二区| 99热这里只有是精品在线观看| 精品久久久久久电影网| 国产成人午夜福利电影在线观看| videossex国产| 亚洲一区二区三区欧美精品| 乱人伦中国视频| a级毛片免费高清观看在线播放| 伦理电影大哥的女人| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 少妇精品久久久久久久| 色视频在线一区二区三区| 欧美三级亚洲精品| 亚洲精品456在线播放app| 亚州av有码| 欧美激情国产日韩精品一区| 热99国产精品久久久久久7| 如日韩欧美国产精品一区二区三区 | 精品一品国产午夜福利视频| 亚洲欧美日韩卡通动漫| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 久久久国产一区二区| 久久鲁丝午夜福利片| 亚洲国产色片| 久久精品久久久久久噜噜老黄| 久久婷婷青草| 精品少妇内射三级| 婷婷色麻豆天堂久久| 日日啪夜夜爽| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 国产无遮挡羞羞视频在线观看| 久久久久视频综合| 日本黄色日本黄色录像| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人综合另类久久久| 80岁老熟妇乱子伦牲交| 成人无遮挡网站| 在线观看免费日韩欧美大片 | 久久午夜综合久久蜜桃| 全区人妻精品视频| 蜜桃国产av成人99| 国产成人精品婷婷| 日韩熟女老妇一区二区性免费视频| 国产精品99久久99久久久不卡 | 精品人妻在线不人妻| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| 丁香六月天网| 国产黄片视频在线免费观看| av网站免费在线观看视频| 成年av动漫网址| 精品一区在线观看国产| 高清午夜精品一区二区三区| 嘟嘟电影网在线观看| 一级a做视频免费观看| .国产精品久久| 国产视频内射| 爱豆传媒免费全集在线观看| 免费大片黄手机在线观看| 欧美日韩av久久| 极品人妻少妇av视频| 国产成人一区二区在线| 国产片特级美女逼逼视频| 亚洲欧洲国产日韩| 午夜免费男女啪啪视频观看| 夜夜骑夜夜射夜夜干| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 夜夜骑夜夜射夜夜干| 69精品国产乱码久久久| 赤兔流量卡办理| 一本大道久久a久久精品| 国产精品一国产av| 秋霞伦理黄片| 插阴视频在线观看视频| 五月伊人婷婷丁香| 国产精品国产av在线观看| 婷婷色综合www| 精品国产乱码久久久久久小说| 热99久久久久精品小说推荐| 国产亚洲精品久久久com| 69精品国产乱码久久久| 国产精品国产av在线观看| 免费观看的影片在线观看| 久久精品久久久久久噜噜老黄| kizo精华| 免费日韩欧美在线观看| 一区二区av电影网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩视频高清一区二区三区二| 亚洲国产日韩一区二区| 午夜91福利影院| 国产成人精品无人区| 欧美亚洲日本最大视频资源| 日本vs欧美在线观看视频| 一区二区日韩欧美中文字幕 | 在线观看三级黄色| 久久精品国产亚洲av涩爱| 婷婷色综合www|