• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    內(nèi)乘波式進(jìn)氣道與內(nèi)型側(cè)壓式進(jìn)氣道性能分析

    2011-04-19 10:38:18黃國(guó)平朱呈祥尤延鋮
    關(guān)鍵詞:內(nèi)型壓式黃國(guó)

    黃國(guó)平 朱呈祥 尤延鋮 周 淼

    (南京航空航天大學(xué)能源與動(dòng)力學(xué)院,南京,210016,中國(guó))

    INTRODUCTION

    Inlet is a very important part of hypersonic propulsion system.Traditional hypersonic inlet can be divided into three different types:2-D inlet,axisymmetric inlet and sidewall compression inlet[1].Among these inlets when used in fixed geometry, sidewallcompression inletalways shows better performance on inner flow characteristic and start ability according to past research.However,a new kind of inlet,inward turning inlet,has attracted people′s attention recently.Different types of inward turning inlet have already been investigated in worldwide range,such as Busemann[2],REST[3],JAW[4], Internal waverider inlet and so on.The concept of internal waverider inlet was first developed by authors.This newly research is also supported by National Natural Science Foundation of China in 2005.Yancheng You and Guoping Huang then put forward a section controllable internal waverider inlet concept on technology of streamline tracing, and obtained a Chinese invention patent[5].Simulations at design/off-design points and high enthalpy wind tunnel tests[6]were all performed by them.The results indicated that section controllable internal waverider inlet can obtain good performance.

    The design of hypersonic inlets should match the following four requirements:high inner flow performance,low outer flow drag,starting ability,and compatibility of back pressure.For hypersonic inlet,the compatibility of back pressure is obtained by isolator.Then other three requirements are difficult to match simultaneously.In past decades,many researches were performed for development of sidewall compression inlets. So,most of researchers believe that sidewall compression inlet is a good choice for hypersonic aircrafts when they need fixed geometry inlets.But it cannot match the four requirements perfectly. Especially,the spillage of sidewall compression inlet is rather large,so the outer flow drag is large too.

    The internal waverider inlet can decrease the spillage obviously.In order to show the advantage/disadvantage of internal waverider inlet, some researches on comparison between internal waverider inlet and sidewall compression inlet are performed in this paper.Under the same upstream flow condition,a typical internal waverider inlet with rectangular entrance and exit shape in front view,is designed according to the geometry parameters of a typical 3-D sidewall compression inlet.Simulation results at design/off-design points reveal the flow characteristics and performance of two different inlets.

    1 MODELING ANDCALCULATION METHOD

    1.1 Modeling of sidewall compression inlet

    In order to do comparison between internal waverider inlet and sidewall compression inlet,a typical sidewall compression inlet mentioned in Ref.[1]is chosen as the simulation model.The length of this inlet is 707 mm.The width and height of entrance are 122 mm and 82 mm with a entrance area of 10 004 mm2,while that of exit are 50.5 mm and 34 mm with a exit area of 1 717 mm2.So the total contraction ratio is about 5.89, and the internal contraction ratio is 1.2.Fig.1 is the model of sidewall compression inlet.This inlet was presented in 2006 and was designed at Ma=6.0,H=25 000 m.The results of research on it show that it achieves relative high performance among sidewall compression inlet.Then, this paper constructs a model based on the data in Ref.[1],and uses this model to do numerical simulation.

    Fig.1 Configuration of sidewall compression inlet

    1.2 Modeling of internal waverider inlet

    An internal waverider inlet with rectangular frontal shape entrance and exit is also designed at Ma=6.0,H=25 000 m,using the technology of streamline tracing and shock cutting[5].To ensure the comparability of the internal waverider inlet and the sidewall compression inlet,the contraction ratio of inlets should be same.Moreover,the new designed inlet has the same frontal shape of entrance.Although they have the same entrance shape,area and total contraction ratio,the exit shape of internal waverider inlet is rectangle while thatofsidewallcompression inletis nearly square.This is because the internal waverider inlet is a 3-D designing,so the streamline in each same angle θplane follows the same characteristics of basic flowfield,and the aspect ratio in exit plane is 1.48 which is almost the same as that of entrance plane.However,experience is more crucial when designing the sidewall compression inlet and attention is mainly focused on the assignment of pressure ratio.

    The previous research[7]in internal waverider inlet design pointed out that a certain basic flowfield,ICFC,had the best uniformity and suited for the designing of internal waverider inlet better than other basic flowfields.So in this paper ICFC is chosen as the basic flowfield.Fig.2is the pressure ratio contours at symmetrical plane of ICFC basic flowfield under 2-D inviscid CFD simulation.

    Fig.2 Pressure ratio contours of ICFC basic flowfield

    Streamline tracing and shock cutting technology is adopted during the process of building inlet model. The basic theory of streamline tracing technology is setting a series of points at the en-trance or exit plane of ICFC basic flowfield according to the entrance or exit shape of inlet.3-D surface will be obtained when streamlines are created using these points,and through each point only one streamline can be acquired.This surface is actually just the shape of internal waverider inlet.Fig.3 is the entrance&exit schematic of internal waverider inlet.

