• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shock waves and water wing in slit-type energy dissipaters*

    2017-06-07 08:22:46GuobingHuang黃國(guó)兵HanHu胡晗CaihuanWang王才歡LanDu杜蘭
    關(guān)鍵詞:黃國(guó)

    Guo-bing Huang (黃國(guó)兵), Han Hu (胡晗), Cai-huan Wang (王才歡), Lan Du (杜蘭)

    Changjiang River Scientific Research Institute, Wuhan 430010, China, E-mail: huanggb@mail.crsri.cn

    Shock waves and water wing in slit-type energy dissipaters*

    Guo-bing Huang (黃國(guó)兵), Han Hu (胡晗), Cai-huan Wang (王才歡), Lan Du (杜蘭)

    Changjiang River Scientific Research Institute, Wuhan 430010, China, E-mail: huanggb@mail.crsri.cn

    2017,29(3):504-509

    The slit-type energy dissipater (STED) is widely used in hydraulic projects of high water head, large discharge, and narrow river valley, thanks to its simple structure and high efficiency. However, the water wing caused by the shock waves in the contraction section of the STED may bring about harmful effects. A coefficient is introduced for the application of Ippen?s theory in the STED. The expression of the coefficient is experimentally obtained. Simplified formulas to calculate the shock wave angle and the water wing scope are theoretically derived, with relative errors within 5%.

    Slit-type energy dissipater (STED), shock wave, water wing, hydraulic modelling

    Introduction

    The slit-type energy dissipater (STED) changes the trajectories of a nappe by using a contraction flip bucket[1,2]. The flow energy is greatly dissipated in this process and then the erosion of the downstream channel can be relieved[3,4]. Because of its simple structure and high efficiency, the STEDs were widely used in hydropower projects with high water head, large discharge, and narrow river valley. The energy dissipations in many large scale hydraulic projects in China, such as the Longyangxia dam[5], the Ertan dam[6], the Shuibuya dam[7], and the Geheyan dam[8]were greatly relieved by the application of the STEDs.

    The STEDs were studied theoretically and experimentally from the aspects of the energy dissipation[9], the structure safety[10], the flow surface in the channel[11], the characteristics of pressure and cavitation[12], the shape of the nappe[13], and the scouring effect of the downstream riverbed[14]. Zhang and Wu (1989), Dai and Yu (1992) experimentally observed the movement and extension features of the nappe,and proposed estimated formulas for the flow profile in the contraction section. Wu et al.[15]suggested empirically the conversion conditions of the nappe forms, and experimentally investigated the behaviour of the flow choking[16]. The estimated formulas for the nappe maximum width and the locations of slit-type flip buckets were presented by Liu et al.[17]. Huang et al.[18]developed a method to calculate the dynamic water pressure in the contraction section of the STED.

    As a special hydraulic phenomenon, the water wing of the STED may harm the stability of the bank and the safety of downstream buildings[19]. In the hydraulics prototype observation of the Geheyan project, it was found that, the water wing diffused transversely, and scoured the side bank slope. And the operation of the flood-releasing surface outlets on both sides was then limited. The results of the model test of the Shiubuya project indicate that, the collision of the shock waves in the contraction section causes part of the water detached from the main flow and scours the river bank. However, previous studies paid little attention to the harmful effects caused by the water wings. Hence, it is necessary to study the formation mechanism and the movement features of the shock waves and the water wings.

    In the present study, physical model experiments and theoretical analyses are conducted to reveal the internal relationship between the shock wave and the movement characteristics of the water wing.

    1. Experimental set-up and methodology

    The experimental set-up consists of a high pressure water tank, a sloping flume, a STED structure, and a downstream pool. The high pressure water tank is 10.0 m high to provide an adequate flow of suitable water head. Through a Plexiglas-made sloping flume the flow goes into the STED structure. The sloping flume is 3.2 m long, 0.2 m wide and 2.0 m high.

    Figure 1 is the definition sketch of the flow through a STED, in which α is the bucket angles of the STED, L is the length of the contraction section, and B and b are the widths before and after the contraction section, respectively, resulting in a contraction ratio of /bB.