    Fig.3 Frontal view of inlet entrance&exit

    With designing method listed above and preliminary viscous correction as well as shoulder smoothing,a 3-D internal waverider inlet with rectangular entrance&exit shape will be obtained (Fig.4).The length of this inlet is 822 mm.The width and height of entrance are 122 mm and 82 mm with a entrance area of 10 004 mm2,while of exit are 50.5 mm and 34 mm with a exit area of 1 717 mm2.So the contraction ratio is about 5.83.Those are as same as the sidewall compression inlet.

    Fig.4 Configuration of internal waverider inlet

    1.3 Calculation method

    Flows in two inlets shown in Figs.1,4 are simulated numerically at design/off-design points.Several off-design points are simulated, such as:Ma=4.5,5.0,5.5,attack angles=±2°, ±5°,±8°and yaw angles=2°,5°,8°.All calculations are performed by using a CFD software,the NuAa′s Program for Aerodynamics(NAPA),operating on structured meshes.This software has been validated with lots of cases and proven to be effective for calculation of subsonic,transonic, supersonic and hypersonic inlets′internal and external flows[5-6].In this simulation,the Roe flux difference-split scheme is employed for the inviscid fluxes,together with the min-mod limiter.A standard central second-order scheme is employed for the viscous fluxes.The simulation is analyzed with the full 3-D steady Navier-Stokes equations together with a separation improved Baldwin Lomax(BL)turbulence model without body forces or external heat addition.The spatial accuracy used for all calculations is second order,with a three-step Runge-Kutta solution scheme.Given the high temperature effect,the variable specific heat thermally perfect gas model is used in the calculation[8].

    2 FLOW AND PERFORMANCE OF TWO INLETS AT DESIGN STATUS

    2.1 Flow of internal waverider inlet

    The results of numerical simulation can show the flow structure of internal waverider inlet at design status.Fig.5is the pressure ratio contours in planeOA′&OC′(Fig.3)of internal waverider inlet.The initial shock is induced at the entrance when free upstream comes into the inlet,and reflects at the upper surface.It almost covers the whole entrance area of inlet,which makes high flow capture ratio possible.In Fig.3,OA′is the symmetric plane while OC′is the half-diagonal plane.The same angle θplane OC′includes the cross line between upper surface and side surface. Comparison between two contours indicates that OC′plane has the similar shock structure as OA′plane,even if OC′is effected by upper and side surfaces together.This is also the contribution of internal waverider inlet designing method.Although the shock structure is similar to the basic flowfield in both planes,we can still find out that the initial shock does not attach the cowl lip completely.As a result,there will still axist tiny spillage.Fig.6depicts the total pressure recovery contours at the exit plane of inlet.Parameters at the exit plane are divided obviously into upper and lower parts.As a result of the long distance of lower surface as well as the shock wave-boundary layer interaction,the thickness of boundary layer at the exit plane is rather considerable.This lowenergy region will further lead to the low total pressure recovery.From the right contour,total pressure recovery is still high at two corners near the upper surface.It can be concluded that energy losing is not serious at these corners.The total pressure recovery of more than half of the exit is larger than 0.4.

    Fig.5 Pressure ratio contours of internal waverider inlet

    Fig.6 Total pressure contours of internal waverider inlet

    Fig.7 is the surface pressure ratio distribution in the symmetric plane.Before getting into the isolator,incoming flow should get through a series of isentropic compression.In the exit plane of inlet,pressure ratio at upper surface is close to that of lower surface.This phenomenon is coherent to the goal of developing ICFC basic flowfield[7].In isolator,pressure ratio at upper surface and lower surface rises alternately as a result of the shock reflection.

    Fig.7 Pressure ratio distribution of internal waverider inlet

    2.2 Flow of sidewall compression inlet

    Although the model of sidewall compression inlet is selected from Ref.[1],this paper still calculates the flow characteristics under different incoming flow conditions for data restoring.Fig.8 is the pressure ratio contour at symmetric plane of sidewall compression inlet.Shock wave religion from bottom board and sidewall intersects with each other,and forms a spillage window in the symmetric plane.The flow is spilled from this window.Additionally,oblique shock wave created by the cowl lip will reflect and interact with boundary layer for several times in isolator.At shoulders of bottom board,rarefaction waves will be created,and intersect with the oblique shock wave and reflect as well.These rarefaction waves can weaken the inlet pressure ratio.Fig.9 depicts the total pressure recovery at the exit plane.As sidewall compression inlet can produce 3-D compression effect only through sidewall,so the bad corner flow created by bottom board and sidewall is inevitable.This will not only generate the vortex structure at the corners near lower surface, but also will decrease the total pressure recovery. At the mainstream area of exit plane,the total pressue recovery is 0.55 while that of internal waverider inlet is 0.61.The area with larger than 0.4 total pressure recovery,is less than half of the exit.

    Fig.8 Pressure ratio contours of sidewall compression inlet

    Fig.9 Total pressure recovery contours at exit plane

    Fig.10 Pressure ratio distribution of sidewall compression inlet

    Fig.10 is the surface pressure ratio distribution in symmetric plane of sidewall compression inlet.At outer contraction part,a bit isentropic compression exits due to the part of arc bottom board.At the cowl lip,pressure rises up quickly owe to the oblique shock wave there.Furthermore,pressure fluctuates at the upper surface in a short distance from the cowl lip.From the left small picture in Fig.9,we can observe that shock waves created by sidewall intersect with each other in inner contraction part and reflect for several times.At the exit plane of inlet,pressure of upper surface is evidently different from lower surface,which means that the uniformity is lower than that of internal waverider inlet.

    2.3 Performance parameters of two inlets at design point

    Table 1 is the comparison of performance between two inlets.Internal waverider inlet can capture most of the incoming flow and the flow capture coefficient is 0.98.This is also the main advantage of internal waverider inlet.On the contrary,the flow capture coefficient of sidewall compression inlet is only 0.845.More than that, average pressure ratio at exit plane of internal waverider inlet is 29 while sidewall compressioninlet is 25,and internal waverider inlet holds a higher total pressure recovery even if with a higher pressure ratio.Additionally,average Mach number at exit plane of internal waverider inlet is lower than that of sidewall compression inlet,which will delicate to the performance of combustor.Kinetic efficiency of internal waverider inlet is also a bit higher.In general,the main advantages of internal waverider inlet are high flow capture coefficient and better internal flow performance.

    Table 1 Comparison of performance between two inlets at design point

    3 PERFORMANCE AT OFF-DESIGN STATUSES

    Several off-design flows of both two inlets are simulated.Those off-design statuses include different attack angles, yaw angles,and upstream flow Mach numbers.

    3.1 Performance parameters of two inlets at off-design statuses

    Table 2 provides a summary of performance of two inlets at off-design status.Internal waverider inlet has good performance in flow capture ability.At yaw angle 8°or attack angle 8°,it can capture more than 92% or 94% of upstream even.Under same conditions,the sidewall compression inlet can capture only 79% of upstream. When upstream flow Mach number decreases to 4.5,the flow capture coefficient of internal wa-verider inlet is 92%,and the one of the sidewall compression inlet is 72%.This value of internal waverider inlet increases almost 28% than sidewall compression inlet.In most cases,the internal waverider inlet owns obvious better performance than sidewall compression inlet,while the pressure ratio of internal waverider inlet is a bit higher.In addition,flow characteristics of internal waverider inlet at off-design points do not deteriorate evidently,and average Mach number at exit plane of internal waverider inlet is a bit lower.That is a good thing for combustor working.

    Table 2 Comparison of performance parameters for two inlets at off-design points

    3.2 Off-design Mach numbers

    The off-design Mach numbers tested by numerical simulation include 4.5,5.0 and 5.5,and two inlets can still work properly under these conditions.Fig.11 is the total pressure recovery contours at off-design Mach numbers of two inlets.As shown in Fig.11,the characteristics of total pressure distribution are similar even under different Mach numbers in each inlet.Comparing the parameters of two inlets in exit plane at Ma= 5.0,total pressure recovery of internal waverider inlet is a bit higher.In another hand,although sidewall compression inlet is also a 3-D compression inlet,the flow structures are worse than internal waverider inlet.So,that will lead to the deterioration of parameters in exit plane.

    The start abilities of two inlets also are compared preliminarily.The un-start Mach number of internal waverider inlet is 3.3,while it is 2.9 of sidewall compression inlet.The start ability of sidewall compression inlet is bit higher.However,as analyzed previously,better start ability of sidewall compression inlet is obtained at the cost of large loss of performance.Internal waverider inlet also have better start performance when some geometry parameters are adjusted like the first shock angle as well as with high flow capture ability at off-design points.

    3.3 Variable attack and yaw angles

    Performance at attack angles±2°,±5°,±8° attack angles are analyzed in this paper.Fig.12 presents the total pressure recovery contours in exit plane under 5°.Compared flows between two inlets,we find that the total pressure in main-stream area is a bit higher in internal waverider inlet.But the distortion is also higher because of the narrow shape of exit plane,especially near the bottom board there existing large low-energy area.

    Fig.11 Total pressure recovery contours at exit plane of two inlets with different Mach numbers

    Fig.12 Total pressure recovery contours at exit planes of two inlets with attack angle5°

    When the yaw angle increases,the flow structure at exit becomes more and more dissymmetric.Low-energy area moves to the left side of exit plane due to yaw angle affection,and has a tendency of becoming larger.Taking internal waverider inlet for example,at yaw angle 8°,highenergy area is finite compared with that of yaw angle 2°.and the total pressure recovery is only 0.51.Additionally,low-energy area at the bottom of exit plane has a tendency of moving upward besides leftward.Fig.13 is the shockwave shape in cross section at x=410 mm.The shock is forced to the right side. In addition,the spillage flow becomes relative large when yaw angle increases.However,even in the case with yaw angle 8°,the shockwave covers most of the entrance of internal waverider inlet.So,this lets the new inlet have a very high flow capture coefficient.