    Fig.1 Definition sketch for flow through a STED

    The origin of the coordinate system (,)xy is at the beginning of the STED bottom. e is the height from some base level to the bottom, C is the colliding point of the shock waves produced by the contraction sidewalls, g is the maximum angle of the water wing to the horizontal level at the Point C, D is the position of the water wing at the base level,MT is the distance from the Point D to the coordinate axis x, LOCis the distance from the origin of the coordinate system to the Point C, and LCDis the distance between C and D in the direction of the coordinate axis x, with LM=LOC+LCD. Therefore, the scope of the water wing in the directions of the coordinate axes x and y could be expressed asML andMT .0h and v0are the depth and the average velocity of the approach flow, respectively, and then we have the Froude number of the flow.

    Table 1 lists the cases and geometric parameters of the STED models with various bucket angles and contraction ratios.0Fr varies from 4.10 to 5.90 in the present work.

    Table 1 Geometric parameters of STED models

    2. Flow observation

    Figure 2 and Fig.3 show the flows in the top and side views. It could be clearly noticed that the flow is contracted transversely and extended longitudinally while passing through the STED. Especially, the shock waves occur from the beginning of the STED due to the contraction effects of the side walls. There are strong water wings over the top and the two sides of the main nappe due to the collision of the shock wave effects. Those water wings may impact the banks and then bring about harmful effects. So, it is necessary to estimate the scope of the water wings.

    Fig.2 (Color online) Top view of flow through a STED

    Fig.3 (Color online) Side view of flow through a STED

    3. Shock waves

    Ippen put forward an ideal shock wave theory based on the assumption of the hydrostatic pressure distribution over the depth, with the basic equations for the shock wave[20]. Figure 4 shows the plane viewof a shock wave caused by the sidewall deflection. The approach flow along AO with the depth0h and the velocity0v is deflected by a sidewall OB with a deflection angle q, then the depth and the velocity of the approach flow become1h and1v while crossing a jump line OC. The angle of the jump line OC is defined as the shock wave angle b, and the angle from the sidewall OB to the jump line OC is defined as j.

    Fig.4 Sketch of the shock wave

    Based on the continuity and momentum relationships, combined with the geometry of the velocity vectors, the angle of the shock wave b can be determined by

    where0Fr is the approach flow Froude number.

    Ippen’s formula was simplified by Hager et al.[21,22]and Liu et al.[17], j could be simply calculated by

    However, because of the sharp bend sidewalls and the narrow width of the surface, in the STEDs the assumption of the hydrostatic pressure distribution over the depth will no longer be valid. So Eq.(2) would result in a large deviation, and need to be modified in the the application to the STEDs.

    It is assumed that,

    where c is a correction coefficient, which depends on the geometric and hydraulic parameters of the STEDs.

    The influencing factors include the bucket anglea, the sidewall deflection angle q, and the Froude number of the approach flow0Fr. An orthogonal analysis indicates that, only the sidewall deflection angle q, and the Froude number of the approach flow Fr0have significant influences on the coefficient c.

    The relationship between the coefficient c and the Froude number of the approach flow0Fr for different deflection angles q is plotted in Fig.5.

    Fig.5 Variation of c with 0Fr

    According to the results of the least-squares method, c can be calculated as

    As a result, the shock wave angle becomes

    Equation (5) is applicable to the STED with the deflection angle 0.163 £ q£ 0.186 and the Froude number of the approach flow 4.10 £ Fr0£ 5.90. As compared with the experimental results in Table 2, the maximum relative error of Eq.(5) is 0.27%, and the average relative error is 0.15%.

    Table 2 Calculation errors of shock waveb

    4. Water wing

    The scope of the water wing could be estimated from the values ofML andMT . According to the geometry relationships, as depicted in Fig.1, we have

    The shape of the water wing could be regarded as a trajectory of the projectile motion. SoCDL could be calculated based on the projectile motion theory.

    where,Cv, g andCh are the velocity, the angle of departure, and the depth at the shock wave collision Point C, respectively, g is the gravitational acceleration. Therefore, the values ofCv, a andCh need to be determined.

    4.1 Calculation forCv

    The value ofCv could be calculated based on Ippen’s theory. The velocity after the shock wave is determined by the angle of the shock wave.

    where0v is the velocity of the approach flow before the shock waves.