    Fig.13 Mach number isolines of internal waverider inlet at cross section of x=410mm

    4 CHARACTERISTICS OF TWO INLET DESIGNS

    Internal waverider inlet and sidewall compression inlet both belong to 3-D compression inlet.They have obvious 3-D flow characteristics, but the design concept is different distinctly.

    The design concept of internal waverider inlet is to create the inlet model from shock structure and performance parameters.In this work, an ICFC basic flowfield is designed first,and then the streamlines are traced in all same angle planes from ICFC.Shockwave shape in cross section is also arc,the same as basic flowfield.Fig.14 is the schematic of streamline tracing from different inlet entrance points.This design method can ensure the shock shape in inlet being the same as basic flowfield,and avoid complex interaction among 3-D shock waves.Although the geometry parameters and shape of internal waverider inlet are similar to those of sidewall compression inlet, the performance is better.

    Fig.14 Schematic of streamline tracing of IW R inlet

    The design concept of sidewall compression inlet is from geometry model to calculate the performance parameters.It is a process of modulation to satisfy the design requirements. The shock shape in cross section of sidewall compression inlet is made up of one bottom shock wave and two sidewall shock waves.It is just a combination of 2-D shock waves.Fig.15 shows the shockwave shapes of two inlets.From Fig.15 we can find that sidewall compression inlet has not only corner flows,but also spillage flows from upside of sidewall.At the downstream part of the sidewall,this spillage becomes large and large.

    It is well known that more flow capture means more thrust to hypersonic propulsion system with a certain area of frontal shape,and means less drag induced by spillage.So the great flow capture ability under different conditions is the extraordinary advantage of internal waverider inlet,because it rides the shockwave at entrance.

    Fig.15 Shock shape of two kinds of inlets

    5 CONCLUSIONS

    In the paper,a new internal waverider inlet with rectangular shape of entrance and exit is designed according to the geometry parameter of typical sidewall compression inlet.Comparisons between the two inlets show that:

    (1)At design status,the bad corner flow is less in internal waverider inlet,while such corner flow of sidewall compression inlet is large.And the sidewall compression inlet has complex shockwave intersections with each otherand with boundary layer.So,total pressure recovery in exit plane of internal waverider inlet is higher. Compared with parameters of sidewall compression inlet,total pressure recovery in exit plane of internal waverider inlet is almost 11% higher, flow capture coefficient is 16% higher,pressure ratio is 16% higher,and Mach number in exit plane is 1.3% lower.Each parameter is better than sidewall compression inlet,especially the flow capture coefficient.

    (2)At off-design statuses,the differences of performance between two inlets are similar to design status.The internal waverider inlet achieves better performance than sidewall compression inlet.Especially,the flow capture coefficient of internal waverider is 16%—28% larger than the one of sidewall compression inlet in off-design statuses.The un-start Mach number of internal waverider inlet designed in this paper is 3.3,while that of sidewall compression inlet is 2.9.

    (3)The internal waverider inlet has good performance.It can obtain better inner flow performance,low outer flow drag,and good starting ability simultaneously.Moreover,it can achieve very high flow capture coefficient(for example: 0.98 at design status).Internal waverider inlet has such great flow capture ability because it rides the shockwave at entrance.

    [1] Jin Zhiguang,Zhang Kunyuan.An efficient method for increasing mass flow capture ratio of a three-dimentional sidewall compression scramjet inlet[J]. Journal of Aerospace Power,2006,21(5):897-902.

    [2] Jacobsen L S,Tam C J,Robert B F.Starting and operation of a streamline-traced busemann inlet at Mach 4[C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference& Exhibit.[S.l.]:AIAA, 2006:AIAA 2006-4508.

    [3] Smart M K,Trexler C A.Mach4performance of a fixed-geometry hypersonic inlet with rectangular-toelliptical shape transition[C]∥41st Aerospace Sciences Meeting and Exhibit.Reno,Nevada:AIAA, 2003:AIAA2003-0012.

    [4] Malo F J,Gaitonde D V.Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at mach7[C]∥36th AIAA Fluid Dynamics Conference and Exhibit.San Francisco,Califorlia: [s.n.],2006:AIAA 2003-3041.

    [5] You Yancheng,Huang Guoping,Guo Junliang,et al.Design method of hypersonic internal waverider inlet with controllable shape of intake and exit[P]. Chinese Patent of Invention,ZL2008101558987.X.

    [6] You Y,Liang D,Design concept of three-dimensional section controllable internal waverider hypersonic inlets[J].Science in China(Series E),2009,52 (7):2017-2028.