    4.2 Calculation forCh

    The depth at the shock wave collision point could be obtained from the continuity equation,

    whereCB is the width of the contraction section at the shock wave collision point.

    Then,

    4.3 Calculation for g

    According to the experimental results (as demonstrated in Fig.6), the flow surface along the central line could be approximately expressed as the shape of a parabolic function

    Fig.6 Flow surface along the central line under various conditions

    As defined above, the coordinates of the collision Point C are (LOC,hC). So

    Being substituted into Eq.(12), the parabolic function turns out to be

    From the derivative of Eq.(14) at C (LOC,hC), the slope at the collision point is obtained as

    To validate Eqs.(6) and (7), the calculation results Sc(LMand TM) are compared to the experimentally determined area Seof the rainfall caused by the water wing in Fig.7 under various conditions. But, it is difficult to define the boundary of the water wing. In some studies[16]the rainfall with an intensity stronger than 500 mm/h is defined as the heavy rainfall according tothe prototype observation experience. Hence, after the conversion, the prototype typical rainfall intensity contour of 500 mm/h is defined as the affected scope of the water wing.

    Fig.7 Comparison between experimental water wing area and the calculated results

    The maximum relative errors ofML andMT are 4.4% and 4.7%, respectively, while the average relative errors are 3.0% and 2.6%.

    5. Conclusion

    With Ippen?s theory, a coefficient is introduced in order to correct the deviation of the shock wave angle to the sidewall for the present STED. The expression of the coefficient is experimentally obtained. On the basis of this coefficient, a method is proposed to estimate the scope of the water wing, including the length and the width. Comparison with the experimental data demonstrates that the relative errors of the present method are 4.4% and 4.7% in the directions of the length and the width of the water wing, respectively.

    Acknowledgement

    This work was supported by the Basic Research Foundation of Changjiang River Scientific Research Institute (Grant Nos. CKSF2017011/SL, CKSF2017055/SL and CKSF2014047/SL).

    [1] Cheng C. T., Shen J. J., Wu X. Y. et al. Operation challeges for fast-growing China’s hydropower systems and respondence to energy saving and emission reduction [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2386-2393.

    [2] Li N. W., Xu W. L., Zhou M. L. et al. Experimental study on energy dissipation of flood discharge in high arch dams without impact of jets in air [J]. Journal of Hydraulic Engineering, 2008, 39(8): 927-933(in Chinese).

    [3] Xiao X. B. Summary of application of slot dissipator for high dam energy dissipation and its development [J]. Design of Hydroelectric Station, 2004, 20(3): 76-81(in Chinese).

    [4] Chen Z. R., Chen Y. D., Huang G. B. Research of configuration of narrow opening ski jump spillway and estimation of longitudinally extended width of jet [J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(4): 11-14(in Chinese).

    [5] Xie S., Wu Y., Chen W. New technology and innovation on flood discharge and energy dissipation of high dams in China [J]. Journal of Hydroelectric Engineering, 2016, 47(3): 324-336(in Chinese).

    [6] Liu M. N. Prototype observation of the ski shaped discharge spillway of Dongjiang hydropower plant [C]. Drainage Engineering and High Speed Flow Information Network the Fourth Conference Proceeding. Chengdu, China, 1994(in Chinese).

    [7] Ma J., Zhang Y., Zheng S. Experimental study on the characteristics of flow in spillway system with differential slotted flip bucket terminal structures for Shuibuya hydropower project [J]. Journal of Hydroelectric Engineering, 2007, (3): 93-99(in Chinese).

    [8] Sha H. F., Zhou H., Chen H. L. Numerical simulation of 3-D flow formed by slit-type energy dissipater for midlevel outlets [J]. Journal of Hydraulic Engineering, 2006, 37(5): 625-629(in Chinese).

    [9] Kuzmanovic V., Savic L., Milovanovic B. Ski jump design [J]. Water Management, 2010, 163(10): 523-527.

    [10] Alias N. A., Mohamed T. A., Ghazali A. H. et al. Impact of takeoff angle of bucket type energy dissipater on scour hole [J]. American Journal of Applied Sciences, 2008, 5(2): 117-121.

    [11] Avinash Panwar H. L. T. Hydraulic energy dissipaters–A review [J]. International Journal of Scientific Engineering and Technology, 2014, 3(4): 400-402.

    [12] Reyes-Salazar A., López-Barraza A. Effectiveness of energy dissipaters type friction on the reduction of the inelastic seismic responses of moment steel frames [J]. Journal of Engineering Computing and Architecture, 2008, 2(1): 1-14.

    [13] Chen H. Y., Xu W. L., Deng J. et al. Numerical simulation and experimental study on the characteristics of slit-type energy dissipater in high arch dam [J]. Journal of Hydraulic Engineering, 2012, 43(4): 445-451(in Chinese).

    [14] Wang R., Liu H., Nie Y. et al. Application of curved slittype flip bucket at Maerdang hydropower station[J]. Journal of Hydroelectric Engineering, 2015, 34(2): 85-90(in Chinese).

    [15] Wu J. H., Ma F., Yao L. Hydraulic characteristics of slittype energy dissipaters [J]. Journal of Hydrodynamics, 2014, 26(1): 86-93.

    [16] Wu J. H., Wan B., Ma F. et al. Flow choking characteristics of slit-type energy dissipaters [J]. Journal of Hydrodynamics, 2015, 27(1): 159-162.

    [17] Liu Y., Ma F., WU J. H. Shock waves and jet width of slittype flip bucket [J]. Advances in Science and Technology of Water Resources, 2014, 34(3): 20-29(in Chinese).

    [18] Huang Z. M., He X. H., Zhu H. H. et al. Analysis of configuration lay out and hydro dynamic pressure characteristics of slit-type bucket [J]. China Rural Water and Hydropower, 2006, (5): 69-72(in Chinese).

    [19] Zhang Y., Wang J. Study on application of slit-bucket energy dissipater to multi-tunnel combined spillways [J].Journal of Hydroelectric Engineering, 2015, 34(2): 112-117(in Chinese).

    [20] Ippen A. T. Gas-wave analogies in open channel flow [C]. Proceedings 2nd Hydraulics conference. Bulletin 27, Iowa, USA: University of Iowa, 1943.

    [21] Harger W. H., Bretz N. V. Discussion of “Simplified design of contractions in supercritical flow” by Terry W. Strum [J]. Journal of Hydraulic Engineering, ASCE, 1987, 113(3): 422-427.

    [22] Harger W. H., Schwalt M., Jimenez O. Supercritical flow near an abrupt wall deflection [J]. Journal of Hydraulic Research, 1994, 32(1): 103-118.

    10.1016/S1001-6058(16)60762-X

    May 12, 2016, Revised February 22, 2017)

    * Project supported by the National Nature Science Foundation of China (Grant Nos. 51279013, 51379020 and 51509015), the National Key R & D Program of China (Grant No. 2016YFC0401900).