    [7] Guo Junliang, Huang Guoping, You Yancheng, et al.Study of internal compresion flowfield for improving the outflow uniformity of internal waverider inlet[J].Journal of Astronautics,2009,30(5): 1934-1940.

    [8] You Yancheng.A new understanding of the nonlinear eddy-viscosity distribution for the two-dimentional separation flows[J].Acta M echanica Sinica, 2009,41(2):145-154.

    猜你喜歡
    內(nèi)型壓式黃國(guó)
    便攜式水產(chǎn)品四環(huán)素含量檢測(cè)裝置研制
    CPMF-II智能差壓式兩相流量計(jì)
    CPMF-II 智能差壓式兩相流量計(jì)
    一種催化器儲(chǔ)氧量的測(cè)試及計(jì)算方法
    CPMF-II 智能差壓式兩相流量計(jì)
    你是天使——獻(xiàn)給抗擊新型冠狀病毒的勇士們
    甲狀腺浸潤(rùn)性微小癌包膜內(nèi)型與非包膜內(nèi)型的超聲聲像圖特征比較分析
    Shock waves and water wing in slit-type energy dissipaters*
    差壓式空間站在軌泄漏監(jiān)測(cè)技術(shù)研究
    載人航天(2016年4期)2016-12-01 06:56:23
    立體選擇性合成內(nèi)型N-Boc-N-去甲托品醇
    在线免费观看的www视频| 久久久久久国产a免费观看| 国产69精品久久久久777片| 成人av一区二区三区在线看| 男女视频在线观看网站免费| 亚洲国产精品sss在线观看| 国产熟女xx| 欧美丝袜亚洲另类 | 日本成人三级电影网站| 丰满人妻熟妇乱又伦精品不卡| 岛国在线免费视频观看| 每晚都被弄得嗷嗷叫到高潮| 国内少妇人妻偷人精品xxx网站| 波多野结衣高清无吗| 成人国产一区最新在线观看| 亚洲五月婷婷丁香| 我的女老师完整版在线观看| 国产乱人视频| 熟妇人妻久久中文字幕3abv| 国产精品永久免费网站| 好男人在线观看高清免费视频| 亚洲精品粉嫩美女一区| 嫩草影视91久久| 日本熟妇午夜| 国产v大片淫在线免费观看| 欧美黑人巨大hd| 美女黄网站色视频| 1000部很黄的大片| 日日夜夜操网爽| 亚洲人成伊人成综合网2020| 51午夜福利影视在线观看| 精品国产三级普通话版| 国产视频一区二区在线看| 99国产综合亚洲精品| 亚洲成av人片在线播放无| 国产一区二区在线av高清观看| 网址你懂的国产日韩在线| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 欧美另类亚洲清纯唯美| 天堂动漫精品| 日韩精品中文字幕看吧| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 欧美日韩国产亚洲二区| 国产aⅴ精品一区二区三区波| xxxwww97欧美| 最近最新免费中文字幕在线| 自拍偷自拍亚洲精品老妇| 国产单亲对白刺激| 18禁裸乳无遮挡免费网站照片| 亚洲狠狠婷婷综合久久图片| 国产免费av片在线观看野外av| 97碰自拍视频| 日韩中文字幕欧美一区二区| 波多野结衣巨乳人妻| 欧美黄色淫秽网站| 精品一区二区三区视频在线| 亚洲黑人精品在线| 国产一区二区亚洲精品在线观看| 波多野结衣高清作品| 欧美又色又爽又黄视频| 网址你懂的国产日韩在线| 亚洲中文日韩欧美视频| 在线国产一区二区在线| 国产久久久一区二区三区| 国产中年淑女户外野战色| 亚洲精华国产精华精| 亚洲av日韩精品久久久久久密| 宅男免费午夜| 男人舔奶头视频| 国产亚洲精品久久久久久毛片| 免费av观看视频| 尤物成人国产欧美一区二区三区| 日本撒尿小便嘘嘘汇集6| 日本 欧美在线| 有码 亚洲区| 婷婷六月久久综合丁香| 成人毛片a级毛片在线播放| 成人国产综合亚洲| 亚洲成av人片在线播放无| 亚洲欧美日韩高清在线视频| 最新在线观看一区二区三区| a在线观看视频网站| 制服丝袜大香蕉在线| 亚洲av美国av| 丁香欧美五月| 国产精品影院久久| 日本成人三级电影网站| 国产伦在线观看视频一区| 成人欧美大片| 精品国内亚洲2022精品成人| 国产又黄又爽又无遮挡在线| 又爽又黄无遮挡网站| 99在线视频只有这里精品首页| 国产一区二区三区在线臀色熟女| 香蕉av资源在线| 欧美+亚洲+日韩+国产| 一区二区三区激情视频| 免费av不卡在线播放| 国产亚洲精品综合一区在线观看| 久久国产精品人妻蜜桃| 成年女人毛片免费观看观看9| 中亚洲国语对白在线视频| 国产伦人伦偷精品视频| 久久亚洲精品不卡| 麻豆久久精品国产亚洲av| 国产av麻豆久久久久久久| 国产精品久久电影中文字幕| x7x7x7水蜜桃| 国产精华一区二区三区| 亚洲av熟女| 久久精品影院6| 搡女人真爽免费视频火全软件 | 身体一侧抽搐| 久久久久国产精品人妻aⅴ院| 18+在线观看网站| 国产精品一区二区免费欧美| 直男gayav资源| 一卡2卡三卡四卡精品乱码亚洲| 18禁黄网站禁片午夜丰满| 亚洲av免费高清在线观看| 午夜免费激情av| 搡老妇女老女人老熟妇| 俄罗斯特黄特色一大片| 十八禁网站免费在线| 国产高清激情床上av| eeuss影院久久| 午夜福利18| 2021天堂中文幕一二区在线观| 亚洲第一区二区三区不卡| 亚洲经典国产精华液单 | 91麻豆精品激情在线观看国产| 精品人妻视频免费看| 日韩成人在线观看一区二区三区| 永久网站在线| 婷婷精品国产亚洲av| netflix在线观看网站| 免费在线观看日本一区| 夜夜躁狠狠躁天天躁| 观看免费一级毛片| 一本精品99久久精品77| 国产成人欧美在线观看| а√天堂www在线а√下载| 亚洲无线在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美三级亚洲精品| 国产精品电影一区二区三区| 内地一区二区视频在线| 欧美高清性xxxxhd video| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 非洲黑人性xxxx精品又粗又长| 日本 av在线| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 两个人的视频大全免费| 午夜福利成人在线免费观看| 成人特级av手机在线观看| 在线观看免费视频日本深夜| 久久精品国产99精品国产亚洲性色| 床上黄色一级片| 亚洲成人免费电影在线观看| 国产v大片淫在线免费观看| 亚洲av第一区精品v没综合| av中文乱码字幕在线| 久久久久久九九精品二区国产| 免费在线观看影片大全网站| 三级国产精品欧美在线观看| 欧美日韩黄片免| 国产精品综合久久久久久久免费| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区视频了| 日本黄大片高清| 国产高清视频在线播放一区| 此物有八面人人有两片| 久久久久亚洲av毛片大全| 人人妻人人澡欧美一区二区| 嫩草影视91久久| 亚洲真实伦在线观看| 搡老岳熟女国产| 久久精品国产自在天天线| 少妇丰满av| 久久99热这里只有精品18| 国产免费av片在线观看野外av| 久久婷婷人人爽人人干人人爱| 97超视频在线观看视频| 99在线人妻在线中文字幕| 国产欧美日韩精品亚洲av| 精品久久国产蜜桃| 亚洲熟妇中文字幕五十中出| 亚州av有码| 久久精品综合一区二区三区| 亚洲无线在线观看| 99国产综合亚洲精品| 男女之事视频高清在线观看| 毛片一级片免费看久久久久 | 欧美三级亚洲精品| 亚洲成人久久性| 亚洲精品在线观看二区| 一a级毛片在线观看| 欧美黄色片欧美黄色片| 色哟哟·www| 国产伦人伦偷精品视频| 色播亚洲综合网| 久久亚洲真实| 亚洲最大成人手机在线| 51国产日韩欧美| 极品教师在线视频| 一本久久中文字幕| 真人一进一出gif抽搐免费| 三级毛片av免费| 成人av在线播放网站| 亚洲精华国产精华精| 一区二区三区四区激情视频 | 深夜精品福利| 90打野战视频偷拍视频| 俄罗斯特黄特色一大片| 一区二区三区四区激情视频 | 国产探花在线观看一区二区| 亚洲国产欧美人成| 91狼人影院| 久久久色成人| 亚洲aⅴ乱码一区二区在线播放| 成人午夜高清在线视频| 毛片一级片免费看久久久久 | 久久国产乱子伦精品免费另类| 午夜a级毛片| 日韩欧美三级三区| 国产亚洲欧美在线一区二区| 国产高清有码在线观看视频| 亚洲五月婷婷丁香| 无人区码免费观看不卡| 久久精品国产99精品国产亚洲性色| 婷婷丁香在线五月| 白带黄色成豆腐渣| ponron亚洲| 欧美在线黄色| 国产精品免费一区二区三区在线| 亚洲av免费在线观看| 露出奶头的视频| 亚洲黑人精品在线| 国产69精品久久久久777片| 亚洲av不卡在线观看| 久久久久精品国产欧美久久久| 欧美潮喷喷水| 亚洲成av人片在线播放无| 激情在线观看视频在线高清| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 亚洲综合色惰| 淫秽高清视频在线观看| 色播亚洲综合网| 99在线视频只有这里精品首页| 精品99又大又爽又粗少妇毛片 | 国产成人欧美在线观看| 日韩欧美国产在线观看| 特级一级黄色大片| 国产免费一级a男人的天堂| 亚洲欧美日韩无卡精品| 一进一出好大好爽视频| 欧美性猛交╳xxx乱大交人| 18美女黄网站色大片免费观看| 国产真实乱freesex| 国产成人啪精品午夜网站| 真人做人爱边吃奶动态| 少妇熟女aⅴ在线视频| 成年女人毛片免费观看观看9| 免费人成在线观看视频色| 99国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 如何舔出高潮| 成人精品一区二区免费| 熟女电影av网| 无遮挡黄片免费观看| 国产成年人精品一区二区| 两个人视频免费观看高清| 99在线视频只有这里精品首页| 