    Biography:Guo-bing Huang (1963-), Male, Master, Professor

    Han Hu, E-mail: smith_hu@qq.com

    猜你喜歡
    黃國(guó)
    便攜式水產(chǎn)品四環(huán)素含量檢測(cè)裝置研制
    圖輯·職工書(shū)畫(huà)
    導(dǎo)數(shù)及其應(yīng)用解題誤區(qū)掃描
    巴氏鈍綏螨對(duì)普通大薊馬的功能反應(yīng)及田間防效
    一種催化器儲(chǔ)氧量的測(cè)試及計(jì)算方法
    不會(huì)說(shuō)話的人回來(lái)了(小說(shuō))
    孤寡老人行動(dòng)不便,長(zhǎng)沙的哥義務(wù)接送3年
    走紅的博士論文致謝里,閃爍著兩束不滅的光
    黃國(guó)平:因“論文致謝走紅”的博士
    華聲文萃(2021年7期)2021-07-28 10:39:23
    黃國(guó)平:因“論文致謝走紅”的博士
    天美传媒精品一区二区| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 少妇熟女欧美另类| 性高湖久久久久久久久免费观看| 久久精品久久精品一区二区三区| av.在线天堂| 成年女人在线观看亚洲视频| 精品一区二区三区视频在线| 欧美精品国产亚洲| 久久人妻熟女aⅴ| 国产色婷婷99| 亚洲人与动物交配视频| 亚洲精品第二区| 熟女人妻精品中文字幕| 国产69精品久久久久777片| 国产精品久久久久久久久免| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 欧美亚洲日本最大视频资源| 丁香六月天网| av专区在线播放| 在线播放无遮挡| 亚洲成人av在线免费| 看免费成人av毛片| 久久亚洲国产成人精品v| 国产一级毛片在线| 国产高清国产精品国产三级| 满18在线观看网站| 亚洲欧美一区二区三区国产| 母亲3免费完整高清在线观看 | 晚上一个人看的免费电影| 久久ye,这里只有精品| 精品久久久久久久久亚洲| 欧美亚洲 丝袜 人妻 在线| 大陆偷拍与自拍| 亚洲av欧美aⅴ国产| 国产精品偷伦视频观看了| 看非洲黑人一级黄片| 七月丁香在线播放| 久久青草综合色| 美女cb高潮喷水在线观看| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 日韩 亚洲 欧美在线| 麻豆精品久久久久久蜜桃| 精品一区二区三区视频在线| 亚洲不卡免费看| 中文字幕久久专区| 人人妻人人澡人人爽人人夜夜| 精品国产露脸久久av麻豆| 亚洲一区二区三区欧美精品| 视频区图区小说| 又粗又硬又长又爽又黄的视频| 夫妻午夜视频| 国产亚洲午夜精品一区二区久久| 免费观看无遮挡的男女| 麻豆乱淫一区二区| 中文字幕久久专区| 国产成人精品在线电影| 日韩一本色道免费dvd| 人人妻人人澡人人看| 亚洲内射少妇av| 91久久精品国产一区二区成人| videossex国产| 国产精品久久久久久精品电影小说| 精品人妻熟女av久视频| 久久精品国产a三级三级三级| av在线老鸭窝| 亚洲精华国产精华液的使用体验| 久久国产精品大桥未久av| 美女大奶头黄色视频| 日韩不卡一区二区三区视频在线| 综合色丁香网| a 毛片基地| 婷婷成人精品国产| 考比视频在线观看| 亚洲在久久综合| 亚洲欧美精品自产自拍| av免费观看日本| 亚洲一区二区三区欧美精品| 亚洲精品自拍成人| freevideosex欧美| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久久丰满| 日本黄色片子视频| 国产精品熟女久久久久浪| 免费观看性生交大片5| 亚洲av福利一区| 最近最新中文字幕免费大全7| 日本-黄色视频高清免费观看| 亚洲丝袜综合中文字幕| 欧美丝袜亚洲另类| 天堂俺去俺来也www色官网| 欧美日韩国产mv在线观看视频| 日本wwww免费看| 婷婷色综合大香蕉| 大香蕉久久成人网| 亚洲欧美色中文字幕在线| 视频区图区小说| 九色成人免费人妻av| 多毛熟女@视频| 免费av中文字幕在线| 夫妻午夜视频| 午夜激情久久久久久久| 最近最新中文字幕免费大全7| 日韩av在线免费看完整版不卡| 免费黄频网站在线观看国产| 午夜精品国产一区二区电影| 日韩一区二区三区影片| 亚洲四区av| 91久久精品国产一区二区三区| 国产黄频视频在线观看| a级毛片在线看网站| www.av在线官网国产| 免费人成在线观看视频色| 免费黄色在线免费观看| 热99国产精品久久久久久7| 18禁在线无遮挡免费观看视频| 99久久中文字幕三级久久日本| 大话2 男鬼变身卡| 狠狠婷婷综合久久久久久88av| 亚洲,欧美,日韩| 在线观看免费视频网站a站| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩一区二区视频在线观看视频在线| 免费高清在线观看视频在线观看| 99热国产这里只有精品6| 一级a做视频免费观看| 久久久久精品久久久久真实原创| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 日本黄色片子视频| 亚洲人成网站在线观看播放| 五月开心婷婷网| 国产精品偷伦视频观看了| 午夜久久久在线观看| 免费久久久久久久精品成人欧美视频 | 夜夜骑夜夜射夜夜干| 热re99久久精品国产66热6| 曰老女人黄片| 久久久久久久久久久丰满| 免费看光身美女| 国产女主播在线喷水免费视频网站| 久久这里有精品视频免费| 波野结衣二区三区在线| 精品一区二区免费观看| 国产黄片视频在线免费观看| 国产无遮挡羞羞视频在线观看| 涩涩av久久男人的天堂| 看免费成人av毛片| 哪个播放器可以免费观看大片| 亚洲国产精品专区欧美| 啦啦啦在线观看免费高清www| 桃花免费在线播放| 一本久久精品| 日韩一区二区三区影片| 国产午夜精品一二区理论片| 国产永久视频网站| 午夜福利视频精品| 蜜桃在线观看..| 69精品国产乱码久久久| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 少妇人妻久久综合中文| 少妇熟女欧美另类| 免费高清在线观看日韩| 国产精品 国内视频| 极品人妻少妇av视频| 在线观看免费日韩欧美大片 | 亚洲人与动物交配视频| 久久亚洲国产成人精品v| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 午夜福利视频精品| 国产在线一区二区三区精| 国产在线视频一区二区| 插逼视频在线观看| 日韩三级伦理在线观看| 五月天丁香电影| 国产乱人偷精品视频| 黄色一级大片看看| 免费观看a级毛片全部| 亚洲av电影在线观看一区二区三区| 视频中文字幕在线观看| 亚洲av免费高清在线观看| 欧美成人午夜免费资源| 97超碰精品成人国产| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 成年人午夜在线观看视频| 丝袜喷水一区| www.av在线官网国产| 国产午夜精品久久久久久一区二区三区| 亚州av有码| 啦啦啦视频在线资源免费观看| 最近2019中文字幕mv第一页| 日韩欧美一区视频在线观看| 男女啪啪激烈高潮av片| 精品久久久久久久久av| 91久久精品国产一区二区三区| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 高清不卡的av网站| 午夜精品国产一区二区电影| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 最黄视频免费看| 日韩精品有码人妻一区| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 国产欧美日韩一区二区三区在线 | 欧美变态另类bdsm刘玥| 美女主播在线视频| 九色亚洲精品在线播放| 色网站视频免费| 男女高潮啪啪啪动态图| videos熟女内射| 超色免费av| 久久综合国产亚洲精品| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 91午夜精品亚洲一区二区三区| xxx大片免费视频| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 色婷婷av一区二区三区视频| 99久久精品国产国产毛片| 日韩电影二区| 纵有疾风起免费观看全集完整版| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 国产精品蜜桃在线观看| 亚洲国产毛片av蜜桃av| 免费观看av网站的网址| √禁漫天堂资源中文www| 日本欧美国产在线视频| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 秋霞伦理黄片| 大香蕉久久成人网| av国产久精品久网站免费入址| 18禁观看日本| 99国产综合亚洲精品| 亚洲一级一片aⅴ在线观看| 大片电影免费在线观看免费| 97精品久久久久久久久久精品| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 久久毛片免费看一区二区三区| 亚洲第一区二区三区不卡| 色吧在线观看| 最后的刺客免费高清国语| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 女人精品久久久久毛片| 精品人妻熟女av久视频| 99re6热这里在线精品视频| av播播在线观看一区| 久久精品久久精品一区二区三区| 老司机影院成人| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说| 大片电影免费在线观看免费| 欧美3d第一页| 色网站视频免费| 大片电影免费在线观看免费| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| kizo精华| av一本久久久久| 午夜福利视频在线观看免费| 少妇人妻 视频| 妹子高潮喷水视频| 日韩人妻高清精品专区| 在现免费观看毛片| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 人妻 亚洲 视频| 一级毛片 在线播放| 18禁动态无遮挡网站| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 