国产av一区在线观看免费| 免费av观看视频| 熟女电影av网| 久久人人精品亚洲av| 国产免费av片在线观看野外av| 亚洲国产欧美人成| 亚洲黑人精品在线| 很黄的视频免费| 国产综合懂色| 天天一区二区日本电影三级| 精品国产亚洲在线| 精品人妻1区二区| 日韩成人在线观看一区二区三区| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播| 脱女人内裤的视频| 亚洲最大成人中文| 中文亚洲av片在线观看爽| ponron亚洲| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 午夜免费激情av| 亚洲一区高清亚洲精品| 成人美女网站在线观看视频| 老司机深夜福利视频在线观看| 日韩免费av在线播放| 精品国产三级普通话版| 极品教师在线免费播放| 精品熟女少妇八av免费久了| 九色国产91popny在线| 亚洲欧美日韩东京热| 精品不卡国产一区二区三区| 日韩欧美国产一区二区入口| 久久国产乱子免费精品| 草草在线视频免费看| 亚洲熟妇熟女久久| 亚洲性夜色夜夜综合| 夜夜爽天天搞| 热99re8久久精品国产| 极品教师在线视频| 脱女人内裤的视频| 欧美绝顶高潮抽搐喷水| 我的老师免费观看完整版| 人人妻,人人澡人人爽秒播| www.色视频.com| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华精| 首页视频小说图片口味搜索| 亚洲三级黄色毛片| 国产精品国产高清国产av| 国产乱人视频| 国产蜜桃级精品一区二区三区| 噜噜噜噜噜久久久久久91| 午夜福利视频1000在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av涩爱 | h日本视频在线播放| 日本与韩国留学比较| 少妇的逼好多水| 给我免费播放毛片高清在线观看| 美女被艹到高潮喷水动态| 午夜两性在线视频| 日韩欧美精品v在线| 99在线人妻在线中文字幕| 在线观看午夜福利视频| 极品教师在线视频| 欧美乱色亚洲激情| 精品人妻偷拍中文字幕| 亚洲综合色惰| 精品久久久久久久末码| 又爽又黄无遮挡网站| av专区在线播放| 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 日本撒尿小便嘘嘘汇集6| 国产视频内射| 赤兔流量卡办理| 成人av一区二区三区在线看| 亚洲激情在线av| 免费搜索国产男女视频| 内地一区二区视频在线| 欧美激情久久久久久爽电影| 91av网一区二区| 免费观看人在逋| 中出人妻视频一区二区| 国产成+人综合+亚洲专区| 在线观看av片永久免费下载| 免费电影在线观看免费观看| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久久久| 精品一区二区三区人妻视频| 有码 亚洲区| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 毛片一级片免费看久久久久 | 国内毛片毛片毛片毛片毛片| 午夜激情欧美在线| 国产在线男女| 神马国产精品三级电影在线观看| 国产一区二区在线av高清观看| 好男人在线观看高清免费视频| 国产精品野战在线观看| av在线观看视频网站免费| 天美传媒精品一区二区| 中文字幕免费在线视频6| 久久国产精品影院| 一进一出好大好爽视频| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清| 久久热精品热| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 内射极品少妇av片p| 日本与韩国留学比较| 狠狠狠狠99中文字幕| 亚洲男人的天堂狠狠| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 欧美一区二区国产精品久久精品| 热99re8久久精品国产| 色5月婷婷丁香| 他把我摸到了高潮在线观看| 成年人黄色毛片网站| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 国产精品自产拍在线观看55亚洲| 亚洲精品456在线播放app | 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 国产真实乱freesex| 久久久久久久久中文| 久久国产乱子免费精品| 亚洲五月天丁香| 亚洲在线观看片| 在线观看av片永久免费下载| 一个人免费在线观看电影| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av| 极品教师在线免费播放| 日韩欧美在线二视频| 欧美日韩黄片免| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| 欧美一区二区亚洲| 亚洲男人的天堂狠狠| 精品一区二区三区视频在线观看免费| 国产一区二区在线av高清观看| 性欧美人与动物交配| 亚洲 欧美 日韩 在线 免费| 欧美在线一区亚洲| 国产在线男女| 自拍偷自拍亚洲精品老妇| 日韩欧美国产一区二区入口| 