九草在线视频观看| 色视频在线一区二区三区| 少妇被粗大的猛进出69影院 | 亚洲怡红院男人天堂| 亚洲五月色婷婷综合| 久久久国产欧美日韩av| 电影成人av| 天天躁日日躁夜夜躁夜夜| 19禁男女啪啪无遮挡网站| 久久热在线av| 久久久欧美国产精品| 777米奇影视久久| 国产成人欧美| 男女边摸边吃奶| 99国产精品一区二区三区| 久久久国产精品麻豆| 两个人看的免费小视频| 久久亚洲精品不卡| svipshipincom国产片| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久男人| 搡老乐熟女国产| av欧美777| 国产成人欧美在线观看 | 日韩 欧美 亚洲 中文字幕| 视频区图区小说| 精品国产亚洲在线| 欧美日韩成人在线一区二区| av免费在线观看网站| 亚洲一码二码三码区别大吗| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 怎么达到女性高潮| 国产精品国产av在线观看| 久久久久视频综合| 日本欧美视频一区| 首页视频小说图片口味搜索| 极品少妇高潮喷水抽搐| 国产成人av教育| 久久久久久久大尺度免费视频| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 日韩欧美一区二区三区在线观看 | 欧美久久黑人一区二区| 精品一品国产午夜福利视频| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 日本wwww免费看| 久久久久久久国产电影| 三级毛片av免费| 男人舔女人的私密视频| 一进一出抽搐动态| av天堂在线播放| 视频区图区小说| 手机成人av网站| 国产免费福利视频在线观看| 搡老熟女国产l中国老女人| 亚洲精品粉嫩美女一区| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 两个人免费观看高清视频| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 制服诱惑二区| 悠悠久久av| 最近最新免费中文字幕在线| 亚洲熟女毛片儿| 视频在线观看一区二区三区| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| 午夜两性在线视频| 免费观看a级毛片全部| 国产成人欧美| 精品国产一区二区久久| av天堂在线播放| av片东京热男人的天堂| 无遮挡黄片免费观看| 桃花免费在线播放| 日韩视频在线欧美| www.精华液| av视频免费观看在线观看| 亚洲avbb在线观看| 午夜福利一区二区在线看| 国产精品免费大片| 在线观看一区二区三区激情| 人妻久久中文字幕网| 精品视频人人做人人爽| 黑人猛操日本美女一级片| 精品人妻在线不人妻| 国产精品欧美亚洲77777| 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 欧美精品高潮呻吟av久久| 老司机午夜十八禁免费视频| 国产日韩欧美在线精品| 久久久精品94久久精品| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 亚洲伊人色综图| 最新在线观看一区二区三区| 精品视频人人做人人爽| 国产人伦9x9x在线观看| 深夜精品福利| 亚洲精品av麻豆狂野| 国产一区二区激情短视频| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清 | 国产av又大| 一区二区三区激情视频| 久久香蕉激情| 涩涩av久久男人的天堂| 老司机午夜福利在线观看视频 | 国产熟女午夜一区二区三区| 成人国产一区最新在线观看| 国产一区二区在线观看av| 亚洲成人免费av在线播放| e午夜精品久久久久久久| 丁香六月天网| 国产精品 欧美亚洲| 1024香蕉在线观看| 黄色怎么调成土黄色| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 亚洲精品一二三| 国产在线精品亚洲第一网站| 久久精品人人爽人人爽视色| av不卡在线播放| 69av精品久久久久久 | 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区视频在线观看免费 | 飞空精品影院首页| 两人在一起打扑克的视频| 国产真人三级小视频在线观看| 狂野欧美激情性xxxx| 久久狼人影院| 久久人人爽av亚洲精品天堂| 露出奶头的视频| av电影中文网址| 日本a在线网址| 午夜激情av网站| 国产黄频视频在线观看| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 超碰97精品在线观看| 色精品久久人妻99蜜桃| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲伊人久久精品综合| 91成人精品电影| aaaaa片日本免费| 美女午夜性视频免费| 色尼玛亚洲综合影院| 精品乱码久久久久久99久播| 丝袜美足系列| 男女下面插进去视频免费观看| 国产精品99久久99久久久不卡| 一级片免费观看大全| 亚洲成人免费电影在线观看| 午夜老司机福利片| 精品国产一区二区三区四区第35| 人妻久久中文字幕网| 欧美黑人精品巨大| 啦啦啦中文免费视频观看日本| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 51午夜福利影视在线观看| 免费日韩欧美在线观看| 国产成人影院久久av| 国产无遮挡羞羞视频在线观看| 中文字幕人妻熟女乱码| 天天影视国产精品| 久久午夜综合久久蜜桃| 亚洲av美国av| 91精品国产国语对白视频| 久久中文字幕人妻熟女| 色老头精品视频在线观看| 中国美女看黄片| 成人特级黄色片久久久久久久 | 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美 日韩 精品 国产| 首页视频小说图片口味搜索| 欧美变态另类bdsm刘玥| 日日夜夜操网爽| 天堂中文最新版在线下载| 国产精品免费视频内射| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 一本色道久久久久久精品综合| 丁香欧美五月| 青青草视频在线视频观看| 成在线人永久免费视频| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久小说| av线在线观看网站| 熟女少妇亚洲综合色aaa.| 人妻一区二区av| 91老司机精品| 极品教师在线免费播放| 国产精品1区2区在线观看. | 亚洲一卡2卡3卡4卡5卡精品中文| 韩国精品一区二区三区| 免费av中文字幕在线| 啦啦啦 在线观看视频| 久久精品亚洲精品国产色婷小说| 色精品久久人妻99蜜桃| 韩国精品一区二区三区| 色尼玛亚洲综合影院| 女人久久www免费人成看片| 国产精品久久久久成人av| 大香蕉久久成人网| 久久久国产欧美日韩av| 国产精品久久久av美女十八| 超碰97精品在线观看| 亚洲人成伊人成综合网2020| 久热这里只有精品99| 日日摸夜夜添夜夜添小说| 18禁美女被吸乳视频| 妹子高潮喷水视频| 99久久国产精品久久久| avwww免费| 丁香六月欧美| 欧美在线一区亚洲| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 99国产精品99久久久久| 男女边摸边吃奶| 嫩草影视91久久| 男女高潮啪啪啪动态图| av有码第一页| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 精品国产一区二区三区四区第35| 人人澡人人妻人| 男女之事视频高清在线观看| 国产成人欧美| 免费久久久久久久精品成人欧美视频| 亚洲成av片中文字幕在线观看| 成人精品一区二区免费| 中国美女看黄片| 十八禁高潮呻吟视频| www.熟女人妻精品国产| 好男人电影高清在线观看| 国产成人啪精品午夜网站| 亚洲av日韩精品久久久久久密| 在线观看免费高清a一片| 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 欧美大码av| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址 | 99riav亚洲国产免费| 国产在线一区二区三区精| 欧美精品av麻豆av| 久久人妻福利社区极品人妻图片| 成年版毛片免费区| 亚洲国产av新网站| 亚洲精品一二三| 中文字幕精品免费在线观看视频| 久久免费观看电影| 老熟女久久久| 最新美女视频免费是黄的| 中文字幕人妻丝袜制服| 999久久久精品免费观看国产| 女警被强在线播放| 一进一出好大好爽视频| 夜夜骑夜夜射夜夜干| 后天国语完整版免费观看| 在线观看一区二区三区激情| 啦啦啦在线免费观看视频4| 久久免费观看电影| 精品亚洲成a人片在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲性夜色夜夜综合| 超碰97精品在线观看| 人妻久久中文字幕网| videosex国产| 黑人巨大精品欧美一区二区mp4| 18禁黄网站禁片午夜丰满| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 久久香蕉激情| 久久精品熟女亚洲av麻豆精品| 丰满迷人的少妇在线观看| 性色av乱码一区二区三区2| 中文字幕制服av| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 国产一区二区在线观看av| 日本精品一区二区三区蜜桃| 欧美日韩av久久| 日本wwww免费看| 人妻一区二区av| 手机成人av网站| 色婷婷av一区二区三区视频| 亚洲精品美女久久久久99蜜臀| 在线 av 中文字幕| 精品国产乱码久久久久久小说| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区免费| 夜夜爽天天搞| 精品亚洲乱码少妇综合久久| 淫妇啪啪啪对白视频| av超薄肉色丝袜交足视频| 97在线人人人人妻| 脱女人内裤的视频| 视频在线观看一区二区三区| 国产日韩欧美在线精品| 精品高清国产在线一区| 两性夫妻黄色片| 国产av一区二区精品久久| 欧美 亚洲 国产 日韩一|