亚洲aⅴ乱码一区二区在线播放| 高潮久久久久久久久久久不卡| 日本五十路高清| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 看免费av毛片| 日韩成人在线观看一区二区三区| 国产亚洲av嫩草精品影院| 国产伦在线观看视频一区| 99热只有精品国产| 性欧美人与动物交配| 不卡一级毛片| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3| 熟女电影av网| 亚洲av五月六月丁香网| 乱人视频在线观看| 免费一级毛片在线播放高清视频| 少妇丰满av| 一级av片app| 最好的美女福利视频网| 亚洲人与动物交配视频| 永久网站在线| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 欧美成人性av电影在线观看| 特级一级黄色大片| 我要搜黄色片| 国产熟女xx| 淫秽高清视频在线观看| 国产精品野战在线观看| 哪里可以看免费的av片| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 性欧美人与动物交配| 午夜福利18| 国产精品亚洲av一区麻豆| 无遮挡黄片免费观看| 麻豆av噜噜一区二区三区| 婷婷精品国产亚洲av在线| 久久久久性生活片| 久久久久亚洲av毛片大全| 99久久精品国产亚洲精品| 最好的美女福利视频网| 真人一进一出gif抽搐免费| 成人特级黄色片久久久久久久| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 特大巨黑吊av在线直播| www.999成人在线观看| netflix在线观看网站| 亚洲av熟女| 不卡一级毛片| 国产精品伦人一区二区| 亚洲av美国av| 欧美+日韩+精品| 嫁个100分男人电影在线观看| 神马国产精品三级电影在线观看| 别揉我奶头 嗯啊视频| 国产三级黄色录像| 成年版毛片免费区| 成人av在线播放网站| 婷婷色综合大香蕉| 中文字幕久久专区| 一夜夜www| 999久久久精品免费观看国产| 欧美丝袜亚洲另类 | 91在线精品国自产拍蜜月| 动漫黄色视频在线观看| 首页视频小说图片口味搜索| 88av欧美| 伊人久久精品亚洲午夜| 国产欧美日韩一区二区精品| 3wmmmm亚洲av在线观看| 欧美潮喷喷水| 夜夜爽天天搞| 嫩草影视91久久| 亚洲美女搞黄在线观看 | 高清日韩中文字幕在线| 亚洲国产日韩欧美精品在线观看| a在线观看视频网站| 亚洲真实伦在线观看| 国产在视频线在精品| 亚洲狠狠婷婷综合久久图片| 99视频精品全部免费 在线| 国产日本99.免费观看| 九九久久精品国产亚洲av麻豆| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区成人| 成人毛片a级毛片在线播放| 一卡2卡三卡四卡精品乱码亚洲| 哪里可以看免费的av片| 少妇高潮的动态图| 一进一出抽搐动态| 国产伦精品一区二区三区视频9| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久 | 精品国产三级普通话版| 中文字幕高清在线视频| 久久亚洲真实| 婷婷精品国产亚洲av在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品乱码久久久v下载方式| 久久久久久国产a免费观看| 网址你懂的国产日韩在线| 非洲黑人性xxxx精品又粗又长| www.色视频.com| 91九色精品人成在线观看| 美女cb高潮喷水在线观看| 成人三级黄色视频| 国内精品久久久久精免费| 欧美激情在线99| 大型黄色视频在线免费观看| 又爽又黄a免费视频| 国内毛片毛片毛片毛片毛片| 亚洲一区二区三区色噜噜| 成人亚洲精品av一区二区| 国产亚洲欧美在线一区二区| 麻豆成人av在线观看| 国产69精品久久久久777片| 久久中文看片网| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 九九久久精品国产亚洲av麻豆| 亚洲午夜理论影院| 久久久久国内视频| 一区二区三区高清视频在线| 欧美色欧美亚洲另类二区| 精品一区二区免费观看| 亚洲,欧美,日韩| 在现免费观看毛片| 日韩中字成人| 在线国产一区二区在线| 美女cb高潮喷水在线观看| 欧美在线黄色| 色综合婷婷激情| 国产亚洲av嫩草精品影院| 欧美bdsm另类| 国产亚洲精品综合一区在线观看| 日本一二三区视频观看| 欧美bdsm另类| 9191精品国产免费久久| 亚洲成av人片免费观看| 久久精品久久久久久噜噜老黄 | 亚洲乱码一区二区免费版| 日韩大尺度精品在线看网址| 亚洲精品影视一区二区三区av| 午夜影院日韩av| 欧美潮喷喷水| 99riav亚洲国产免费| 日韩中字成人| 99久久99久久久精品蜜桃| 成年人黄色毛片网站| 亚洲美女视频黄频| 国产精品亚洲美女久久久| 精品熟女少妇八av免费久了| 国产私拍福利视频在线观看| 成人高潮视频无遮挡免费网站| 美女 人体艺术 gogo| 亚洲18禁久久av| 国产白丝娇喘喷水9色精品| 色视频www国产|